
http://upload.wikimedia.org/wikipedia/en/a/a9/Sharif_logo.svg

1 of 1 8/17/2010 12:55 PM

Sharif University of Technology

Department of Computer Engineering

NORMATIVE LOGIC BASED SEMANTIC-AWARE

AUTHORIZATION MODEL

Morteza Amini

A Thesis Submitted in Partial Fulfilment of the Requirements

for the Degree of Doctor of Philosophy

January 2010

c© Copyright by Morteza Amini 2010

All Rights Reserved

ii

I certify that I have read this thesis and that, in my opinion, it is fully

adequate in scope and quality as a thesis for the degree of Doctor of

Philosophy.

(Dr Rasool Jalili) Principal Adviser

I certify that I have read this thesis and that, in my opinion, it is fully

adequate in scope and quality as a thesis for the degree of Doctor of

Philosophy.

(Dr Ali Movaghar)

I certify that I have read this thesis and that, in my opinion, it is fully

adequate in scope and quality as a thesis for the degree of Doctor of

Philosophy.

(Dr Hassan Mirian)

I certify that I have read this thesis and that, in my opinion, it is fully

adequate in scope and quality as a thesis for the degree of Doctor of

Philosophy.

(Dr Mohammad Ardeshir)

iii

I certify that I have read this thesis and that, in my opinion, it is fully

adequate in scope and quality as a thesis for the degree of Doctor of

Philosophy.

(Dr Saeed Jalili)

I certify that I have read this thesis and that, in my opinion, it is fully

adequate in scope and quality as a thesis for the degree of Doctor of

Philosophy.

(Dr Mehran Soleiman Fallah)

Approved for the University Committee on Graduate Studies

iv

To my kind parents who raised me and supported me by their prays, and I owe them all

of my successes.

To my dear wife who always encouraged and emotionally supported me, and tolerated

all the problems of doing this thesis.

To my lovely daughter, Kiana, with her beautiful smile.

v

Acknowledgements

First and foremost, I must pray God for giving me the power and ability to do this research.

I would like to cordially thank Dr Jalili, my advisor, who did everything for doing this

thesis in the best way. I must thank him for his guidance, patience, and encouragement over

these years.

I would also like to express my gratitude to Prof. Mohammad Ardeshir (from Department

of Mathematical Science of Sharif Univ. of Tech.), and Dr Mehran Soleiman Fallah (from

Department of Computer and IT of Amirkabir Univ. of Tech.) for their useful comments

and guides during this research project, and reviewing this thesis. My appreciate also goes

to the internal reviewers of my thesis, Prof. Ali Movaghar and Dr Hassan Mirian for their

comments and feedbacks on my annual progress reports. I am also thankful to Dr Saeed

Jalili to accept to review my thesis.

I am grateful to my friends and colleagues Amir Reza Masoumzadeh, Sara Javanmardi,

Hassan Takabi, Ali Noorollahi, Jafar Haadi Jafarian, Mohsen Taherian, and Zeinab Iran-

manesh for all of the cooperations that we had together to promote access control research

field in our laboratory. I especially like to thank Fathieh Faghih and Mousa Amir Ehsan for

their significant efforts in developing the security agent prototype for this thesis.

vi

Abstract

Semantic technology provides an abstraction layer above existing computational environ-

ments, especially the Web, to give information a well-defined meaning. Moving toward

semantic-aware environments imposes new security requirements. One of the most impor-

tant requirement is the authorization and security policy inference based on the existing

semantic relationships in the abstract (conceptual) layer. Most of the authorization mod-

els proposed for these environments so far are incomplete and their inference rules are not

guaranteed to be consistent, sound, and complete. To have a sound and complete system for

policy specification and inference, in this thesis, a family of modal logics, called MA(DL)2, is

proposed with the corresponding syntax, proof theory, and semantics. The core of this family

of logic is a combination of multi-authority version of deontic logic (MADL) and description

logic (DL). It is proven that the proposed logics in this family are sound, complete, and

decidable and have finite model property. We then propose an authorization model based on

the MA(DL)2 logic, which enables authorities of different security domains to specify their

security policies in conceptual and ground (individual) levels in terms of deontic statuses:

permission, obligation, and prohibition. The logical foundation of the model enables it to

infer implicit security policies from the explicit ones based on the semantic relationships

defined in subjects, objects, and actions ontologies. Cooperative security management in

shared subdomains (in spite of the distribution of policy specification), context-awareness

and modal conflict resolution of policies are the other characteristics of the proposed model.

To show the applicability of the proposed model, an automatic inference method based on the

analytical tableaux approach is presented for the MA(DL)2 logic and has been implemented

in Prolog as well. Using the developed inference engine, a prototype of an authorization

and access control system has been implemented and experimental results of its evaluation

is presented in the thesis.

vii

Keywords: Data Security, Authorization Model, Access Control, Deontic Logic, De-

scription Logic, Semantic Technology, Semantic-Aware Environment

viii

Contents

Acknowledgements vi

Abstract vii

1 Introduction 1

1.1 Contributions of the Thesis . 2

1.2 Thesis Structure . 3

2 Authorization and Logic 5

2.1 Preliminaries . 5

2.1.1 Security Policy, Model, and Mechanism 5

2.1.2 Authorization and Access Control . 6

2.1.3 Trust and Trust Management . 6

2.2 Authorization Models . 7

2.2.1 Classification based on the Right Assignment Approach 7

2.2.2 Classification based on the Subject Description Approach 10

2.2.3 Classification Based on the Formal Basis of Authorization Models . . 10

2.3 Logics for Authorization . 11

2.3.1 Logics for Authorization in Distributed Systems 11

2.3.2 Pros and Cons of Using Logics for Authorization 12

2.3.3 Related Work in Using Logics for Authorization 13

2.4 Summary . 15

3 Authorization in Semantic-Aware Environments 16

3.1 Semantic Technology and Semantic-Aware Environments 16

ix

3.2 Authorization Requirements for SAEs . 20

3.3 A Survey on Semantic-Aware Authorization Models 22

3.4 Overall Proposed Authorization Framework 25

3.4.1 Overall Framework of the Environment 25

3.4.2 Security Agent Architecture . 27

3.4.3 Canonical Resource Model . 28

3.4.4 Policy Specification Logical Language 29

3.5 Summary . 29

4 MA(DL)2 Logic Family 31

4.1 Logical Foundations of MA(DL)2 . 31

4.1.1 Description Logic . 31

4.1.2 Standard Deontic Logic . 33

4.2 Core MA(DL)2 Logic . 34

4.2.1 Syntax . 34

4.2.2 Semantics . 39

4.2.3 Proof Theory . 43

4.3 MA(DL)2[U−] Logic . 46

4.3.1 Syntax . 46

4.3.2 Semantics . 49

4.3.3 Proof Theory . 49

4.3.4 Hierarchy of Authorities . 54

4.3.5 Conditions on Worlds Relations . 55

4.4 MA(DL)2[−D] Logic . 56

4.4.1 Syntax . 56

4.4.2 Semantics . 57

4.4.3 Proof Theory . 58

4.5 MA(DL)2[UD] Logic . 59

4.6 Summary . 60

5 Properties of MA(DL)2 Logic Family 61

5.1 Soundness . 61

5.1.1 Soundness of Core MA(DL)2 . 62

x

5.1.2 Soundness of MA(DL)2[U−] . 64

5.1.3 Soundness of MA(DL)2[−D] . 66

5.1.4 Soundness of MA(DL)2[UD] . 67

5.2 Completeness . 67

5.2.1 Completeness of Core MA(DL)2 . 67

5.2.2 Completeness of MA(DL)2[U−] Logic 78

5.2.3 Completeness of MA(DL)2[−D] Logic 81

5.2.4 Completeness of MA(DL)2[UD] Logic 82

5.3 Decidability . 82

5.3.1 Reduction to the Satisfiability Problem for FO2 83

5.3.2 Decidability of MA(DL)2[U−] by Reduction 92

5.3.3 Decidability of MA(DL)2[−D] by Reduction 93

5.3.4 The Finite Model Property of MA(DL)2[UD] 95

5.4 Computational Complexity and Expressive Power 100

5.4.1 Computational Complexity . 101

5.4.2 Expressive Power . 101

5.5 Summary . 103

6 MA(DL)2 based Authorization Model 104

6.1 Authorization Model — Formal Specification 104

6.2 Security Policy Specification . 109

6.2.1 Conceptual Level Security Policy . 109

6.2.2 Ground Level Security Policy . 111

6.3 Security Policy Administration and Enforcement 113

6.3.1 Conflict Types and Resolution . 113

6.3.2 Security Policy Base Administration 117

6.3.3 Access Control Procedure . 118

6.3.4 Evaluation of the MA(DL)2-AM Authorization Model 121

6.4 Summary . 123

7 Implementation and Experimental Results 124

7.1 MA(DL)2 Inference Engine . 124

7.1.1 Analytic Tableaux for MA(DL)2 . 125

xi

7.1.2 Tableaux Expansion Rules for MA(DL)2 128

7.1.3 Properties of Tableaux Rules . 133

7.1.4 Implementation in Prolog . 136

7.1.5 Evaluation and Experimental Results 137

7.2 Security Agent Prototype . 142

7.2.1 Master Design . 143

7.2.2 Experimental Results . 144

7.3 Summary . 146

8 Conclusions and Future work 148

8.1 Future Work . 150

A Case Studies 153

A.1 Comprehensive Election System . 153

A.1.1 Fundamental Elements . 153

A.1.2 Sample Policy Rules . 156

A.2 Distributed Semantic Digital Library . 157

A.2.1 Semantic Technology and Security Management 158

A.2.2 Security Policy Rules . 161

B MA(DL)2 Reasoner in Prolog 164

C Extended Mindswap Test Cases 176

Bibliography 190

xii

List of Tables

4.1 Deontic statuses and their logical definition 33

4.2 Preserving the properties of worlds reachability relations in the composition

of authorities. 55

6.1 Conflict resolution based on the NO and PO strategies. 115

6.2 Evaluation of MA(DL)2-AM in comparison with some other authorization

models. 121

7.1 Syntax of formulae in MA(DL)2 inference engine implemented in Prolog. . . 137

xiii

List of Figures

2.1 Classification of authorization models based on the different factors. 8

3.1 Semantic layer cake [66]. 17

3.2 Comparison of semantic languages and data models [48]. 19

3.3 Overall authorization framework for an SAE. 25

3.4 Overall framework of a security domain. 26

3.5 Architecture of a security agent of a security domain. 28

3.6 The canonical model of resources in SAEs. 29

4.1 Members of MA(DL)2 logic family and their relationships and expressive powers. 32

4.2 Architecture of an MA(DL)2 security knowledge base. 38

4.3 Semantics of disjunctive composition of authorities in MA(DL)2[U−]. 49

4.4 Semantics of delegative composition of authorities in MA(DL)2[U−]. 50

4.5 An example of the semantics of domains and statements over them. 58

5.1 Expressive power and properties of the MA(DL)2 logic family in comparison

with the other related logics. 102

6.1 Potential conflict detection and resolution steps. 116

7.1 The impact of applying the α, β, and κ rules on constructing an MA(DL)2

tableaux tree. 128

7.2 The right side is a sample of open tableaux tree, and the left side is a sample

of closed tableaux tree. 132

7.3 Inference time of t-formulae and produced c-formulae in MA(DL)2 based on

the Extended-Mindswap test cases. 138

xiv

7.4 Evaluation of inference time in MA(DL)2 inference engine with variable num-

ber of OB modal formulae. 140

7.5 Evaluation of inference time in MA(DL)2 inference engine with variable num-

ber of PE modal formulae. 140

7.6 Evaluation of inference time in MA(DL)2 inference engine with variable num-

ber of OB and PE modal formulae. 141

7.7 Evaluation of inference time in MA(DL)2 inference engine with variable num-

ber of subsumption relationships (and concepts). 142

7.8 The master design of the implemented security agent prototype. 143

7.9 Response time of granting an access vs. the number of concepts, while policy

rules increase relative to the number of concepts. 145

7.10 Response time of denying an access vs. the number of concepts, while policy

rules increase relative to the number of concepts. 145

7.11 Response time of denying an access vs. the number of concepts, while there

is only a single policy rule. 146

A.1 Authorities structure and their domains. 154

A.2 Subjects ontology of election system. 155

A.3 Security domains in distributed semantic digital library. 158

A.4 Subjects ontology in the distributed semantic digital library case study. . . . 159

A.5 Objects (resources) ontology in the distributed semantic digital library case

study. 160

A.6 Actions ontology in the distributed semantic digital library case study. . . . 160

xv

Chapter 1

Introduction

The shift from current computing environments to the semantic-aware ones (e.g., Semantic

Web, Semantic Grid, and Semantic Cloud Computing Environments) takes aim at giving

information a well-defined meaning (semantics). The main goal of giving semantics to in-

formation is making machines capable of interpreting and processing them. This has been

yielded by enriching the existing information and resources with an abstract layer (named

ontology), which specifies the shared conceptualization.

Moving to the semantic-aware environments (call in short SAEs), which are the new gen-

eration of distributed environments where semantic technology is used, imposes new security

requirements [31, 78], which should be considered in proposing an appropriate authorization

model for them. The most important drawback of the traditional authorization models and

the new proposed models for SAEs is that they do not cover all the security requirements of

such environments, especially the capability of policy specification in the abstract (concep-

tual) level and the ability of policy inference based on the semantic relationships specified

between the entities. In fact, most of the existing models use policy inference rules, which

are not guaranteed to be consistent, sound, and complete. A proper solution to satisfy this

requirement is using a logic with proved properties for authorization in SAEs.

In this thesis, we are about to introduce a new authorization model based on a new logic

to provide a sound and complete system for specification and inference of security policies

in the both conceptual and ground (individual) levels, and to cover all the essential security

requirements of SAEs. In this model (called MA(DL)2-AM), a logical language (named

MA(DL)2), which is proposed in this thesis, is employed for specifying and inferring the

1

CHAPTER 1. INTRODUCTION 2

security policies.

MA(DL)2 is a family of normative logics, which its core is the combination of multi-

authority (poly-modal) version of standard deontic logic and description logic. Using this

logic, administrators (authorities) of different security domains can specify their security

policies in terms of normative statuses; obligations, prohibitions, permissions, and gratu-

ities. Using this logic enables us to take the impact of semantic relationships between the

classes of entities on inference of security policies into account, and thus, infer the implicit

security policies from the explicit ones. Formal semantics of this logic family and the proofs

of soundness, completeness, and decidability of the proposed proof theory guarantee the cor-

rection of policy inference in the proposed authorization model. Furthermore, an analytic

tableaux method for automated reasoning in MA(DL)2 is introduced in this thesis, which

has been used for practical implementation of an inference engine. To show the applicability

of the proposed model, a prototype of an access control system based on MA(DL)2-AM by

using MA(DL)2 inference engine has been developed.

1.1 Contributions of the Thesis

In brief, the main contributions of this thesis are as follows:

1. Proposing an overall framework for authorization and access control in distributed

SAEs, and cooperative security management for shared security domains.

2. Proposing MA(DL)2 normative logic family (as a combination of deontic logic and

description logic) for security policy specification and inference in the conceptual level

and introducing security knowledge base.

3. Proving the soundness, completeness, and decidability, as well as investigating the

expressive power and computational complexity of the MA(DL)2 logic family.

4. Presenting an analytic tableaux method for the MA(DL)2 logic family and implement-

ing an inference engine based on the presented method in Prolog.

5. Proposing a formal authorization model for SAEs (called MA(DL)2-AM) based on

the MA(DL)2 logic family. Using the model we can specify security policy rules in

both conceptual and ground (individual) levels, and infer implicit policy rules based

CHAPTER 1. INTRODUCTION 3

on the semantic relationships defined on the elements participating in authorization

and access control.

6. Implementing a prototype of an access control system (as a security agent) based on

the MA(DL)2-AM authorization model.

1.2 Thesis Structure

In the rest of this thesis, Chapter 2 presents preliminaries of information security, and surveys

and classifies the classical authorization models as well as the authorization models proposed

based on different logics.

In Chapter 3, semantic technology and semantic-aware environments (SAEs) are intro-

duced. Furthermore, security and authorization requirements of SAEs are listed in this

chapter. By surveying the related work for modeling authorization for these environments,

we present the model of the computational system in SAEs, and also our overall framework

for authorization and access control in these environments. In this overall framework, we

show how to use our proposed logic for authorization and access control.

Chapter 4, after providing a brief introduction to description logic and standard deontic

logic, presents the members of our proposed logic family, i.e., MA(DL)2, by their syntax,

Kripke semantics, and Hilbert style proof theory.

The properties of the MA(DL)2 logic family are investigated in Chapter 5. The proofs

of soundness, completeness, and decidability of the members of the MA(DL)2 logic family,

and discussion about the computational complexity of satisfiability problem and expressive

power of the proposed logics are presented in this chapter.

In Chapter 6, we introduce our proposed authorization model for SAEs. The model is

called MA(DL)2-AM, and is based on the MA(DL)2 logic family. The formal specification of

the model and its elements as well as the precise description of conflict resolution and access

control procedure are presented in this chapter.

The implementation of a prototype of an access control system (serves as a security agent

in the proposed overall framework) and the experimental results are reported in Chapter 7.

For this purpose, we introduce an analytic tableaux system for automating the inference

in the proposed logic and implement the required inference engine based on the introduced

method for access control.

CHAPTER 1. INTRODUCTION 4

Chapter 8 concludes the thesis and draws some future work related to this thesis.

Chapter 2

Authorization and Logic

Specification of security policies is the essential requirement to keep the resources in a com-

puting environment protected and secure. For this purpose, we often follow an authorization

model appropriate for our application. In the rest of this chapter, after providing some

definitions, the authorization models proposed for different environments are classified and

surveyed. Using logics for authorization in distributed environments has many advantages,

which are investigated in this chapter. The survey of some related work on using logics for

policy specification and authorization are also presented in the rest.

2.1 Preliminaries

When we talk about authorization models and mechanisms, we need to first define precisely

the meaning of the concepts existing in this domain. Therefore, we first define security

policy, model, and mechanism. Then, authorization and access control are defined. The

Definitions of trust and trust management ends this section.

2.1.1 Security Policy, Model, and Mechanism

Security Policy: a security policy defines the security requirements of an organization, and

the steps to reach a proper level of security. A security policy in a system, partitions its

states into secure (authorized) and nonsecure (unauthorized) states [28, 35].

Security Model: a security model is an abstraction of a security policy. A security model

formally specifies the relations between the subjects, objects, and other elements of a system.

5

CHAPTER 2. AUTHORIZATION AND LOGIC 6

In other words, a security model is a formal specification of a security policy [28].

Note that access control model, authorization model, and protection model have the same

meaning as security model in the literature (e.g., see [20, 100, 77]). In this thesis, based on

the definition we presented for authorization, we prefer to use authorization model for our

purpose, i.e., a model for security policies restricting or forcing accesses to the resources.

Security Mechanism: a security mechanism is a method, tool, or procedure for enforcing a

security policy [28]. Security mechanisms are divided into the three categories; prevention

mechanisms (access control systems and firewalls), detection mechanisms (e.g., intrusion

detection systems and honeypots), and recovery and retrieve mechanisms (e.g., audit and

backup systems).

Identification & Authentication (I&A): identification is the way that a user identifies herself

to the system (e.g., by her user name), and authentication is the process in which the system

authenticates that the identified user is the subject claims to be [28]. Authentication is the

prerequisite of may other security mechanism such as access contol [149, 138].

2.1.2 Authorization and Access Control

There are different definition for authorization and access control. Some of them define

the two equal [4, 138]; however, some of them define one of them including the other one

[45, 99, 128]. The definition seems more acceptable for these two words is as follows. In fact,

we distinguish the policy specification stage from the policy enforcement stage.

Authorization: authorization is the specification of security policy and determining the access

rights to the resources [89, 97, 93].

Access Control: access control is the enforcement of security policies, and the process that

controls which subjects, under which conditions can have which accesses to the resources

[149].

2.1.3 Trust and Trust Management

There are different meanings for trust in computer science that makes difficult to present

a common acceptable definition [115]. The two common definitions for trust are named

reliability trust and decision trust [95].

Reliability trust is defined as “the subjective probability by which an individual, A,

CHAPTER 2. AUTHORIZATION AND LOGIC 7

expects that another individual, B, performs a given action on which its welfare depends”.

However, decision trust is defined as “the extent to which one party is willing to depend on

something or somebody in a given situation with a feeling of relative security, even though

negative consequences are possible”.

Based on the definition of trust, there are different types of trust including provision

trust, access trust, delegation trust, identity trust, and context trust. In this thesis, by trust

we mean access trust, and by trust management we mean distributed authorization [103].

2.2 Authorization Models

Since 1971 such that the first authorization model (i.e., the access matrix model) was pro-

posed by Lampson [100], different authorization models have been proposed. The variety

of the models is resulted from the variety of security requirements identified for different

environments. Thus, we can classify the proposed authorization models based on different

factors as depicted in Figure 2.1. In this figure, the second level shows the classification

factor and the third level shows the resulted classes by the classification factors. In the rest

of this chapter, we survey some of the important classes.

2.2.1 Classification based on the Right Assignment Approach

In most of the references, classification of authorization models are made base on the way

that the access rights are assigned to the users or subjects [47, 143]. In the preliminary

classification presented in Orange Book [37], authorization and access control models are

classified into discretionary access control (DAC) models, and mandatory access control

(MAC) models. After introducing role-based access control (RBAC) models, it has been

extended to three classes of models; i.e., DAC, MAC, and RBAC.

In DAC models, an individual user (e.g., the owner) can set accesses over the resources,

and authorization is on the discretion of the users (owners) [28]. In such models, access

rights are defined based on the identity of the subject and the identity of the objects involved.

Flexibility of DAC models, make them suitable for the spread range of applications, especially

the ones used in commercial and industrial environments. The main drawback of these

models is that they cannot control information flow where multi-level security is required

[35, 143].

CHAPTER 2. AUTHORIZATION AND LOGIC 8

 Subject Description

Authorization Models

Identity-Based Authorization Models

Attribute (Credential) Based Authorization Models

Direct Control Models

Inference Control Models

Flow Control Models

 Control Type

 Contextual Effect

History-Based Authorization Models

Context-Aware Authorization Models

Context-Free Authorization Models

 Formal Basis

Under Protection Environment

Authorization Models Based on Logical Approaches

Authorization Models Based on Non-logical Formal Approaches

Centralized Authorization Models

Distributed Authorization Models

 Right Assignment

Discrecionary Authorization Models

Role-Based Authorization Models

Mandatory Authorization Models

Classification Factors

Classified Authorization Models

Figure 2.1: Classification of authorization models based on the different factors.

CHAPTER 2. AUTHORIZATION AND LOGIC 9

There are many DAC models. Some famous models in this class are the Lampson’s

matrix model [100], the HRU general model [77], the schematic protection model (SPM)

[139] and ESPM [8] as its extended version, the typed access matrix model (TAM) [140] and

dynamic TAM (DTAM) [148], the take-grant model (TG) [107], and the ACTEN model [61].

In MAC models, accesses are restricted based on the sensitivity (as represented by a label)

of the information contained in the objects and the formal authorization (i.e., clearance) of

subjects to access information of such sensitivity [37]. In such models, users cannot alter the

accesses, and access requests are granted based on the axioms defined in the model. One of

the important goals of these models is information flow control to guarantee confidentiality

and integrity of classified information. Therefore, MAC models are more suitable for military

environments.

The famous MAC models proposed for preserving confidentiality and/or integrity are

BLP [20], the Biba integrity model [27], the Dion integrity and confidentiality model [53],

and the Denning’s lattice-based model [51]. There are also some MAC models for multi-level

databases such as the Sea-View model [52], the Jajodia-Sandhu model [86], and the Smith-

Winslett model [147]. Samples of the MAC models proposed for commercial and financial

area are Clark-Wilson [39] and Chinese Wall policy [33], which concentrate on conflict of

interests and separation of duties. Considering context in mandatory policy specification is

a new approach, which is considered recently in [85, 84].

In the RBAC models, which are proposed by Ferraiolo and Kuhn [57] for easier adminis-

tration of permissions in organizations, the permissions are associated to roles, and roles are

assigned to users. Each role is assigned the permissions required to do its defined functions

and transactions. Sandhu [142] introduced the RBAC family of reference models, in which

RBAC0 is the base model that satisfies the above description. We can have role-hierarchy

similar to the one exists in the organization, and roles can inherit permission from other

roles. RBAC1 is RBAC0 plus role-hierarchy. RBAC2 is obtained by adding constraints, such

as separation of duty (SoD), to the base model. RBAC3 is the combination of RBAC1 and

RBAC2. These models are specified as a standard by NIST [58] and ANSI [10]. Role-Graph

[126] is another role-based authorization model, in which three graphs for user groups, roles,

and permissions can be defined. Role-based administration of roles is also proposed for

RBAC models as the ARBAC97 model [141].

RBAC models proposed by Sandhu [142], have been more considered in recent years in

CHAPTER 2. AUTHORIZATION AND LOGIC 10

comparison with the other classical models. RBAC has been extended by defining subjective,

objective, and environmental roles in GRBAC [41]. Adding temporal constraints to RBAC

results in TRBAC [22]. Considering context and contextual constraints resulted in dynamic

context-aware models, DRBAC [164] and CARBAC [145].

2.2.2 Classification based on the Subject Description Approach

Most of the old and traditional authorization models are identity-based, such as HRU [77],

BLP [20], and RBAC [142]. In such models there is an assumption that users (subjects) are

known and can be predefined. Identity-based authorization models are not suitable for open

and distributed computing environments, as huge number of users exist and most of them

are unknown for the system [157].

Contrary to the identity-based authorization models, we have attribute-based or credential-

based authorization models, where subjects are described based on their attributes not their

identities. In such models, users provide some credentials or attribute certificates to prove

that they are eligible to access the resources. Thus, policy rules are defined based on the

users’ attributes not their identities. For this purpose, ITU-T in X.509 version 4 [83], besides

describing public-key infrastructure (PKI), introduces privilege management infrastructure

(PMI), which provides an infrastructure for issuing and validating the attribute certificates.

2.2.3 Classification Based on the Formal Basis of Authorization

Models

Precise and unambiguous specification of security policies is so important to have a trust-

worthy secure system. Using formal methods (e.g., logics) in security modeling provides a

satisfactory answer to the above requirement. In formal specification of policies in autho-

rization and security models, the following two approaches are mostly used:

• Using non-logical approaches and languages such as set theory. Samples of the re-

searches pursuing this trend can be found in [20, 99, 10, 113].

• Using logics like first-order logic, stratified logic, and different kinds of modal logics.

Samples of the valuable researches following this trend are [4, 159, 88, 104].

CHAPTER 2. AUTHORIZATION AND LOGIC 11

As we concentrate on using logic for policy specification in our proposed authorization model,

in the rest of this chapter, more details on the benefits of using logics for authorization are

presented. The different kinds of logics, which are used for this purpose as well as the

authorization and security models proposed based on these logics are also surveyed.

2.3 Logics for Authorization

Authorization and access control in centralized environments are not a very difficult prob-

lem; however, in distributed environments it becomes a complicated problem due to the

characteristics of such environments. Characteristics such as broadness, distribution of re-

sources, autonomy of the agents and components, and heterogeneity. Such complexity and

difficulties impose new problems, which can be mostly answered using logics, which provides

abstraction, preciseness, expressive power, and inference ability in policy specification and

enforcement.

2.3.1 Logics for Authorization in Distributed Systems

Authorization in closed centralized systems is different from authorization in open distributed

systems. The differences can be found in the following aspects [32, 104]:

• What does need protection? In centralized environments, a central server, which is

trusted by all users and agents, contains the required resources, and controls the ac-

cesses to them. However, in distributed environments, there are different servers and

agents having valuable resources and we can not trust all of them easily.

• Whom to protect against? In open and large distributed environments, all the users

are not known in advance and their access requests are not predictable. Therefore,

the solutions based on the identity of users or the ones require the previous knowledge

from the users are not applicable in these environments. Here, we need to use the

attributes of the subjects and the related credentials in policy specification.

• How to specify what is authorized or forbidden? Due to the variety of the situations

and requirements in heterogenous systems in distributed environments and the require-

ment of precise and unambiguous specification of security policies, we need to have an

CHAPTER 2. AUTHORIZATION AND LOGIC 12

abstract language, independent from implementation with proper expressive power to

cover all the circumstances. Also the specifications must be enforceable efficiently, and

there is trade-off between expressive power and implementability. Note that most of

these requirements do not suit the centralized environments.

• How to prove that the systems or applications are secure w.r.t. our definition for

security? Although in both centralized and distributed environments, the verification

of security properties is required; in distributed environments, this is more complicated,

and requires to employ formal and automated methods for policy specification and

verification of the required properties.

Following the above discussion on authorization in distributed environments, it is clear that

logics with the formal foundation, and acceptable expressive power and abstraction level, is

a proper candidate to be used for authorization in such environments. The inference ability

of logics can make a great help in decision making based on the facts collected from different

resources in a distributed environment.

In the following sections, after discussing the advantages and disadvantages of using logics

for authorization, we survey the related work on this issue.

2.3.2 Pros and Cons of Using Logics for Authorization

The advantages of using logics for security and especially authorization and access control

are as follows [4, 103, 3, 32]:

1. Having a precise, clear, and unambiguous foundation, hence formal guarantees;

2. Flexibility for using in different applications and cases;

3. Expressiveness, which enables specifying different types of policies;

4. The abstraction of logic and independency from implementation, which enables com-

position of security policies for heterogeneous distributed environments;

5. Inference ability, which enables inferring implicit policy rules from the explicit ones

based on the logical relationships existing in the environment;

CHAPTER 2. AUTHORIZATION AND LOGIC 13

6. Declarativeness, so that users do not need to have programming skills to use logics in

different applications;

7. Providing a basis for verification of the required properties (e.g., consistency) in spec-

ified systems and policies; and

8. Provides many predesigned algorithms and tools (with the known computational prop-

erties) that can be used for security and authorization purposes.

The drawbacks of using logics is its difficulty and illegibility for the users with lack of

logics literacy. This problem can be solved by having syntax similar to natural language, or

representing formulae graphically. The other mentioned disadvantage is the impossibility of

providing an efficient implementation for some of the proposed logical approaches in security

and authorization [3, 47].

2.3.3 Related Work in Using Logics for Authorization

Using variety of logics to tackle the problems of specifying and proving the security of

distributed systems started since 1988 by Glasgow [65]. Various sorts of logic including first-

order logic, stratified logic (such as Horn clauses), modal logic (including temporal logic,

epistemic logic, and deontic logic), and non-monotonic logic (such as default logic) have

been used to model user beliefs and inference abilities, specification of security policies, con-

text and temporal constraints, and historical interactions. They have also been used to verify

the security properties of a system based on automated reasoning techniques. Since SAEs

are distributed environments that are constructed over a logical foundation (i.e., description

logic), and also fitness of logical authorization models for them (due to many reasons men-

tioned in previous sections), we briefly survey the logical security and access control models

proposed for distributed environments.

The access control logic proposed by Abadi, Lampson, and others [4], provides a logical

system for specifying composite principals, access control lists, and access delegation in

distributed systems. The first attempt in providing a general framework for authorization

made by Woo and Lam [159]. They proposed using default logic, which is a kind of non-

monotonic logic, to specify authorization policies. Undecidability of the logic proposed by

Woo and Lam, encouraged Jajodia, et al., [88, 87] to define an authorization specification

CHAPTER 2. AUTHORIZATION AND LOGIC 14

language (ASL) based on the stratified first-order logic, which is not only decidable but

also linear. The proposed language supports the concepts of groups and roles and allows

different rules, such as integrity, derivation, and conflict resolution that are regulating the

access control decisions. The flexible authorization framework that is provided on ASL

enables security officers to specify different types of policies such as Chinese wall policy,

static and dynamic separation of duty, and positivie/negative take precedence policy.

Barker, et al., [19] took a similar approach in specification of multiple types of policies

(with emphasis on RBAC policies) using stratified the Horn-clauses logic. Freedom in using

constrained negation in this language in comparison with ASL [87], encouraged the authors to

leverage a partial-deduction approach for specializing access control on deductive databases

[18]. The results illustrates that specialization procedure significantly improves the access

request evaluation time.

Kushik, et al., [98] introduced a constraint logic programming (CLP) based framework

to determine access to partial or full ontologies in order to preserve confidentiality. In

this framework, policies are CLP program (that are stratified Horn clauses with constructive

negation) that prevent disclosing sensitive portions of an ontology. In the proposed approach

for access control, the names of concepts or relationships are hidden while disclosing the

overall structure of the ontology, and they are replaced with desensitized names.

Security policies may be changed over time. Thus dynamic policies are needed to specify

authorized time-dependent behavior of a system. To this end, different policy languages

proposed based on temporal (tense) logic. Bertino, et al., introduced Temporal Authorization

Base (TAB) [23] in which users and objects are fixed, and temporal authorizations are

obtained by labeling authorization rules by periodic expressions and temporal operators

i.e., WHENEVER, ASLONGAS, and UPON. Based on this idea, Joshi and others [94] proposed

Generalized Temporal RBAC model (GTRBAC) that allows defining periodic as well as

duration constraints on roles, user-role assignments, and role-permission assignments besides

temporal role enabling constraints.

Considerable efforts made by Cuppens and others in specifying mandatory confidentiality

policies for information flow control from 1990 to 1996 [42, 43, 44]. They proposed the usage

of deontic logic in combination with other types of modal logic like Epistemic logic (to

represent user’s knowledge) and Temporal logic (to represent dynamic progress of system

over time) to specify what a user is permitted to know. Although, deontic logic is capable

CHAPTER 2. AUTHORIZATION AND LOGIC 15

of specifying and inference of obligations as well as access policies in discretionary models,

Cuppons et al., used it just in mandatory models (where multi-level security is satisfied).

In this thesis, we leverage deontic logic accompanying with description logic to provide a

discretionary authorization model for SAEs.

In spite of the fact that the surveyed logical models satisfy a wide range of security

requirements of distributed environments (e.g., soundness and consistency proof, inference

capability, contextual constraint specification, and inter-operability in distributed environ-

ments), none of them covers the essential requirements of SAEs, i.e., the effect of semantic

relationships on policy propagation.

2.4 Summary

In this chapter, a taxonomy of authorization models is presented. Classification of autho-

rization models are made based on the different factors. We briefly surveyed classical autho-

rization models and the models proposed for distributed environments using different kinds

of logics. In the surveyed logical approaches, using deontic logic for authorization seems

more interesting. In deontic logic, permissions, prohibitions, and obligations are considered

together, and their logical relationships (which are so important for conflict resolution) are

taken into account. Also the capability of this logic in specifying the ideal situations (here

means secure states which are specified by security policies) besides the real and actual ones

(the situation that currently system has, which might be insecure), makes it more suitable

for policy specification and enforcement. Following the above discussion and considering the

fact that this logic can be easily combined with other logics, deontic logic has been chosen as

a basis for the logic we have proposed for policy specification in inference for semantic-aware

environments.

Chapter 3

Authorization in Semantic-Aware

Environments

Bringing semantic technology to the current computational environments gave a well-defined

meaning to the underlying information and resources. Presenting, sharing, and utilizing such

a defined meaning and knowledge (in an abstract conceptual layer), make machines capable

of interpreting, processing, discovering, and reasoning over the information and services.

The shift from the current computational environments to the semantic aware environ-

ments such as Semantic Web imposes new security requirements, which should be considered

in a proper authorization model for them.

In this chapter, after introducing semantic technology and semantic-aware environments,

the authorization requirements for these environments are presented. By a quick survey on

the related work, and evaluating them based on the listed requirements, an overall framework

for authorization in these environments are proposed at the end of this chapter.

3.1 Semantic Technology and Semantic-Aware Envi-

ronments

Preceding of appearing semantic technology, almost all the information had to be interpreted

by human to be of any use. Semantic technology enables machines to interpret shared

information with the same meaning.

16

CHAPTER 3. AUTHORIZATION IN SEMANTIC-AWARE ENVIRONMENTS 17

Structure Level (XML, XML-Schema, ...)

Crypto

(Digital

Signature)

UNICODE URI

Metadata Level (RDF, RDF-Schema, ...)

Ontology Level (OWL, ...)

Logic & Proof Level

Trust Level

Figure 3.1: Semantic layer cake [66].

Definition 3.1.1 (Semantic Technology) By Davis’s definition [48], semantic technol-

ogy is ”a collection of software standards and methodologies that are aimed at providing

more explicit meaning for the information in a computational environment”.

Semantics in semantic technology is interpreted as the mapping between the structured

data or concepts and the set of objects. In this way, it provides a common understanding

and interpretation about the concepts for machines and humans [48, 38].

Semantic technology encodes meanings (semantics) in an abstract layer separately from

data and content files, and separately from application code, i.e., by describing the structure

of the knowledge we have about them. With semantic technology, adding, changing and im-

plementing new relationships between the entities or interconnecting programs in a different

way can be just as simple as changing the external meta-data that these programs share.

The semantic layer cake (see Fig. 3.1) depicts a framework to present a variety of ap-

proaches to provide the meta-data that describe the semantics or meaning of underlying

resources and information understandable by machines and humans [66]. The most underly-

ing layer identifies any resource (information) that can be identified with a Uniform Resource

Identifier (URI), e.g., animals, people, places, ideas, and actions. Upper layers provide vo-

cabulary for describing classes, their properties, and their relationships with each other.

More upper layers provide more vocabulary and thus more meaning (semantics) [66, 162].

A run-time semantic data model, which is more often leveraged to represent and share

knowledge in a distributed world using semantic technology, is called ontology and defined

as follows.

CHAPTER 3. AUTHORIZATION IN SEMANTIC-AWARE ENVIRONMENTS 18

Definition 3.1.2 (Ontology) Gruber [73] defined an ontology as ”a data model that rep-

resents a domain and is used to reason about the objects in that domain and the relations

between them”.

In short, an ontology is a specification of a conceptualization, and it is generally defined

using constructors for:

• individuals (the basic or ground level objects or instances which may include concrete

objects as well as abstract objects);

• concepts (classes, sets, collections, or types of objects that may contain individuals,

other classes, or a combination of both);

• attributes (properties, features, characteristics, or roles that objects can have and

share); and

• relations (relationships between objects or their corresponding concepts).

A family of formal languages that are used in recent years to encode and reason about an

ontology (as a knowledge base) is the description logic (DL) family [13]. Figure 3.2 shows

different knowledge representation languages and semantic models, and compares them with

each other, from the reasoning capability and expressive power aspects. The most important

characteristic of the languages belong to the DL family in comparison with their precedence

(such as semantic networks) is their equipment with the logic-based semantics that provides a

clear foundation and common understandable knowledge about them. Another distinguished

feature is the ability of reasoning that allows to infer implicit knowledge about concepts and

properties from the explicitly represented knowledge automatically.

OWL [49] is the standard language for representing ontology that is recommended by

W3C. It provides three increasingly expressive sublanguages including OWL-Lite, OWL-DL,

and OWL-Full, where OWL-DL is the most applicable one. In fact, OWL-DL is developed

based on the SHOIN (Dn) description logic.

By the above introduction to semantic technology and ontology, we define a semantic-

aware environment (SAE).

Definition 3.1.3 (Semantic-Aware Environment (SAE)) A semantic-ware environment

(SAE) is a distributed environment where sematic technology is leveraged to provide meaning

(semantics) for the entities, resources, and information existing in them.

CHAPTER 3. AUTHORIZATION IN SEMANTIC-AWARE ENVIRONMENTS 19

Syntactical Interoperability

Structural Interoperability

Semantic Interoperability

Axiology

Logical Theory

Conceptual Model

Thesaurus

Taxonomy

List

Recovery Discovery Intelligence Question Answering Smart Behaviors

Weak

Semantics

Strong

Semantics

In
c
re

a
s
in

g
 M

e
ta

d
a

ta
,
C

o
n

te
x
t,

&
K

n
o

w
le

d
g

e
 R

e
p

re
s
e

n
ta

ti
o

n

Controlled Vocabulary

Glossary

Relational Model, XML

DB Schema, XML Schema

ER Model

Topic Map

RDF/S

UML

OWL
Description Logic

First Order Logic

Modal Logic

2nd Order Logic

Higher Order Logic

Increasing Reasoning Capability

Figure 3.2: Comparison of semantic languages and data models [48].

The well-known examples of SAEs are Semantic Web, Web 3.0, Semantic Grid, and

Semantic Cloud Computing Environments [48]. The common characteristics of SAEs can be

listed as follows.

• There exists a common conceptualization specified by a semantic data model such as

ontology.

• Agents and machines are intelligent in processing information. Intelligence means they

can aggregate, integrate, and interpret diverse data sources; and do reasoning based

on the defined semantic relationships.

• Such environments are distributed. In fact, in centralized systems, semantic technology

has nothing to sell.

• The systems, agents, and services are heterogenous from different aspects (such as

architecture, infrastructure, key components, and security mechanisms).

CHAPTER 3. AUTHORIZATION IN SEMANTIC-AWARE ENVIRONMENTS 20

• SAEs are often open and widespread. Therefore, users and service requesters are often

unknown and not predefined to the service providers.

• The composition of agents, services, and resources is possible.

• Interoperability and cooperation of the agents and services are widely common in these

environments.

3.2 Authorization Requirements for SAEs

As the authorization model presented in this thesis is a general model for SAEs (that covers a

broad range of semantic aware environments), we should limit ourselves to the authorization

requirements that are common in all of them. It is clear that for a special SAE (e.g., Semantic

Web) we may have other minor authorization requirements beside the ones listed here.

The most essential authorization requirements that should be considered in an autho-

rization model for an SAE are, but not limited to, the following:

R1- Access policy rules should be defined in different levels of granularity and in both con-

ceptual and ground (individual) levels. For example, for a library, we should be able to

state policy rules such as ”Student has read access to scientific article in the library”.

Student, read, and scientific article are concepts (or classes), which are defined in the

ontologies. In fact, just having policy rules over the individuals (that are supported by

traditional authorization models) is not sufficient in SAEs. For example, the statement

”David can read the article X through network” is a policy rule over individuals where

David is an individual of concept Student, read through network is an individual of

concept read, and article X is an individual of concept scientific article.

R2- Due to the existence of semantic relationships between entities in such environments, the

model needs to take semantic relationships in different domains of entities (e.g., subjects,

objects, and actions) into account in policy propagation and policy inference [157, 158].

For example, if we know that MS.Student v Student, we can propagate the permission

policy rule specified in requirement R1 to MS students, and so everybody presents a

credential shows that he/she is an MS student can take access to any scientific article.

If we take the obligations, prohibitions, gratuities, and their conflicts into account, and

CHAPTER 3. AUTHORIZATION IN SEMANTIC-AWARE ENVIRONMENTS 21

also consider the semantic relationships in subjects, objects, actions, and other elements,

this kind of policy propagation becomes a complex problem. Thus, it needs a reliable

logical infrastructure for this purpose.

R3- The authorization model should be distributed and different authorities specify their

security policies in a distributed manner [158, 157]. Therefore, such a model should be

scalable as well.

R4- The model should consider detection and resolution of probable conflicts between ex-

plicit and implicit policy rules (which are inferred by semantic relationships) [96, 154,

157, 110]. For example, consider a policy rule that says ”BS student cannot have ac-

cess to Springer article in the library”. This rule is in conflict with the permission rule

specified in requirement R1, considering the subsumption relationships exist between

the elements of these two policy rules. Thus, we should have a strategy to prevent or

resolve such conflicts.

R5- The model should consider contextual constraints to dynamically activate policy rules

based on the environmental conditions [113, 56]. In other words, the model should be

context-aware.

R6- The authorization model should be abstract enough to be independent from the im-

plementation, especially the model proposed for SAEs, where information, resources,

agents, and resource providers are heterogenous [154].

R7- The requirement of specifying obligation policies beside the access policies (permissions

and prohibitions) in new distributed computing environments imposes the support of

obligation policy specification in the authorization model of SAEs [25, 108]. The logical

relation between the obligations, permissions, and prohibitions should also be considered

in adding obligations to the model. For example, it would be possible to specify that

an agent is obliged to do an action, and we could derive that the agent is permitted to

do the action, based on the specified obligation.

R8- Due to the distribution of the environment and the emphasis on common understanding

of shared information (such as policy rules defined over the abstract layer), the model

requires to have a formal clear semantics for its policy specification language. In the

CHAPTER 3. AUTHORIZATION IN SEMANTIC-AWARE ENVIRONMENTS 22

model that considers policy propagation and inference, semantics provide a basis for

proving the soundness of the developed propagation rules in the model.

R9- Since SAEs are often open environments, the users or subjects who want to access the

resources are not predefined. Thus, the authorization model is supposed to support the

specification of subjects based on their attributes not only their identities in security

policy rules [5, 150].

R10- It should provide some administrative facilities for easier policy management, such as

exception policy specification, delegation of administration, and supporting the defini-

tion of roles and groups [142, 133, 1].

R11- Composition of services and systems, and also cooperation and interoperation through

resource sharing (by creating virtual organizations) in SAEs, impose the requirement of

policy composition (by different styles) in the authorization model proposing for SAEs

[158, 6, 129].

Note that the requirements listed above for authorization in SAEs are not necessarily all the

security requirements of these environments. On the other hand, it might be impossible to

satisfy all the requirements in one model. However, these are collected based on the survey

we done on the related work and the characteristics of SAEs. In this research we consider

these requirements in proposing our logic-based authorization model for SAEs.

3.3 A Survey on Semantic-Aware Authorization Mod-

els

With the advent of semantic technology and developing SAEs (especially Semantic Web),

challenges on providing security in these new environments was raised. Bonnati, et al. [31]

discussed important requirements and open research issues in access control for Semantic

Web. The most important issue in SAEs is the layer (in the semantic layer cake [66, 162]) in

which an authorization model acts. Hence, in the following, we survey the related research

based on the layer they consider.

The World Wide Web Consortium (W3C) took the flexibility of file-level access control to

provide an authorization model (named ACL) on Semantic Web resources that are identified

CHAPTER 3. AUTHORIZATION IN SEMANTIC-AWARE ENVIRONMENTS 23

by URIs [131]. The model contains a language to specify access rules on resources. In

fact, this model obeys the traditional matrix-based models and does not satisfy most of

the security requirements of semantic-aware environments (e.g., having policy for unknown

users, considering the semantic relationships between entities, and considering the contextual

constraints and distribution of the environment).

There are some papers such as [24, 46] on providing fine-grained security (FGAC) for

XML documents that construct the first layer of the semantic layer cake. However, providing

security at this level cannot take the semantic relationships that are specified in higher layers

in the semantic layer cake in their control procedure.

Kagal, Finin, and others proposed a policy language called Rei [96] based on Semantic

Web languages like RDF and DAML+OIL and developed the Rein framework, based on this

language. In Rei, concepts of deontic logic like permission, obligation, and prohibition were

used. However, the Rei engine just reasons about domain-specific knowledge and not about

the security policy specification [152]. Thus, it lacks modal (deontic) reasoning ability over

the specified policies. Hence, modal conflict detection is performed manually in this model.

KAoS [156, 155] is a policy language accompanying with a set of services and tools, which

are utilized to specify, manage, and enforce policies (defined based on deontic operators) in

the environments where machines and humans, and other computing agents are interoper-

ating. KAoS uses KPO1 (which is described with OWL) for specification of the entities,

agents, actions, and constraints. In the proposed model based on this language, only the

subsumption relationships between the actions are taken into account. Also the contexts of

subjects, objects, and somehow the environment are not considered.

Another policy-based approach to access control for RDF stores is proposed by Reddivari,

et al. [134]. In their paper, a set of actions that are required to manage an RDF store is

determined and an authorization model to permit or prohibit these actions is proposed.

This model does not consider the relationships between the subjects and objects — which

are specified in RDF-schema — in RDF triples.

Qin, et al., [132] proposed a concept-level access control (CLAC) or authorization model

taking into account some semantic relationships in the objects domain. The more complete

model at this layer (i.e., ontology level) is our proposed authorization model, named SBAC

[91, 90]. SBAC considers all the semantic relationships, which could be specified in the

1KAoS Policy Ontology

CHAPTER 3. AUTHORIZATION IN SEMANTIC-AWARE ENVIRONMENTS 24

OWL [49] ontology language at different levels (concept, property, and individual), and in

all domains of access control (subjects, objects, and actions). Both CLAC and SBAC models

do not have a clear semantics for their access policies and policy inference rules, and thus

lack a verification proof for the soundness and consistency of their inference rules. Also,

they do not consider the obligations, contextual constraints, and distributed nature of such

environments in their authorization model.

Priebe, et al. [130] proposed integrating users, resources, and environment attributes into

semantic context. They extended the XACML architecture [120] with attributes ontologies

and inference over them. In this extension, XACML is left as policy specification language.

Therefore, the model cannot infer implicit policies based on the semantic relationships in

the environment. The model uses ontologies to capture semantic relationships between

attributes.

Semantic access control (SAC) or authorization model [162, 161] proposed by Yague, et

al., is a semantic model for heterogeneous and dynamic environments. SAC is a certificate-

based model for applying Semantic Web layers to access control in different environments.

The model includes four meta models; the PAS (Policy Applicability Specification) meta

model, the Policy meta model, the SRR (Secured Resource Representation) meta model,

and the SOAD (Source of Authorization Description) meta model. Semantic policy language

(SPL), which is introduced in SAC, and semantic descriptions of the certificates issued by

each source of authorization (SOA) are designated to validate access control policies in this

model [161]. Although, the SAC model is proposed with the similar layers in the semantic

layer cake and tackles the problems of distribution and multi-granularity of policies, it does

not solve the main security issue of SAEs, i.e., the effect of semantic relationships on policy

propagation.

Naumenko in his thesis [124] attempted to adopt Semantic Web standards for the creation

of unified view on the access control area. Similar to the SAC model [161], using semantic

technology in access control, enables flexible, collaborative, and distributed management of

access control based on semantic relationships amongst relating concepts. This model has the

same problem as the SAC model. The main disadvantage of most of the proposed models

for SAEs is the lack of considering all the security requirements of SAEs, especially the

ability of specifying security policies at the conceptual (ontology) level, and considering the

effect of semantic relationships on propagation of different kinds of policies (e.g., obligation,

CHAPTER 3. AUTHORIZATION IN SEMANTIC-AWARE ENVIRONMENTS 25

Subjects

Resources

(Objects)Security

Domain 1

Security

Domain 2

Security

Domain 3

Users

Agents

User

User

Web Services

R
e
q
u
e
s
te

d
 A

c
ti
o
n
s

User

R
equested Actions R

eq
ue

st
ed

 A
ct

io
ns

Security Agent

Security Agent

Security Agent

Inter-Domain

Interaction & Negotiation Channel

Figure 3.3: Overall authorization framework for an SAE.

permissions, and prohibitions) by a set of sound and complete inference rules. In this thesis,

we propose an authorization model based on the MA(DL)2 logic, which is proposed for

policy specification and inference based on the defined semantic relationships in SAEs. In

fact, MA(DL)2 helps us to have a sound and complete basis with clear formal semantics for

authorization and policy inference.

3.4 Overall Proposed Authorization Framework

Following the requirements listed for authorization models in semantic-aware environments,

and the problems mentioned for the related work, we propose an overall framework and

model for semantic-aware environments, their elements, and authorization in them.

3.4.1 Overall Framework of the Environment

As shown in Figure 3.3, in our framework, an SAE is divided into a number of security

domains, which are not necessarily separated from each other. Each security domain (see

Figure 3.4) contains the following elements:

CHAPTER 3. AUTHORIZATION IN SEMANTIC-AWARE ENVIRONMENTS 26

Security Domain

Security Agent

(serves as a proxy)

Authority u

Action RequestAccess Request / Response

User

User

Subjects

Resources

(Objects)

Inter-Domain Interaction

& Negotiation Channel

Neighborhood (Overlapping)

Security Domains

Policy Rules

Figure 3.4: Overall framework of a security domain.

• A set of under-protection resources, which are registered in the security domain.

• An authority who specifies security policy rules (in the both conceptual and ground

levels) for resources (objects) registered in the domain. The authority might be either

a real primitive authority or a virtual composite authority based on the nature of the

security domain.

• A security agent which infers and enforces the security policy rules (specified by the

authority).

Due to the resource sharing in such environments and appearing shared subdomains, the

important security issue in this situation is how to manage the shared resources within

different security domains. A proper approach for security administration in this situation

is a cooperative management approach, which is proposed in this thesis based on a logical

infrastructure. Cooperative management, which is inherited from Management Science [21],

enables us to involve all authorities of related security domains in the security decision-

making process. In this approach, the policy rules of the shared or subdomains are derived

from the rules stated by the participating authorities on the shared domain, based on the

agreed cooperation management style. More details of this approach can be find in Section

4.3 and Chapter 6.

CHAPTER 3. AUTHORIZATION IN SEMANTIC-AWARE ENVIRONMENTS 27

3.4.2 Security Agent Architecture

For implementing a security agent in a security domain, we suggest the architecture shown

in Figure 3.5. The architecture is developed by adopting the existing standard security

frameworks, i.e., the ITU-T access control framework [82] and the XACML framework [121].

The main components of the proposed architecture of a security agent are as follows.

PAP (Policy Administration Point) provides an interface for authorities to state security

policy rules, to negotiate with other authorities to determine the cooperative management

style applicable for cooperative and shared domains, and to configure the meta policy of

the domain. At the request of PDP (introduced in the following), PAP may require to

communicate with the other domains’ PAPs (through inter-domain communication & nego-

tiation channel) to fetch the policy rules specified over the shared resources for cooperative

administration.

PDP (Policy Decision Point) decides about the access requests (using the procedure

described in Section 6.3.3) and determines the obligation rules related to the access request.

To this aim, PDP infers applicable security policy rules using MA(DL)2 Inference Engine.

PEP (Policy Enforcement Point) receives a subject’s request, performs access control,

and enforces applicable obligations determined by PDP. PEP contains

• ACP (Access Control enforcement Point), which works as a proxy of resources and

controls all the access requests,

• OEP (Obligation Enforcement Point), which enforces the obligations related to the

system or the access requester.

MA(DL)2 SKB (Security Knowledge Base) contains specification of ontologies (of sub-

jects, resources or objects, and actions), assertions about the individuals, security policy

rules (SPR), and current context information (CI).

Context Handler gathers required context information from Context Sensors and in-

serts it as a set of contextual propositions into the SKB.

Credential Verifier verifies the validity of the provided credentials (in an access request)

using a source of authority (SOA)2.

2Readers may refer to [83] for more information about the components of Privilege Management Infras-
tructure (PMI).

CHAPTER 3. AUTHORIZATION IN SEMANTIC-AWARE ENVIRONMENTS 28

Resources

(Objects)

Subject

(User)

Security Agent (SA)

PDP

Context

Handler

Credential

Verifier

PAP

access request

+ credentials

policies

meta

policies

security policy

rules

Context

Sensors
Context

Information

context

information

access

request

access response

+ obligation rules

OEPSource of

Authority

(SOA)

attribute certificate

verification response

Live

Obligations

obligations

response (data/service)
data/service

request

policies /

negotiations

Other

Domains’

PAP

PEP

ACP

MA(DL)
2
 SKB

other domains’

policy request

MA(DL)
2

Inference Engine

ground level policy rules

Resource Service Provider

API

Resource Service Provider

API

Resource Service Provider

API
Resource Service Provider

API

TB
Ontologies

SB
SPR CI

AB
Assertions context

propositions

Authorities

ground level

policy rules

Meta

Policy

 response

credentials

meta

policy

Figure 3.5: Architecture of a security agent of a security domain.

The proposed architecture enables the security agent to verify users’ certificates, infer the

applicable security policy rules, and enforce them. The details of access control procedure

that a security agent follows is described in Section 6.3.3.

3.4.3 Canonical Resource Model

We have a canonical model for under-protection resources in a security domain. In the

canonical model (shown in Figure 3.6), each resource has a resource service provider. The

resource service provider has an standard API for receiving and replying the access requests

from subjects. We leverage Web service API as an standard API in our model.

A Web service specifies a collection of services. Each possible action on a resource (object)

is considered as a service in this model. Using OWL-S [50], we can specify the properties of

services (actions) of a resource in the canonical model.

By taking an action as a service in the canonical model, the ground (individual) level

CHAPTER 3. AUTHORIZATION IN SEMANTIC-AWARE ENVIRONMENTS 29

Resource Service Provider

Standard API
(e.g., Web Service)

R
e

q
u

e
s
t

R
e

p
ly

(D
a

ta
 /
 S

e
rv

ic
e
)

Annotated

Policy Rules

Resource

Figure 3.6: The canonical model of resources in SAEs.

policy rules related to the action on the resource are annotated in Service Profile (in OWL-S)

of the service (see [55] for more details on policy rule annotation). Ground (individual) level

policy rules are introduced in Section 6.2.2.

3.4.4 Policy Specification Logical Language

As mentioned in requirements for authorization in SAEs in Section 3.2 and considered in

the proposed overall authorization framework, a proper authorization model should provide

policy specification in both conceptual and ground (individual) levels. In the authorization

model introduced in this thesis, a logical language, MA(DL)2, is proposed for this purpose.

MA(DL)2 and its properties are introduced in the next two chapters. After introducing

MA(DL)2 logical language, the formal specification of the authorization model, and the

approach of using MA(DL)2 for policy specification and inference in both conceptual and

individual level is introduced in Chapter 6.

3.5 Summary

Proposing a proper authorization model for a computational environment requires to an-

alyze its security requirements. The overall framework for authorization in SAEs, which

is proposed in this chapter, is based on the collected authorization requirements for SAEs.

CHAPTER 3. AUTHORIZATION IN SEMANTIC-AWARE ENVIRONMENTS 30

In this overall framework, an SAE is divided into a number of security domains. For each

security domain there is a security agent with an administrator (we call it authority) and

each resource (e.g., a service, a document, or a device) can register itself in one or more

domains. Thus, an authority is responsible for specifying security policy rules for resources

(objects) that are registered in the authority’s associated domain in the conceptual and in-

dividual levels. Security agents have the duty of inferring and enforcing the security policies.

The applicable policy rules are inferred based on the semantic relationships between the

entities (specified in the ontologies), meta security policies determined by the authorities,

and specified explicit security policy rules. Security agents act as proxy servers for resources

(under-protection objects) and control all the accesses by inferring the applicable policy

rules.

Policy specification and inference in this overall framework is based on the MA(DL)2 logic

family, which is introduced in the next chapter. In the rest of the thesis, after introducing

the MA(DL)2 logic family and its properties, we formally specify our proposed authorization

model for SAEs based on this logic.

Chapter 4

MA(DL)2 Logic Family

To specify security policy statements in an abstract level for semantic-aware environments, we

introduce the MA(DL)2 logic family as a combination of multi-authority (poly-modal) version

of deontic logic (MADL) [67, 116] and description logic (DL) [13]; MA(DL)2=MADL+DL.

Figure 4.1 shows the members of this logic family and their relationships.

In this logic family, description logic represents semantic relationships of concepts in

semantic-aware environments and multi-authority deontic logic specifies the security state-

ments in them.

In this chapter, after a brief introduction of description logic and deontic logic, the

members of MA(DL)2 logic family are introduced in more details.

4.1 Logical Foundations of MA(DL)2

Since the core of MA(DL)2 is a combination of description logic and multi-authority version

of standard deontic logic, a brief introduction of these two logics are represented in the rest.

4.1.1 Description Logic

A family of formal languages that are used in recent years to encode and reason about an

ontology (as a knowledge base) is the description logic (DL) family [13]. The most important

characteristic of the languages belong to this family in comparison with their precedence

(such as semantic networks) is their equipment with the logic-based semantics that provides a

clear foundation and common understandable knowledge about them. Another distinguished

31

CHAPTER 4. MA(DL)2 LOGIC FAMILY 32

Core + Logic of Domains + Logic of Authorities

Core MA(DL)
2

Core + Logic of Authorities Core + Logic of Domains

MA(DL)
2
[

U]
D

MA(DL)
2
[D]

_
MA(DL)

2
[

U]_

Figure 4.1: Members of MA(DL)2 logic family and their relationships and expressive powers.

feature is the ability of reasoning that allows to infer implicit knowledge about concepts and

properties from the explicitly represented knowledge automatically. Inference services in

DL systems can help performing such inferences. In particular, subsumption relationships

between concepts and instance relationships between individuals and concepts play a crucial

role to this end.

There are various types of description languages that are distinguished by the constructors

they provide. Most of these languages are from the family of AL-languages (attributive

languages) [13]. The most important constructors used in concept descriptions in this family

of description languages are as follows. In fact, the following introduces the ALC language.

C,D →A | (atomic concept)

> | (universal concept)

⊥ | (bottom concept)

¬C | (complement of a concept)

C uD | (intersection of two concepts)

C tD | (union of two concepts)

∀R.C | (value restriction on role R)

∃R.C | (existential quantification over role R)

If we add transitive roles toALC, it becomesALCR+ , which is denoted by S. Extension of

CHAPTER 4. MA(DL)2 LOGIC FAMILY 33

Table 4.1: Deontic statuses and their logical definition

Notation Description Definition based on Obligation
OB It is obligatory that OB

PE It is permissible that PE p↔ ¬OB¬p
IM It is impermissible that IM p↔ OB¬p
GR It is gratuitous that GR p↔ ¬OB p

S by inverse roles gets SI and by adding the hierarchy of roles, it becomes SHI. Extension

of SHI by functional restrictions gets SHIF , by cardinality restrictions gets SHIN , and

by qualified number restrictions gets SHIQ. Supporting of different data types (e.g., string,

integer) and concrete domains D as well as nominals O in SHIN , results SHOIN (D),

which is a basis of OWL-DL language. OWL-DL is currently the most popular language for

description of ontologies in SAEs [117].

Note that MA(DL)2 is founded based on ALC. Its extensions with more expressive

description logics are postponed as future work.

4.1.2 Standard Deontic Logic

Deontic logic is a branch of symbolic logic that directly involves topics of practical significance

such as morality, law, social, and business organizations (their norms and their normative

constitution) and security systems. There are different variations of deontic logic where

standard deontic logic (SDL) is the most cited and studied one [116].

Standard deontic logic (SDL) as a kind of normative logic is one of the first deontic

logics axiomatically specified. Basically, SDL is a member of class normal modal logics [116].

There are four normative statuses in SDL as shown in table 4.1. All the four statuses can be

defined with one of them. The most popular approach is taking OB as primitive and defining

the rest as is shown in table 4.1. In this thesis, we use a multi-authority (or poly-modal)

version of SDL forthcoming called multi-authority deontic logic (MADL) as a basis of our

authorization model. In MADL, OBup means that an authority u states that ”p must be

a case”. The axioms and inference rules of MADL is similar to SDL, except that OB p is

replaced with OBup. The semantics of MADL is different from SDL to some extent, as is

described in Section 4.2.2.

CHAPTER 4. MA(DL)2 LOGIC FAMILY 34

Assume that we have a language of classical propositional logic with an infinite set of

propositional variables, the operators ¬ and →, and the operator OB. Then, SDL is axioma-

tized as follows:

A1. If p is a tautology of propositional logic, then ` p (TAUT)

A2. ` OB(p→ q)→ (OBp→ OBq) (OB-K)

A3. ` OBp→ ¬OB¬p (OB-D)

R1. If ` p and ` p→ q then ` q (MP)

R2. If ` p then ` OBp (OB-ONCE)

The MA(DL)2 logic, which is proposed in this thesis, is a variant of deontic logic proposed

for specification and inference of deontic norms at the conceptual level, which is obtained by

combining multi-authority deontic logic (MADL) with description logic (DL).

4.2 Core MA(DL)2 Logic

In Core MA(DL)2, we concentrated on the effect of semantic relationships on the inference

of norms defined on the concepts (at the conceptual level). As mentioned earlier, Core

MA(DL)2 is obtained by integrating description logic, multi-authority deontic logic, and n-

ary predicates on concepts. In the rest of this section, Core MA(DL)2 is introduced by its

syntax, semantics, and proof theory.

4.2.1 Syntax

The description logic we embedded in MA(DL)2 is a typed version of ALC [13], which is

proposed in this thesis. To this aim, we introduce concept-type. Definition of the syntax

and semantics of typed ALC are presented during the detailed introduction of MA(DL)2 in

the rest.

One of the main drawbacks of description logics is their inability in representing concrete

entities (concepts). In fact, they just represent knowledge at the abstract level [111]. To

overcome this constraint, concrete domains have been proposed by Baader and Haschke [14]

CHAPTER 4. MA(DL)2 LOGIC FAMILY 35

and extended by others (e.g., see [111]). Similar to concrete domains, we define concept-types

(call it in short types) in MA(DL)2. Each concept-type represents a set of concepts describing

a subset of the objects in the world. For example, in access control, a concept-type like Sub,

represents all the concepts describing the subjects (or access requesters) in the world.

A concept-type is admissible in MA(DL)2 if satisfies the following definition.

Definition 4.2.1 (Admissible Concept-Type) A concept-type σ is admissible if:

• the concepts of type σ are closed under negation, i.e., if C : σ then ¬C : σ, and

• the type σ contains a universal concept >σ (and analogously ⊥σ ≡ ¬>σ).

The advantages of having admissible concept-types are that concept negation are con-

strained to a concrete domain which makes it more applicable in real applications, and also

it enables us to do type checking for preventing from occurring mistakes in specification,

especially in security policy specification.

Following the definition of concept-types, it is clear that the set of concepts of the same

type (e.g., type σ) with subsumption relation construct a lattice, where >σ and ⊥σ are its

supremum and infimum elements.

Note that, since types are interpreted as sets, existence of subtype relation, which is

interpreted as subset relation, is inevitable [137]. For the sake of simplicity, we suppose that

the concept-types with subtype relation construct a lattice. Supremum and infimum types

in this lattice are denoted by σ> and σ⊥ respectively, and we have > : σ> and ⊥ : σ⊥, where

> and ⊥ are top and bottom concepts in regular DLs1.

Following the introduction of concept-types, we define the alphabet of the Core MA(DL)2

logic as follows.

Definition 4.2.2 (Alphabet of Core MA(DL)2) The alphabet of the Core MA(DL)2 lan-

guage includes the following elements.

• A finite non-empty set Σ of admissible concept-types including σ> and σ⊥.

• An enumerable non-empty set C of atomic concepts of types belong to Σ (each member

is denoted by C : σ ∈ C) including >σ : σ (universal concept) and ⊥σ : σ (bottom

concept) for each concept-type σ ∈ Σ. Note that each atomic concept might be primitive

or defined.
1In fact, > and ⊥ are aliases of >σ> and ⊥σ⊥ respectively.

CHAPTER 4. MA(DL)2 LOGIC FAMILY 36

• an enumerable set R of roles of types belong to Σ2 (e.g., R : (σi, σj) ∈ R, where

σi, σj ∈ Σ),

• an enumerable set P of predicate symbols in which each n-ary predicate symbol p :

(σ1, ..., σn) is of a type in Σn (propositions are assumed as predicates with n = 0 and

the set of them is shown by P0),

• an enumerable set I of individuals of types belong to Σ (each member is denoted by

a : σ),

• a finite non-empty set of primitive authorities U ,

• the DL concept constructors (u,t,¬,∀,∃),

• the subsumption relation (i.e., v) and definition or specification relation (i.e., ≡) for

concepts,

• deontic statuses symbols including OB, PE, IM, and GR,

• the propositional primitive relaters ∧,¬, and abbreviations ∨, →, and ↔,

• two symbols T (true) and F (contradiction or false),

• auxiliary symbols ’(’ and ’)’.

Definition 4.2.3 (Signature) A tuple S = 〈Σ, C,R,P , I,U〉 constructs a signature in the

Core MA(DL)2 language.

In order to use the MA(DL)2 logic in each application, it is required to define a signature at

first.

In MA(DL)2, we have three kinds of formulae, which are constructing the sentences of

this language, including t-formulae, c-formulae, and a-formulae. For defining t-formulae, for

the sake of simplicity, we take ALC description logic [13] as a basis. By typed ALC, the set

C∗ of complex concepts is the smallest set that is defined as follows:

• each atomic concept C : σ ∈ C belongs to C∗ as well,

• if C : σ ∈ C∗, then ¬C : σ ∈ C∗

CHAPTER 4. MA(DL)2 LOGIC FAMILY 37

• if C1 : σ1, C2 : σ2 ∈ C∗, then C1 u C2 : σ (resp. C1 t C2 : σ) belongs to C∗ and σ is the

greatest lower bound (resp. least upper bound) of types σ1 and σ2.

• if C : σ ∈ C∗, R : (σ1, σ2) ∈ R, and σ2 is subtype of σ, then ∃R.C : σ1 and ∀R.C : σ1

belong to C∗.

Definition 4.2.4 (T-Formula) Given a signature S, a terminological formula (in short

t-formula) is defined as

• subsumptions like C1 v C2 where C1 : σ1 ∈ C, C2 : σ2 ∈ C∗, and σ1 is subtype of σ2,

• equalities like C1 ≡ C2, where C1 : σ ∈ C, C2 : σ ∈ C∗, and both of them are of the

same type.

Definition 4.2.5 (A-Formula) Given a signature S, an assertional formula (in short a-

formula) is an assertion of C(a) or R(a, b) where C : σ1 ∈ C∗ is a concept, R : (σ1, σ2) ∈ R
is a role, a : σ1

′, b : σ2
′ ∈ I are individuals, σ1

′ is subtype of σ1, and σ2
′ is subtype of σ2.

Definition 4.2.6 (C-Formula) Given a signature S, a conceptual formula (in short c-

formula) is defined inductively as follows:

• every proposition xi ∈ P0 is an atomic c-formula.

• every t-formula and every a-formula is an atomic c-formula.

• if C1 : σ1, ..., Cn : σn ∈ C∗ are complex concepts, p : (σ′1, ..., σ
′
n) is an n-ary predicate

symbol, and for all i (1 ≤ i ≤ n) σi is subtype of σ′i, then p(C1, ..., Cn) is an atomic

c-formula.

• if α is a c-formula, u ∈ U is an authority, and ds is a deontic status symbol, then dsuα

is a c-formula.

• if αi and αj are c-formulae, then so are (αi ∧ αj), ¬αi, (αi ∨ αj), (αi → αj), and

(αi ↔ αj).

One of the main differences between MA(DL)2 and the other proposed hybrid languages of

description logics (see e.g., [34, 54, 101, 72, 122, 117]) is its ability to define formulae and

rules at the conceptual level; however, in all the proposed hybrid languages of description

CHAPTER 4. MA(DL)2 LOGIC FAMILY 38

M
A

(D
L

)2
 S

e
c

u
ri

ty
 K

n
o

w
le

d
g

e
 B

a
s

e
 (

S
K

B
)

AB

MA(DL)
2

Inference Engine

TB

SB

Set of T-Formulae

Set of A-Formulae

Set of C-Formulae

Security Enforcement

System

Figure 4.2: Architecture of an MA(DL)2 security knowledge base.

logics, the rules at the individual level (in ABox) are taken into account. DLR [34] is another

logic in which n-ary predicates are considered in a different way. n-ary predicates in DLR
is the extension of binary roles in description logic and in fact, it is a representative of a set

of n-ary relations on objects. Thus, it is different from n-ary predicates in MA(DL)2, which

are definable on specific concepts and cannot be used in concept descriptions. The meaning

of n-ary predicates in MA(DL)2 becomes more clear, when presenting its semantics.

Definition 4.2.7 (Security Knowledge Base (SKB)) Let S be a signature. An MA(DL)2

security knowledge base (SKB) is defined as K = 〈T B,AB,SB〉, where

• T B is the terminology box and includes a finite set of t-formulae in which no atomic

concept is appeared more than once on the left-hand side of equalities. Also, the set of

formulae is acyclic.

• AB is the assertional box and includes a finite set of a-formulae.

CHAPTER 4. MA(DL)2 LOGIC FAMILY 39

• SB is the security rule box and includes a finite set of c-formulae specifying a set of

concept-level security policy rules and related logical formulae.

Figure 4.2 shows the architecture of an MA(DL)2 SKB. SB in SKB K specifies security

policy rules at the abstract conceptual level. The description of complex concepts in T B
results in inferring implicit security policy rules from the explicit ones specified in SB. Each

security policy rule in SB is in fact a conditional deontic rule which is defined as follows.

Accompanying with the security rules in SB, we may need to have some facts and rules (e.g.,

about the current contextual conditions) which are specified at the conceptual level using

c-formulae.

Definition 4.2.8 (Security Policy Rule) A security policy rule specified by an authority

u is defined as a conditional deontic rule α→ dsuβ, where ds is a deontic status, and α and

β are c-formulae.

In a security policy rule, α is a condition of the rule to be activated. This usually describes

the contextual conditions in which the policy rule is applicable. β can be defined as any

required statement, e.g., it can be defined as an access predicate over the concepts of access

requesters, resources (objects), and possible actions. dsu specifies the norms determined by

authority u over the statement β.

Note that a set of security policy rules define a security policy.

4.2.2 Semantics

The semantics of MA(DL)2 is obtained from the combination of semantics of its three com-

ponents (i.e., T B,AB, and SB). As we combined deontic logic (as a kind of modal logic)

with description logic, we decided to employ the possible worlds semantics in the form of

Kripke style semantics.

A Kripke-style model of MA(DL)2 is a 5-tuple M = 〈W,Λ,∆, I,Φ〉 where:

• W is a non-empty set of possible worlds2.

• Λ is an interpretation function that maps each authority to a binary relation on W .

Each relation Λ(u) relates a world w to world w′ that are deontically ideal w.r.t w.

2For security purpose, in more concrete view, each possible world can be assumed as a global protection
(access) state in a special context

CHAPTER 4. MA(DL)2 LOGIC FAMILY 40

Intuitively in world w, all the security obligations from u’s security viewpoint are ful-

filled and no prohibitions from u’s security viewpoint have been violated. For primitive

authorities, Λ is defined by λ = U → 2(W×W). Each relation λ(u) must be serial, i.e.,

∀w ∈ W : ∃w′ ∈ W,w′ ∈ λ(u)(w). Such a property is required for holding axiom

OB-MD in the proof theory (presented in the next section). Note that in the next

sections, the definition of Λ is expanded for non-primitive authorities (i.e., composite

authorities).

• ∆ is a non-empty enumerable set of objects in all worlds of W . In a semantic-aware

environment, we assume that all the possible worlds share the same domain of objects.

In other words we have the constant domain assumption [15].

• I is an interpretation function that in each world w assigns

– to each type σ, a subset of ∆, i.e., JσKIw = ∆σ ⊆ ∆ 3,

– to every concept C : σ, a subset of ∆σ, i.e. JCKIw ⊆ ∆σ,

– to every role R : (σi, σj), a binary relation on ∆σi ×∆σj , i.e., JRKIw ⊆ ∆σi ×∆σj ,

– to every n-ary predicate p : (σ1, ..., σn), an n-ary relation on ∆σ1 × ...×∆σn , i.e.

JpKIw ⊆ ∆σ1 × ...×∆σn ,

– to every individual a : σ, an object in ∆σ, i.e., JaKIw ∈ ∆σ. Note that in this logic

we have unique name assumption (UNA)4 [13] for objects.

– to universal concept (>σ) and bottom concept (⊥σ) of type σ, the set ∆σ and ∅
respectively, i.e., J>σKIw = ∆σ, J⊥σKIw = ∅.

The interpretation of complex concepts are defined inductively as follows:

J¬CKIw = ∆σ \ JCKIw
JCi u CjKIw = JCiKIw ∩ JCjKIw
JCi t CjKIw = JCiKIw ∪ JCjKIw
J∃R.CKIw = {a|∃b, 〈a, b〉 ∈ JRKIw and b ∈ JCKIw}

J∀R.CKIw = {a|∀b, if 〈a, b〉 ∈ JRKIw then b ∈ JCKIw}
3If σ be subtype of σ′, then ∆σ ⊆ ∆σ′ . For more details on subtypes specification see [137].
4UNA means if we have two individuals a and b, then JaKIw 6= JbKIw. This assumption is required in some

of the proofs presented in the next chapter.

CHAPTER 4. MA(DL)2 LOGIC FAMILY 41

Function I must satisfy the limitation that the interpretation of concepts, roles, and

individuals, are identical in all worlds due to the philosophy of using ontologies in dis-

tributed semantic-aware environments: , i.e., for all w,w′ ∈ W, JCKIw = JCKIw′ , JRKIw =

JRKIw′ , and JaKIw = JaKIw′ .

• Φ is an interpretation function that maps each formula related to each component of

an MA(DL)2 security knowledge base to a subset of possible worlds where the formula

is correct.

The function for t-formulae (terminological axioms) is defined as follows:

Φ(C v C ′) = {w| JCKIw ⊆ JC ′KIw}

Φ(C ≡ C ′) = {w| JCKIw = JC ′KIw}

Since for all w,w′ ∈ W , we have JCKIw = JCKIw′, we can define Φ for t-formulae as

follows.

Φ(C v C ′) =

W ,if ∀w ∈ W, JCKIw ⊆ JC ′KIw

∅,otherwise

Φ(C ≡ C ′) =

W ,if ∀w ∈ W, JCKIw = JC ′KIw

∅,otherwise

For atomic a-formulae, Φ is defined as follows:

Φ(C(a)) = {w|JaKIw ∈ JCKIw}

Φ(R(a, b)) = {w|〈JaKIw, JbKIw〉 ∈ JRKIw}

Since for all w,w′ ∈ W , we have JaKIw = JaKIw′ and JRKIw = JRKIw′, we can define Φ

for a-formulae as follows.

Φ(C(a)) =

W ,if ∀w ∈ W, JaKIw ∈ JCKIw

∅,otherwise

Φ(R(a, b)) =

W ,if ∀w ∈ W, 〈JaKIw, JbKIw〉 ∈ JRKIw

∅,otherwise

CHAPTER 4. MA(DL)2 LOGIC FAMILY 42

The function for c-formulae is defined inductively as follows:

Φ(xi) ⊆ W ,if xi is a proposition

Φ(p(C1, ..., Cn)) = {w|
n∏
i=1

JCiKIw ⊆ JpKIw}

Φ(¬β) = W \ Φ(β)

Φ(β ∧ β′) = Φ(β) ∩ Φ(β′)

Φ(OBuβ) = {w|Λ(u)(w) ⊆ Φ(β)}

Φ(IMuβ) = {w|Λ(u)(w) ⊆ Φ(¬β)}

Φ(PEuβ) = {w|Λ(u)(w) ∩ Φ(β) 6= ∅}

Φ(GRuβ) = {w|Λ(u)(w) ∩ Φ(¬β) 6= ∅}

Note that Φ(K) for a security knowledge base K is equivalent to the intersection of Φ(αi)’s

where αis are formulae of the components of K.

Definition 4.2.9 (Truth) A formula α in a model M = 〈W,Λ,Φ,∆, I〉 at a world w ∈ W
is true, denoted �Mw α, if and only if w ∈ Φ(α). Analogously, α at a world w is not true,

denoted 2Mw α if and only if w 6∈ Φ(α).

Definition 4.2.10 (Satisfiability and Validity) A formula α is satisfiable, if and only if

there exists a model M in which there exists a world w, such that �Mw . A model M satisfies

a formula α, denoted �M α, if and only if �Mw α for all w ∈ W . Analogously, a formula α is

valid denoted � α if and only if every model like M satisfies the formula α; in other words

�M α for all models M.

Regarding the above definition of truth and the Kripke model of the Core MA(DL)2 logic

the following definition is obtained.

Definition 4.2.11 Let M be a Kripke model of Core MA(DL)2 and Γ be a set of formulae

in Core MA(DL)2. Then, we have Γ �M α iff Φ(Γ) ⊆ Φ(α). Also, Γ � α if and only if for

every model M, if �M Γ, then �M α.

Proposition 4.2.1 Let M = 〈W,Λ,Φ,∆, I〉 be a Kripke model of Core MA(DL)2 and w ∈
W . We have:

CHAPTER 4. MA(DL)2 LOGIC FAMILY 43

(i) �Mw p→ q iff if �Mw p, then �Mw q

(ii) �Mw ¬p iff 2Mw p

(iii) �Mw p ∧ q iff �Mw p and �Mw q

(iv) �Mw OBup iff for all w′ ∈ Λ(u)(w), we have �Mw′ p

(v) �Mw C v C ′ iff for all w′ ∈ W , we have �Mw′ C v C ′

Proof. It is straight-forward. �

4.2.3 Proof Theory

The Hilbert style proof theory of Core MA(DL)2 is presented as a set of axioms and inference

rules as follows.

A1. If p is a truth-functional tautology over our presented language,

then ` p (TAUT)

A2. ` OBu(p→ q)→ (OBup→ OBuq) (OB-MK)

A3. ` OBup→ ¬OBu¬p (OB-MD)

A4. ` C v C ′ → OBu(C v C ′) (SOB)

A5. ` C(a)→ OBu(C(a)) (COB)

A6. ` R(a, b)→ OBu(R(a, b)) (ROB)

A7. ` Ci′ v Ci → (p(C1, ..., Ci, ..., Cn)→ p(C1, ..., Ci
′, ..., Cn)) (SPP)

A8. ` p(C1, ..., Ci, ..., Cn) ∧ p(C1, ..., Ci
′, ..., Cn)→ p(C1, ..., Ci t Ci′, ..., Cn) (UPP)

A9. ` p(...,⊥, ...) (BP)

A10. ` C ≡ C ′ ↔ C v C ′ ∧ C ′ v C (EQ-Def)

A11. ` PEup↔ ¬OBu¬p (PE-Def)

A12. ` IMup↔ OBu¬p (IM-Def)

CHAPTER 4. MA(DL)2 LOGIC FAMILY 44

A13. ` GRup↔ ¬OBup (GR-Def)

A14. All axioms obtained by adaptation of inference rules introduced in [136] for subsumption

inference in ALC. (DLC)

• ` C1 u C2 v C1

• ` (C1 v C2) ∧ (C1 v C3)→ (C1 v C2 u C3)

• ` (C1 v C2) ∧ (C2 u C3 v C4)→ (C1 u C3 v C4)

• ` ⊥σ v C

• ` C v >σ

• ` (C1 v C2)↔ (C1 u >σ v C2)

• ` (C2 v C1) ∧ (C3 v C1)→ (C2 t C3 v C1)

• ` (>σ v C)↔ (>σ v ∀R.C)

• ` (C v ⊥σ)↔ (∃R.C v ⊥σ)

A15. All axioms obtained by adaptation of inference rules introduced in [136] for instance

checking in ALC. (DLA)

• ` C2(a) ∧ C2 v C1 → C1(a)

• ` ∀R.C(a1) ∧R(a1, a2)→ C(a2)

• ` R(a1, a2) ∧ C(a2)→ ∃R.C(a1)

• ` C1(a) ∧ C2(a)→ C1 u C2(a)

R1. If ` p and ` p→ q, then ` q (MP)

R2. If ` p then ` OBup (OB-MO)

Axioms TAUT, OB-MK, and OB-MD as well as inference rules MP and Ob-MO are

donated from multi-authority (poly-modal) version of deontic logic. Axioms PE-Def, IM-

Def, and GR-Def define deontic statuses other than OB.

SOB, COB, ROB, SPP, UPP, and BP are dedicated axioms of Core MA(DL)2 that do not

exist in description logic and deontic logic. Axiom SOB says that the description of concepts

in the abstract layer in SAEs, are necessarily acceptable by all authorities. This means

CHAPTER 4. MA(DL)2 LOGIC FAMILY 45

there is a shared conceptualization in SAEs. Axioms COB and ROB have the analogous

philosophy of existence. Axiom SPP is one of the important axioms in our application (i.e.,

authorization and policy inference). SPP shows the impact of subsumption relationships

on the propagation of n-ary predicates defined on the concepts. Axiom UPP complements

axiom SPP and considers the impact of operator t in description of concepts. It is obvious

that ech property holds on two concepts, holds on their union, too. Axiom BP says every

property (predicate) holds for bottom concept. This axiom is not useful in practice; however,

it is required to have a complete proof theory.

Axioms DLC, DLA, and EQ-Def are from ALC. Note that following the existence of

axioms SOB and SPP, inference of subsumption relationships in descriptions of T B can be

done by every possible inference system5. The axioms presented in this section for this

purpose (in DLC and DLA) help to complete the presented Hilbert style proof theory of

Core MA(DL)2.

Following the above proof theory, some useful theorems are as follows:

• ` p(C1, ..., Ci t Ci′, ..., Cn)→ p(C1, ..., Ci, ..., Cn)

• ` p(C1, ..., Ci, ..., Cn)→ p(C1, ..., Ci u Ci′, ..., Cn)

• ` p(C1, ..., Ci u Ci′, ..., Cn) ∧ p(C1, ...,¬Ci, ..., Cn) → p(C1, ..., Ci
′, ..., Cn), since ¬Ci′ v

(Ci u Ci′) t ¬Ci′, it is immediately concluded from axiom UPP.

• ` Ci ≡ Ci
′ → (p(C1, ..., Ci, ..., Cn)↔ p(C1, ..., Ci

′, ..., Cn))

Definition 4.2.12 (Provability) The set of provable formulae in MA(DL)2 is the smallest

set Γ such that

• each instance of every introduced axiom schema are in Γ,

• Γ is closed under the introduced inference rules.

Each member α of provable set Γ is a provable formula and is denoted by ` α.

Definition 4.2.13 (Consistency) A set Γ of formulae in MA(DL)2 is inconsistent iff there

are α1, ..., αn ∈ Γ such that ` (α1 ∧ ... ∧ αn)→ F; otherwise Γ is consistent.

By the definition of consistency, we say that a formula α is derivable from a set Γ of formulae

in MA(DL)2 (denoted by Γ ` α) iff Γ ∪ {¬α} is inconsistent. Obviously, ` α iff ∅ ` α.

5Similar to axiom TAUT where we do not force any inference system for inferring the tautologies.

CHAPTER 4. MA(DL)2 LOGIC FAMILY 46

4.3 MA(DL)2[U−] Logic

In SAEs, as multi-security-domain (MSD) environments, due to resource sharing for col-

laborative activities, and the possibility of policy specification by different authorities for

the shared subdomains, cooperative administration is a fundamental security requirement.

Pearlman, et al. [129] after introducing virtual organizations (VO) and virtual communities

in which collaborative activities are made possible through resource sharing among multiple

institutions, they address policy specification and enforcement in VOs as a key problem in

these environments.

Extending Core MA(DL)2 with the logic of composite authorities, enables the authorities

to state their policies for the shared domains independently, and then the security agents can

infer applicable policy rules of the shared domains from the policy rules specified by different

authorities at that domains. This logic provides three styles of cooperative administration,

namely collaborative, disjunctive, and delegative.

The technique used in this research for cooperative security administration is based on

the concept of composite authority. A composite authority is a virtual authority that is a

representative of primitive authorities participating in the cooperative administration based

on one of the aforementioned cooperative administration styles. Participating authorities

can agree upon the cooperative administration style.

4.3.1 Syntax

Augmenting MA(DL)2 by logic of composite authorities results in MA(DL)2[U−]. The defini-

tion and syntax of composite authorities is as follows.

Definition 4.3.1 (Composite Authority) Given a set U of primitive authorities, and

&, ., | notations, a composite authority is defined inductively as follows:

• each primitive authority like u ∈ U is a composite authority.

• if ui and uj are composite authorities, then so are (ui&uj), (ui|uj), and (ui . uj).

The smallest set of composite authorities obtained from set U of primitive authorities is

denoted by U∗.

CHAPTER 4. MA(DL)2 LOGIC FAMILY 47

Following the definition of composite authorities, we introduce different cooperative man-

agement styles (resulted from different kinds of composite authorities administrating the

shared subdomains) for multi-domain environments such as SAEs.

Disjunctive Administration

Two authorities may enter into an agreement for disjunctive security administration of a

shared domain. In disjunctive administration, the system grants an access if at least one of

the participating authorities authorizes the access; however, it enforces an obligation or de-

nies an access, if both participating authorities oblige it. In fact, the disjunctive composition

of two authorities is less strict than the two.

In order to support the disjunctive administration style, a composite authority (ui|uj)
(read ui disjoint uj) is added to our calculus. The disjunctive administration style is defined

by the fact that the norms of the disjoint composite authority (ui|uj) is the union of the

participating authorities’ norms. This is obtained through the union of the worlds relations

of the participating authorities in the semantics.

Delegative Administration

Delegation means assigning a part or the whole of someone’s privileges to someone else. In

information security and especially access control, three types of delegation can be identified:

1. Administration Delegation: an authority delegates his/ her administration privileges

of making security statements to other authorities. Hence, the delegated authority can

quote security statements from the delegator authority. As an example of this kind of

delegation see [2].

2. Access Delegation: a subject (or access requester) delegates his/her rights of accessing

resources (objects) to other subjects. In this way the delegated subject can obtain

access to the resources that are privileged to the delegator subject. Abadi et al., in [4]

introduced this type of delegation formally and it has been used in other researches

like [104].

3. Decision (Policy Enforcement) Delegation: an authorizer or a system that enforces

policies or makes decisions on accessing subjects to the resources, delegates its pol-

icy enforcement or decision making privilege to another authorizer. As a sample, you

CHAPTER 4. MA(DL)2 LOGIC FAMILY 48

can see the delegation of policy execution in policy-based systems in [74]. Furthermore,

this type of delegation is suitable to be used in privacy control, which is proposed in

[163].

In this thesis, by delegation we mean administration delegation. By the definition of delega-

tion, delegative administration means inferring and enforcing security policies by an authority

on behalf of another authority. In this way, (ui .uj) denotes that ui on behalf of uj privileges

can enact statements. For example, OB(ui.uj)α means ui states on behalf of uj that α ought

to be the case.

It is worthwhile to note that an authority needs to have a privilege for specifying state-

ments on behalf of another authority. Using logic allows us to abstract away from these

implementation details. However, we suppose that trust infrastructures like PKI [83] or the

delegation network that is proposed in [2] handles delegation details.

Collaborative Administration

Collaborative or joint administration is a stricter approach in comparison with the disjunctive

administration style. In this style, each authority can make a positive or negative obligation

statement instead of all the participating authorities. However, we can not easily extend this

rule to authorization statements like permission or gratuitous statements. The rest of this

section clarifies this more precisely by giving the semantics of the collaborative administration

calculus.

A composite authority, (ui&uj) (read it ui joint uj) denotes that ui and uj enact collab-

oratively for their shared domain.

Hybrid Administration

We may require the application of different combinations of the three aforementioned ad-

ministration styles in security management of cooperative domains. For example, ((u1 .

u2)&(u3 . u4)) is a composite authority represents that u1 on behalf of u2 jointly with u3

on behalf of u4 administrate a shared domain. To this end, complicated compositions of

authorities are supported by the proposed logic.

CHAPTER 4. MA(DL)2 LOGIC FAMILY 49

w

w1

w3

 ui

 uj

 ui w2

α
��β

α
β

α
��β

OBui α
OBuj α
PEui β
IMuj β
...

w

w1

w3

 ui|uj

 ui|uj

 ui|uj w2

α
��β

α
β

α
��β

OB(ui|uj) α
PE(ui|uj) β

...

Figure 4.3: Semantics of disjunctive composition of authorities in MA(DL)2[U−].

4.3.2 Semantics

The semantics of MA(DL)2[U−] is obtained by refining the definition of Λ in Kripke structure

of MA(DL)2 as follows. This function for primitive authorities is defined as λ = U → 2(W×W)

and for composite authorities is extended as follows.

Λ(u) = λ(u), if u ∈ U

Λ(ui|uj) = Λ(ui) ∪ Λ(uj)

Λ(ui&uj) = Λ(ui) ∩ Λ(uj)

Λ(ui . uj) = Λ(ui) ◦ Λ(uj)

The union of relations Λ(ui) and Λ(uj) results in the union of the norms of ui and uj, and

intersection of these relations results in the intersection of the norms of ui and uj. It is clear

that in the bigger (smaller) set of norms, we derive the more (less) authorizations and less

(more) obligations. Figure 4.3 shows this for disjunctive composition more precisely.

The norms of composite authority (ui . uj) is the the norms of uj from ui’s viewpoint.

Thus, it is obtained by composition of relations Λ(ui) with Λ(uj). Figure 4.4 shows the

semantics of delegative authority visually.

4.3.3 Proof Theory

The proof theory of MA(DL)2[U−] is resulted from the combination of proof theory mentioned

for Core MA(DL)2 and the axioms presented in the rest for logic of authorities. These axioms

CHAPTER 4. MA(DL)2 LOGIC FAMILY 50

w

w'

w"

 ui
 uj

ui uj

Figure 4.4: Semantics of delegative composition of authorities in MA(DL)2[U−].

are presented in three groups, based on the three types of composite authorities.

Axioms of Disjunctive Composition

The only axiom of disjunctive composition (for disjunctive administration style) is as follows.

• ` OB(ui|uj)α↔ OBuiα ∧ OBujα (JAD)

Axiom JAD states that whenever two authorities make an obligation statement disjunctively,

it means that both of them have the same obligation statement separately and they have

agreed upon.

Regarding the above axiom, the following theorems hold. JAI, JAC, and JAA show that

the disjoint operator (|) is idempotent, commutative, and associative over authorities.

• ` OB(ui|ui)α↔ OBuiα (JAI)

• ` OB(ui|uj)α↔ OB(uj |ui)α (JAC)

• ` OB(ui|(uj |uk))α↔ OB((ui|uj)|uk)α (JAA)

By the definitions of modal statuses and axiom JAD, we get the following useful theorems.

• ` PE(ui|uj)α↔ PEuiα ∨ PEujα

• ` IM(ui|uj)α↔ IMuiα ∧ IMujα

• ` GR(ui|uj)α↔ GRuiα ∨ GRujα

The above theorems show that for deriving obligation policies in disjunctive administra-

tion style (by OB or IM statements), we require to have the both authorities’ words over.

However, for deriving authorization policies (by PE or GR statements), having one of the

authorities’ word is enough.

CHAPTER 4. MA(DL)2 LOGIC FAMILY 51

Axioms of Delegative Composition

The required axioms of delegative composition (for delegative administration style) are as

follows.

• ` OB(ui.uj)α↔ OBui(OBujα) (DAD)

• ` OB(ui.ui)α→ OBuiα (DAI)

Axiom DAD represents that in the delegative administration, the case α is obligatory from

the (ui . uj) point of view, if and only if in any state, ui accepts that α is obligatory from

uj’s point of view. Axiom DAI imposes that the delegation operator (.) is idempotent. Note

that the reverse of DAI also holds, which is redundant (we also refer to it as DAI).

By the above axioms, we get the following theorem that shows the delegation operator

is associative.

• ` OB(ui.(uj.uk))α↔ OB((ui.uj).uk)α (DAA)

Regarding the DAD axiom the following theorems hold for other statuses than OB.

• ` PE(ui.uj)α↔ PEui(PEujα)

• ` IM(ui.uj)α↔ OBui(IMujα)

• ` GR(ui.uj)α↔ PEui(GRujα)

The above results reveal that we can infer that a case α is permissible or gratuitous from the

viewpoint of ui on behalf of uj, if the permissible or gratuitous statement of uj is permissible

from ui’s point of view. However, for obligatory or impermissible cases, we are stricter and

require an obligatory statement of ui over the obligation or impermissible statement of uj.

Axioms of Collaborative Composition

The axioms of collaborative composition (for collaborative administration style) are as fol-

lows.

• ` OBuiα ∨ OBujα→ OBui&ujα (CAD)

• ` OB(ui&ui)α→ OBuiα (CAI)

CHAPTER 4. MA(DL)2 LOGIC FAMILY 52

• ` OBui&ujα→ OBuj&uiα (CAC)

• ` OBui&(uj&uk)α↔ OB(ui&uj)&ukα (CAA)

In collaborative administration, an obligation statement is derived when at least one of

the participated authorities enact the obligation statement. This principle appears as the

CAD axiom in the proposed calculus. Idempotency, commutativity, and associativity of joint

operator (denoted by &) are added by axioms CAI, CAC, and CAA respectively. Note that

the reverse of axioms CAI and CAC also hold, which can be derived from the aforementioned

axioms and thus are redundant.

By the definitions of modal statuses, and the OB-MD and CAD axioms we get the

following theorems.

• ` PE(ui&uj)α→ PEuiα ∧ PEujα

• ` IMuiα ∨ IMujα→ IM(ui&uj)α

• ` GRui&ujα→ GRuiα ∧ GRujα

• ` OBui&ujα→ PEuiα ∧ PEujα

• ` IMui&ujα→ GRuiα ∧ GRujα

Axioms of Hybrid Composition

The essential axioms for having hybrid administration are as follows.

• ` OB(ui&(uj |uk))α↔ OB(ui&uj)|(ui&uk)α (DCJ)

• ` OBui.(uj&uk)α→ OB(ui.uj)&(ui.uk)α (DDC)

Axiom DCJ shows the left-distribution of the collaboration operator (&) over the dis-

junction operator (|). Axiom DDC shows the left-distribution of the delegation operator

(.) over the collaboration operator (&); although the reverse does not hold. The similar

formulae for right-distribution also hold, which are redundant.

The distribution of disjunction operator (|) over collaboration operator (&) from left and

right, and the distribution of the delegation operator (.) over the disjunction operator (|)
also hold as the following theorems.

CHAPTER 4. MA(DL)2 LOGIC FAMILY 53

• ` OBui|(uj&uk)α↔ OB(ui|uj)&(ui|uk)α (DJC)

• ` OBui.(uj |uk)α↔ OB(ui.uj)|(ui.uk)α (DDJ)

Proof. DDJ can be obtained easily from axioms DAD and JAD. DJC is proven to hold as

follows.

[If Part] By distributing & over | using axiom DCJ in two steps and using the CAI and

JAD axioms we have

OB(ui|uj)&(ui|uk)α↔ OB((ui|uj)&ui)|((ui|uj)&uk)α↔ OB(ui&ui)|(uj&ui)|(ui&uk)|(uj&uk)α↔

OBui|(uj&uk)|(ui&uj)|(ui&uk)α↔ OBuiα ∧ OB(uj&uk)α ∧ OB(ui&uj)α ∧ OB(ui&uk)α

Thus, we have

` OB(ui|uj)&(ui|uk)α↔ OBuiα ∧ OB(uj&uk) ∧ OB(ui&uj)α ∧ OB(ui&uk)α (I)

Considering this theorem and axiom ` A∧B → A, by applying MP, we get ` OB(ui|uj)&(ui|uk)α→
OBuiα ∧ OB(uj&uk)α, and thus, OB(ui|uj)&(ui|uk)α→ OBui|(uj&uk)α.

[Only If Part] By axiom CAD, we can prove

` OBuiα→ OB(ui&uj)α (II)

` OBuiα→ OB(ui&uk)α (III)

Also by axiom JAD, we get

` OBui|(uj&uk)α→ OBuiα ∧ OB(uj&uk)α (IV)

By tautology ` A ∧B → A and theorems (II), (III), (IV) in the above, we get

` OBui|(uj&uk)α→ OB(ui&uj)α (V)

` OBui|(uj&uk)α→ OB(ui&uk)α (VI)

Considering the inference rule A→B,A→C
A→B∧C (which is easily provable by tautologies and rule

MP), and theorems (IV), (V), and (VI), we conclude that

` OBui|(uj&uk)α→ OBuiα ∧ OB(uj&uk)α ∧ OB(ui&uj)α ∧ OB(ui&uk)α

By theorem (I), it is clear that ` OB(ui|uj)&(ui|uk)α→ OBui|(uj&uk)α. �

Note that the collaboration (&) and disjunction (|) operators are not distributive over

the delegation operator (.); however, we have the following theorem, which is easily proven

using DAD and JAD axioms.

• ` OBui|(uj.uk)α← OB(ui|uj).(ui|uk)α

CHAPTER 4. MA(DL)2 LOGIC FAMILY 54

4.3.4 Hierarchy of Authorities

Studying the behavior of authorities shows that authorities can form a hierarchy based on

their strictness level. There exists a strictness relation between two authorities ui and uj,

denoted by ui ≤ uj if and only if an authority uj is stricter than ui. Intuitively, this means

that every case that ui enacts as obligatory, uj enacts as well. Furthermore, the equivalence

relation is defined between two authorities (denoted by ui ≈ uj) when they have the same

strictness level.

Formally, we define the strictness relation and equivalence relation as follows.

• ` ui ≤ uj if and only if ` (OBuiα→ OBujα) (STD)

• ` ui ≈ uj if and only if ` (OBuiα↔ OBujα) (EQD)

In other words, ui ≈ uj if and only if ui ≤ uj and uj ≤ ui.

Using the Kripke structure, more strictness of uj in comparison with ui means that the

set of norms of uj is a subset of norms of ui. On this basis, the interpretation of the strictness

relation ui ≤ uj is defined as follows.

Φ(ui ≤ uj) =

W , if Λ(uj) ⊆ Λ(ui)

∅ , otherwise

Following the above definition of the strictness relation, the following theorems hold.

• ` (ui|uj) ≤ ui and ` (ui|uj) ≤ uj

• ` ui ≤ (ui&uj) and ` uj ≤ (ui&uj)

These relations mean that the authority obtained by collaborative composition of ui and

uj (i.e., ui&uj) is stricter than each of authorities ui and uj. However, both ui and uj are

stricter than their disjunctive composition (i.e., ui|uj).
The above mentioned discussion concludes that the collaborative composition of two

authorities ui and uj (i.e., ui&uj) and their disjunctive composition (i.e., ui|uj) are the least

upper bound (or supremum) and the greatest lower bound (or infimum) of ui and uj with

respect to the strictness relation (≤). On this basis, it is clear that (〈U∗,≤〉,&, |) or the set

of authorities with strictness relation and two operations & and |, forms a lattice.

CHAPTER 4. MA(DL)2 LOGIC FAMILY 55

In this lattice, if we have a strictness relation between two authorities (e.g., ui ≤ uj), the

following relations are easily concluded.

if ` ui ≤ uj then

ui&uj ≈ uj

ui|uj ≈ ui

4.3.5 Conditions on Worlds Relations

In order to validate axiom DAI (i.e., OB(ui.ui)α→ OBuiα), relations Λ(ui) are required to be

transitive. Transitivity means:

∀w,w′, w”, 〈w,w′〉 ∈ Λ(ui) ∧ 〈w′, w”〉 ∈ Λ(ui)→ 〈w,w”〉 ∈ Λ(ui)

The problem exists for transitivity is that, if we suppose that Λ for primitive authorities

is transitive, the composition of authorities does not preserve the transitivity. Table 4.3.5

shows where we lose this property in the composition of authorities.

Table 4.2: Preserving the properties of worlds reachability relations in the composition of
authorities.

Property Λ(u1|u2) Λ(u1&u2) Λ(u1 . u2)
Transitivity × X ×
Seriality X × X
Reflexivity X X X

To solve the problem, considering the fact that idempotency of delegation operator for

composite authorities is not required in practice, we eliminate the DAI axiom from the

proposed proof theory and instead add the equivalences of the form (ui . ui) ≈ ui for all

primitive authorities ui (i.e., ui ∈ U) to the knowledge base of the model.

Another property that relations Λ(ui) require to have is seriality to validate the OB-MD

axiom. As is shown in Table 4.3.5, seriality is not preserved by collaborative composition of

authorities. For solving the problem, we require to have a stricter condition to be preserved

in all cases. For this purpose, we take the reflexivity condition for the relations Λ(ui). It

is easy to prove that this condition is preserved in all kinds of authority composition (see

Table 4.3.5).

CHAPTER 4. MA(DL)2 LOGIC FAMILY 56

Although reflexivity tackles the problem of validating axiom OB-MD, it creates a new

problem that the obtained semantics makes the proof theory incomplete. By the obtained

semantics, the formula OBuiα→ α for arbitrary authority ui and arbitrary formula α (known

as axiom T in modal logics) is satisfiable; however, it is not derivable by the proposed

proof theory. In fact, we prefer not to have such an axiom in our logic, because this axiom

bans authorities of a shared domain to have contradictory policy rules for an access. For

example, if we have OBu1do(s, o, a) and also IMu2do(s, o, a), by this axiom we get do(s, o, a) and

¬do(s, o, a), which are contradictory. Thus, the set {OBu1do(s, o, a), IMu2do(s, o, a)} becomes

inconsistent, which is not desired in our approach. Thus, as is mentioned in completeness

proof for MA(DL)2[U−], we should remove collaborative composition operator (&) from this

logic to solve this problem and have a complete logic.

4.4 MA(DL)2[−D] Logic

In the overall framework proposed for authorization in SAEs in Section 3.4, the environ-

ment is divided into the set of security domains, which are not considered in the MA(DL)2

language. To enrich Core MA(DL)2 for specification and inference of security policies in dis-

tributed manner in SAEs, we add the concept of security domain (call it in short domain)

to this logic. Note that in Core MA(DL)2, the security policy rules specified by an authority

for different domains cannot be distinguished from each other, and an authority cannot have

different and contrary policies for different domains; however, in MA(DL)2[−D] we can specify

different policies for different security domains.

Security Domain is an abstract concept, which can be defined based on different factors,

such as geographical situation, organizational ownership of resources, network security zon-

ing, or coverage limitations in cellular networks and services. Each authority can specify

security policies at each security domain, theoretically. However, in practice we have some

limitations on this issue.

4.4.1 Syntax

To add security domains to Core MA(DL)2, we add an enumerable set D of (security)

domains to the alphabet of the core logic, and hence, the signature S is changed to a 7-

tuple S = 〈Σ, C,R,P , I,U ,D〉. By having domains, the modal formula in the definition

CHAPTER 4. MA(DL)2 LOGIC FAMILY 57

of c-formula is changed to dsu@dα that means an authority u enacts the status ds for α at

domain d.

Since in practice, there exist inclusion relation between security domains, the notation �
is used for this purpose. d′ � d denotes that domain d′ is a subdomain of d. The inclusion

relation (�) forms a hierarchy over the domains appear in D.

Following the mentioned changes in the syntax of MA(DL)2[−D] in comparison with Core

MA(DL)2, security policy rules are redefined in this logic as follows.

Definition 4.4.1 (Security Policy Rule at a Domain) A security policy rule specified

by an authority u at a security domain d is defined as α→ dsu@dβ.

4.4.2 Semantics

To present the semantics of MA(DL)2[−D], we extend the Kripke model of MA(DL)2 to 7-tuple

M = 〈W,Λ,∆, I,Φ,D, J〉, where

• W , ∆, and I are remained unchanged.

• D is a finite set of domain elements.

• J = D → 2D is an interpretation function that assigns to each domain a set of domain

elements.

• Λ is the enhanced of previous one that maps each authority to a function from domain

elements to binary relations on the possible worlds. In other words, Λ for primitive

authorities is defined as λ = U → {f : D→ 2(W×W)}.

• Φ is extended and changed as follows

Φ(OBu@dα) = {w|∀x ∈ J(d),∀w′ ∈ W, 〈w,w′〉 ∈ Λ(u)(x)→ w′ ∈ Φ(α)}

Φ(d′ � d) =

W , if J(d′) ⊆ J(d);

∅ , otherwise

For clarifying the semantics represented for domains, see Figure 4.5. This figure illustrates

the function Λ(u) for the authority u. Some of the statements of u over the two domains d

CHAPTER 4. MA(DL)2 LOGIC FAMILY 58

w1

 [u] x1

w5

w3

w4

w2

 [u] x1, x2

 [u] x1, x2, x3 [u] x1

Øα

Øβ

Øα

β

Øα

β

IMu@d α

PEu@d β

PEu@d' β

IMu@d' α

OBu@d' β

Øα

Øβ

Øα

β

d' d

J(d) = {x1, x2, x3} J(d') = {x2, x3}

Figure 4.5: An example of the semantics of domains and statements over them.

and d′ that are satisfiable in world w1 are shown. As an example, you can see that PEu@dβ is

satisfiable at world w1, because for each domain element x1, x2, and x3 of domain d, there

exist at least one world accessible from w1 where β is true. It is clear that similar statement

(i.e., PEu@d′β) is satisfiable for subdomain d′. This example is an intuitive proof for corollary

4.4.1 in the proof theory of the logic of domains.

4.4.3 Proof Theory

The proof theory of MA(DL)2[−D] is obtained by substituting the OBuα with to OBu@dα in the

proof theory of Core MA(DL)2. Furthermore, the following axioms should be added to it for

taking the relations of domains (and their subdomains) into account.

• ` d′ � d→ ∧OBu@dα→ OBu@d′α (SDP)

• ` d � d (SDI)

• ` d′ � d ∧ d′′ � d′ → d′′ � d (SDT)

• ` d′ � d→ OBu@d′′(d
′ � d) (SDO)

CHAPTER 4. MA(DL)2 LOGIC FAMILY 59

Axiom SDP says that any obligation holds for a domain, holds for its subdomains as well.

Axioms SDI and SDT show the reflexivity and transitivity of domain inclusion relation.

Axiom SDO says a subdomain relationship is necessarily acceptable by all authorities in all

domains.

By the above axiomatic system, the following corollary is concluded.

Corollary 4.4.1 Suppose there exist security domains d, d′, and d′′ such that d′ � d � d′′

and we have dsu@dα for domain d. If ds ∈ {OB, IM}, then the statement holds for subdomain

d′ as well (i.e., ` dsu@d′α for ds ∈ {OB, IM}), and if ds ∈ {PE, GR}, then the statement holds

for superdomain d′′ as well (i.e., ` dsu@d′′α for ds ∈ {PE, GR}).

Proof. It is easy to prove. �

4.5 MA(DL)2[UD] Logic

Core MA(DL)2 augmenting with logic of authorities and logic of security domains becomes

MA(DL)2[UD]. In other words, MA(DL)2[UD] is the result of the combination of MA(DL)2[U−]

and MA(DL)2[−D]. Thus, in this logic we can have norms in the form of dsu@dα, where u

is a primitive or composite authority, d is a security domain, and ds ∈ {OB, IM, PE, GR} is a

deontic status.

The semantics of MA(DL)2[UD] is resulted from the combination of the semantics of

MA(DL)2[U−] presented in Section 4.3.2 and semantics of MA(DL)2[−D] presented in Section

4.4.2. Thus, a 7-tuple Kripke style modelM = 〈W,Λ,∆, I,Φ,D, J〉 is taken into account.The

definition of all elements of M except Λ is easy and clear. Thus, we just redefine Λ here.

λ = U → {f : D→ 2(W×W)} Λ(u) = λ(u), if u ∈ U

Λ(ui|uj)(x) = Λ(ui)(x) ∪ Λ(uj)(x)

Λ(ui&uj)(x) = Λ(ui)(x) ∩ Λ(uj)(x)

Λ(ui . uj)(x) = Λ(ui)(x) ◦ Λ(uj)(x)

Due to the change in the definition of Λ, the strictness relation on authorities is changed

as follows.

Φ(ui ≤ uj) =

W , if ∀x ∈ D,Λ(uj)(x) ⊆ Λ(ui)(x)

∅ , otherwise

CHAPTER 4. MA(DL)2 LOGIC FAMILY 60

By the above interpretation, if ui ≤ uj, then authority uj in all security domains is stricter

than authority ui. We can interpret the strictness relation in other way, in which for each

security domain, strictness relation is defined independent from other domains. For this

purpose, we use notation ≤d for a security domain, and interpret it as follows.

Φ(ui ≤d uj) =

W , if ∀x ∈ J(d),Λ(uj)(x) ⊆ Λ(ui)(x)

∅ , otherwise

The proof theory of MA(DL)2[UD] logic is obtained from the combination of the axioms and

inference rules presented for MA(DL)2[U−] and MA(DL)2[−D] in sections 4.3.3 and 4.4.3. Note

that we need to substitute OBup with OBu@dp in the axioms we inherit from the axiomatic

system of MA(DL)2[U−].

4.6 Summary

For security policy specification and inference in SAEs, we need to have an appropriate logi-

cal language. In this chapter, we introduced the MA(DL)2 logic, which is our proposed logic

for this purpose. MA(DL)2 is a logic family, whose core is resulted from the integrating de-

scription logic with n-ary predicates on concepts, and multi-authority (poly-modal) version

of standard deontic logic. Extending Core MA(DL)2 by logic of composite authorities (em-

ployed for cooperative security administration in shared subdomains) results in MA(DL)2[U−],

and by logic of security domains results in MA(DL)2[−D] in this family. MA(DL)2[UD] in this

logic family has all the capabilities of the other members.

Each member of MA(DL)2 logic in introduced in this chapter by its syntax, semantics, and

proof theory. The properties of these logics, including soundness, completeness, decidability,

expressive power, and time complexity of satisfiability problem are investigated in the next

section.

Chapter 5

Properties of MA(DL)2 Logic Family

By introducing each logic, it is required to investigate the properties such as soundness, com-

pleteness, decidability, expressive power, and computational complexity. After introducing

the MA(DL)2 logic family in previous chapter, we get through the properties of this logic

family in this chapter.

Note that in this chapter, to simplify the proofs, we eliminated concept types from

MA(DL)2. Such an assumption does not spoil the presented proofs, since for each set of

typed MA(DL)2 formulae, we can generate a set of untyped MA(DL)2 formulae. To this

aim, for example, for each type σ, we take a concept >σ, and for each concept C : σ in the

formulae, we add C v >σ. Also, we replace each complemented concept ¬C with >σ u ¬C.

By generating such an equivalent set of formulae in untyped MA(DL)2, we can easily prove

that for each model M satisfying untyped formulae, we can construct a model M′, which

satisfied the typed formulae, and vice versa.

5.1 Soundness

To prove that an inference system works correctly, we should prove that the system is sound.

An axiom is sound if and only if it is valid. An inference rule is sound if and only if it

preserves the soundness, i.e. it maps valid premises to valid conclusions. In an axiomatic

logical system, the whole system is sound if and only if its all axioms and inference rules are

sound. In other words, a logic is sound if ` α implies that � α; if a formula α is provable,

then it is valid.

61

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 62

5.1.1 Soundness of Core MA(DL)2

The soundness proofs of axioms OB-MK, OB-MD, SPP, and UPP in the Core MA(DL)2

logic are presented in the following lemmas. The soundness proofs of the other axioms and

inference rules are no more complicated.

Lemma 5.1.1 (Soundness of Axiom OB-MK) The OB-MK axiom is sound.

Proof. Suppose for some modelM and some world w ∈ W inM, we have �Mw OBu(p→ q),

which holds iff by clause (iv) of proposition 4.2.1, in all w′ ∈ Λ(u)(w),�Mw′ p → q iff in

all w′ ∈ Λ(u)(w), if �Mw′ p, then �Mw′ q, which is equal to this sentence that if in all w′ ∈
Λ(u)(w),�Mw′ p, then in all w′ ∈ Λ(u)(w),�Mw′ q as well. By clause (iv) of proposition 4.2.1,

this implies that if �Mw OBup, then �Mw OBuq, which holds iff �Mw OBup→ OBuq.

Thus, by assumption �Mw OBu(p → q), we conclude that �Mw OBup → OBuq. Hence, by

clause (i) of proposition 4.2.1, for every model M and every world w ∈ W in M, we have

�Mw OBu(p→ q)→ (OBup→ OBuq), which means axiom OB-MK is valid and sound. �

Lemma 5.1.2 (Soundness of Axiom OB-MD) The OB-MD axiom is sound.

Proof. Suppose for some modelM and some world w ∈ W inM, we have �Mw OBup, which

holds iff by clause (iv) of proposition 4.2.1, in all w′ ∈ Λ(u)(w),�Mw′ p, or in other words in

all w′ ∈ Λ(u)(w),2Mw′ ¬p, which implies that 2Mw OBu¬p and also �Mw ¬OBu¬p.
Hence, by assumption �Mw OBup, we conclude that �Mw ¬OBu¬p, which results in �Mw

OBup→ ¬OBu¬p. Thus, axiom OB-MD is valid and sound. �

Lemma 5.1.3 (Soundness of Axiom SPP) The SPP axiom is sound.

Proof. Suppose for some model M and some world w ∈ W in M, we have �Mw Ci
′ v Ci,

which holds iff by the definition of truth, w ∈ Φ(Ci
′ v Ci) iff by the definition of Φ in

semantics of Core MA(DL)2, JCi′KIw ⊆ JCiKIw.

Also, suppose �Mw p(C1, ..., Ci, ..., Cn). Thus, w ∈ Φ(p(C1, ..., Ci, ..., Cn)), and by the

definition of Φ,
n∏
j=1

JCjKIw ⊆ JpKIw. In combination with the first assumption (i.e., JCi′KIw ⊆

JCiKIw), we get the following relation:

i−1∏
j=1

JCjKIw × JCi′KIw ×
n∏

j=i+1

JCjKIw ⊆
n∏
j=1

JCjKIw ⊆ JpKIw

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 63

Since
i−1∏
j=1

JCjKIw×JCi′KIw×
n∏

j=i+1

JCjKIw ⊆ JpKIw, by the definition of Φ, we get w ∈ Φ(p(C1, ..., Ci
′, ..., Cn)),

and hence, �Mw p(C1, ..., Ci
′, ..., Cn).

Therefore, if �Mw Ci
′ v Ci, then if �Mw p(C1, ..., Ci, ..., Cn), then �Mw p(C1, ..., Ci

′, ..., Cn).

By clause (i) of proposition 4.2.1, the above sentence means �Mw Ci
′ v Ci →

(p(C1, ..., Ci, ..., Cn)→ p(C1, ..., Ci
′, ..., Cn)). Thus, axiom SPP is sound. �

Lemma 5.1.4 (Soundness of Axiom UPP) The UPP axiom is sound.

Proof. Suppose for some modelM and some world w ∈ W inM, we have �Mw p(C1, ..., Ci, ..., Cn)∧
p(C1, ..., Ci

′, ..., Cn), which holds iff by the definition of truth we have w ∈ Φ(p(C1, ..., Ci, ..., Cn))

and w ∈ Φ(p(C1, ..., Ci
′, ..., Cn)). This holds iff by the definition of Φ in semantics of Core

MA(DL)2 we have
n∏
j=1

JCjKIw ⊆ JpKIw

i−1∏
j=1

JCjKIw × JCi′KIw ×
n∏

j=i+1

JCjKIw ⊆ JpKIw

Since, if A ⊆ C and B ⊆ C, then A ∪ B ⊆ C, based on the above equation, we get(
i−1∏
j=1

JCjKIw × JCiKIw ×
n∏

j=i+1

JCjKIw ∪
i−1∏
j=1

JCjKIw × JCi′KIw ×
n∏

j=i+1

JCjKIw

)
⊆ JpKIw.

Since A × (B ∪ C) = (A × B) ∪ (A × C), we conclude
i−1∏
j=1

JCjKIw × (JCiKIw ∪ JCi′KIw) ×

n∏
j=i+1

JCjKIw ⊆ JpKIw, and thus,
i−1∏
j=1

JCjKIw × JCi t Ci′KIw ×
n∏

j=i+1

JCjKIw ⊆ JpKMw

Now, by the definition of Φ, we have w ∈ Φ(p(C1, ..., Ci t Ci′, ..., Cn)), and hence �Mw
p(C1, ..., Ci t Ci′, ..., Cn). By clause (i) of proposition 4.2.1, the above sentence concludes

�Mw p(C1, ..., Ci, ..., Cn) ∧ p(C1, ..., Ci
′, ..., Cn)→ p(C1, ..., Ci t Ci′, ..., Cn)

Hence, axiom UPP is valid and sound. �

Theorem 5.1.1 (Soundness of Core MA(DL)2) The Core MA(DL)2 logic is sound; if

` α, then � α.

Proof. Lemmas 5.1.1, 5.1.2, 5.1.3, and 5.1.4 prove the soundness of axioms OB-MK, OB-

MD, SPP, and UPP as examples. The soundness proof of other axioms and inference rules

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 64

are no more complicated. Thus, by induction on the length of proof, we can easily prove

that the Core MA(DL)2 logic is sound. �

5.1.2 Soundness of MA(DL)2[U−]

The soundness proofs of axioms JAD, DAD, CAD, and DDC in the MA(DL)2[U−] logic are

presented in the following lemmas. The soundness proofs of other axioms are easy.

Lemma 5.1.5 (Soundness of Axiom JAD) Axiom JAD in MA(DL)2[U−] is sound.

Proof. Suppose for some model M and some world w ∈ W in M, we have �Mw OB(ui|uj)α.

Thus, w ∈ Φ(OB(ui|uj)α) iff w ∈ Φ(OBuiα ∧ OBujα), because

Φ(OB(ui|uj)α) = {w|Λ(ui|uj)(w) ⊆ Φ(α)} = {w|(Λ(ui) ∪ Λ(uj))(w) ⊆ Φ(α)}

= {w|Λ(ui)(w) ∪ Λ(uj)(w) ⊆ Φ(α)} = {w|Λ(ui)(w) ⊆ Φ(α) ∧ Λ(uj)(w) ⊆ Φ(α)}

= {w|Λ(ui)(w) ⊆ Φ(α)} ∩ {w|Λ(uj)(w) ⊆ Φ(α)} = Φ(OBuiα) ∩ Φ(OBujα)

= Φ(OBuiα ∧ OBujα)

Hence, �Mw OB(ui|uj)α↔ OBuiα ∧ OBujα. �

Lemma 5.1.6 (Soundness of Axiom DAD) Axiom DAD in MA(DL)2[U−] is sound.

Proof. Suppose for some model M and some world w ∈ W in M, we have �Mw OB(ui.uj)α.

Thus, w ∈ Φ(OB(ui.uj)α) if and only if w ∈ Φ(OBui(OBujα)), because:

Φ(OB(ui.uj)α) = {w|Λ(ui . uj)(w) ⊆ Φ(α)} = {w|(Λ(ui) ◦ Λ(uj))(w) ⊆ Φ(α)}

= {w|∀w′, if 〈w,w′〉 ∈ Λ(ui) then, Λ(uj)(w
′) ⊆ Φ(α)}

= {w|Λ(ui)(w) ⊆ {w′|Λ(uj)(w
′) ⊆ Φ(α)}}

= {w|Λ(ui)(w) ⊆ Φ(OBujα)} = Φ(OBui(OBujα))

Hence, �Mw OB(ui.uj)α↔ OBui(OBujα). �

Lemma 5.1.7 (Soundness of Axiom CAD) Axiom CAD in MA(DL)2[U−] is sound.

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 65

Proof. Suppose for some modelM and some world w ∈ W inM, we have �Mw OBuiα∨OBujα.

Then:

w ∈ Φ(OBuiα ∨ OBujα) iff w ∈ Φ(OBuiα) ∪ Φ(OBujα)

iff w ∈ {w|∀w′, 〈w,w′〉 ∈ Λ(ui)→ w′ ∈ Φ(α)} ∪ {w|∀w′, 〈w, a′〉 ∈ Λ(uj)→ w′ ∈ Φ(α)}

then w ∈ {w|∀w′, 〈w,w′〉 ∈ Λ(ui) ∩ Λ(uj)→ w′ ∈ Φ(α)}∪

{w|∀w′, 〈w, a′〉 ∈ Λ(uj) ∩ Λ(ui)→ w′ ∈ Φ(α)}

iff w ∈ {w|〈w,w′〉 ∈ Λ(ui&uj)→ w′ ∈ Φ(α)} iff w ∈ Φ(OB(ui&uj)α)

Thus, �Mw OB(ui&uj)α. Hence, the axiom is sound. �

Lemma 5.1.8 (Soundness of Axiom DDC) Axiom DDC in MA(DL)2[U−] is sound.

Proof. Suppose for some modelM and some world w ∈ W inM, we have �Mw OB(ui.(uj&uk))α.

Then:

w ∈ Φ(OB(ui.(uj&uk)))iff ∀w′, [〈w,w′〉 ∈ Λ(ui) ◦ Λ(uj&uk)]→ w′ ∈ Φ(α)

iff ∀w′, [〈w,w′〉 ∈ Λ(ui) ◦ (Λ(uj) ∩ Λ(uk))]→ w′ ∈ Φ(α)

iff ∀w′, [∃w”, 〈w,w”〉 ∈ Λ(ui) ∧ (〈w”, w′〉 ∈ Λ(uj) ∧ 〈w”, w′〉 ∈ Λ(uk))]→ w′ ∈ Φ(α)

Considering the fact that ∃x.(p(x) ∧ q(x))→ ∃x.p(x) ∧ ∃x.q(x), by the above, we get

∀w′, [(∃w”, 〈w,w”〉 ∈ Λ(ui) ∧ 〈w”, w′〉 ∈ Λ(uj))∧

(∃w”, 〈w,w”〉 ∈ Λ(ui) ∧ 〈w”, w′〉 ∈ Λ(uk))]→ w′ ∈ Φ(α)

iff ∀w′, [〈w,w′〉 ∈ Λ(ui) ◦ Λ(uj) ∧ 〈w,w′〉 ∈ Λ(ui) ◦ Λ(uk)]→ w′ ∈ Φ(α)

iff ∀w′, [〈w,w′〉 ∈ Λ(ui . uj) ∧ 〈w,w′〉 ∈ Λ(ui . uk)]→ w′ ∈ Φ(α)

iff ∀w′, 〈w,w′〉 ∈ Λ(ui . uj) ∩ Λ(ui . uk)→ w′ ∈ Φ(α)

iff ∀w′, 〈w,w′〉 ∈ Λ((ui . uj)&(ui . uk))→ w′ ∈ Φ(α)

iff w ∈ Φ(OB(ui.uj)&(uj.uk)α)

Thus, we have �Mw OB(ui.uj)&(uj.uk)α. By clause (i) of Proposition 4.2.1, we conclude that

axiom DDC is valid and sound. �

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 66

Theorem 5.1.2 (Soundness of MA(DL)2[U−]) MA(DL)2[U−] logic is sound such that ` α
then � α.

Proof. Lemmas 5.1.5, 5.1.6, 5.1.7, and 5.1.8 prove the soundness of axioms JAD, DAD,

CAD, and DDC respectively. The soundness proofs of other axioms are easy. Thus, by

induction on the length of proof, we can easily prove that the MA(DL)2[U−] logic is sound. �

5.1.3 Soundness of MA(DL)2[−D]

The most important axiom in MA(DL)2[−D] is the SDP axiom. In this section, we fist prove

the soundness of axiom SDP, and then present the theorem of MA(DL)2[−D] soundness.

Lemma 5.1.9 (Soundness of Axiom SDP) Axiom SDP in MA(DL)2[−D] is sound.

Proof. Suppose for some model M and some world w ∈ W in M, we have �Mw d′ � d and

�Mw OBu@dα. Thus, w ∈ OBu@dα and by the definition of Φ we have

∀x ∈ J(d),∀w′ ∈ W, 〈w,w′〉 ∈ Λ(u)(x)→ w′ ∈ Φ(α)

Since �Mw d′ � d, by the semantics we have J(d′) ⊆ J(d) and hence

forallx ∈ J(d′),∀w′ ∈ W, 〈w,w′〉 ∈ Λ(u)(x)→ w′ ∈ Φ(α)

By the presented semantics, the above equation concludes that w ∈ Φ(OBu@d′α); in other

words �Mw OBu@d′α.

Hence, by suppose that �Mw d � d′ ∧ OBu@dα, we conclude that �Mw OBu@d′α. By clause

(i) of Proposition 4.2.1, we get that axiom SDP is valid and sound. �

Theorem 5.1.3 (Soundness of MA(DL)2[−D]) The MA(DL)2[−D] logic is sound such that

` α then � α.

Proof. The soundness of axiom SDP is presented in Lemma 5.1.9. The soundness proofs of

the other axioms are similar. Thus, by induction on the length of proof, we can easily prove

that the MA(DL)2[−D] logic is sound. �

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 67

5.1.4 Soundness of MA(DL)2[UD]

In previous sections, the soundness of the fragments of MA(DL)2[UD] are proved. The sound-

ness of the axioms of MA(DL)2[UD] can be presented analogously. In fact, we just need

to change some notations in the provided proofs in previous sections. Thus, we have the

following theorem as the result.

Theorem 5.1.4 (Soundness of MA(DL)2[UD]) The MA(DL)2[UD] logic is sound, i.e., if `
α, then � α.

Proof. By the above description, it is evident. �

5.2 Completeness

Completeness is equivalent to the satisfiability of every consistent set of formulae. The

weaker version of completeness shows that the proof theory of a logic is enough to infer all

the valid formulae, i.e. if � α then ` α.

To prove the completeness of the MA(DL)2 logic, we follow the approach proposed by

Henkin [79] and its adaptation [11] that is used to prove the completeness of deontic logic.

In this approach, we take an arbitrary consistent set Γ of formulae and construct a model

that satisfies Γ. In this model, the possible worlds are maximal consistent sets of formulae

and there exists a world that contains Γ and also satisfies Γ.

5.2.1 Completeness of Core MA(DL)2

We begin the proof by some definitions and lemmas. Note that, although some definitions

and lemmas related to the maximal consistent sets might be found in many references, for

having a complete and detailed proof, we present all of them here.

Definition 5.2.1 (Maximal Consistent Set) A set Ψ of formulae is a maximal consis-

tent set iff

(i) Ψ is consistent,

(ii) if Ψ ⊆ Θ and Θ is consistent, then Ψ = Θ.

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 68

Lemma 5.2.1 (Existence of Maximal Consistent Set) For each consistent set Γ of for-

mulae, there exists a maximal consistent set, denoted by Γ∗, with Γ ⊆ Γ∗.

Proof. Suppose that there is a list of all formulae in MA(DL)2 including α1, α2, · · · . We

define a sequence of sets of formulae as follows:

• Γ0 = Γ

• Γn+1 =

Γn ∪ {αn} , if Γn ∪ {αn} is consistent

Γn , otherwise

We define Γ∗ =
⋃
n≥0

Γn. It is obvious that Γ∗ is consistent and Γ ⊆ Γ∗.

Now, we show that Γ∗ is a maximal consistent set, too.

Let Ψ be a consistent set of formulae and Γ∗ ⊆ Ψ. For every x ∈ Ψ, there exists αn in the list

of MA(DL)2 formulae such that αn = x. Since Γn ⊆ Γ∗ ⊆ Ψ and Ψ is consistent, Γn ∪ {αn}
is also consistent. Thus, Γn+1 = Γn ∪ {αn} that implies αn ∈ Γn+1 ⊆ Γ∗. Since αn = x, we

conclude that for every x ∈ Ψ, we have x ∈ Γ∗ (i.e., Ψ ⊆ Γ∗). Therefore, Γ∗ = Ψ, and hence

Γ∗ is a maximal consistent set. �

Lemma 5.2.2 (Properties of Maximal Consistent Sets) Let Ψ be a maximal consis-

tent set. Then, we have:

(i) for each formula α, either α ∈ Ψ or ¬α ∈ Ψ

(ii) Ψ is closed under inference, i.e., if Ψ ` α, then α ∈ Ψ

(iii) ¬α ∈ Ψ iff α 6∈ Ψ

(iv) α ∧ β ∈ Ψ iff α ∈ Ψ and β ∈ Ψ

(v) α→ β ∈ Ψ iff if α ∈ Ψ, then β ∈ Ψ

Proof. To prove (i), we suppose that α 6∈ Ψ and ¬α 6∈ Ψ. Since Ψ is consistent, there exists

a consistent set Θ = Ψ∪{α} and thus Ψ ⊆ Θ. By the definition of maximal consistent sets,

we conclude that Ψ = Θ. By the above definition of Θ, we have α ∈ Θ, and hence α ∈ Ψ,

which is a contradiction.

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 69

To prove (ii), we suppose that Ψ is not closed under inference that means there exists

a formula α such that Ψ ` α, but α 6∈ Ψ. Thus, by clause (i) ¬α ∈ Ψ and hence Ψ ` ¬α.

Since Ψ ` α and Ψ ` ¬α, we get Ψ ` F. This shows Ψ is an inconsistent set, which is a

contradiction.

The proofs of (iii) to (v) can be shown easily. �

Definition 5.2.2 (Ψ↓uα Notation) Let u be an authority, α be a formula, and Ψ be a max-

imal consistent set such that ¬OBuα ∈ Ψ. We define a set Ψ↓uα of formulae as follows:

Ψ↓uα= {β|OBuβ ∈ Ψ} ∪ {¬α}

Lemma 5.2.3 (Modified Makinson’s Lemma) Let u be an authority, α be a formula,

and Ψ be a maximal consistent set such that ¬OBuα ∈ Ψ. Then, Ψ↓uα is a consistent set.

Proof. Suppose Ψ↓uα is not a consistent set. Then, there are formulae like β1, β2, ..., βn (n ≥ 0)

such that OBuβi ∈ Ψ and by the definition of Ψ↓uα, we get ` (β1 ∧ β2 ∧ ... ∧ βn ∧ ¬α) → F.

Hence, by axiom schema TAUT, we have ` (β1 ∧ β2 ∧ ... ∧ βn)→ α.

For case n=0, this results in ` α and by the OB-MO axiom schema ` OBuα. Hence, by

clause (ii) of lemma 5.2.2, OBuα ∈ Ψ. Also ¬OBuα ∈ Ψ by the hypothesis. Thus, both OBuα

and ¬OBuα are in Ψ, which is a contradiction.

For case n ≥ 1, ` (β1 ∧ β2 ∧ ... ∧ βn) → α results in ` β1 → (β2 → ...(βn → α)...).

Hence, by OB-MO, we have ` OBu(β1 → (β2 → ...(βn → α)...)) and by the axiom OB-MK,

` OBuβ1 → OBu(β2 → ...(βn → α)...). By repeating the above steps n − 1 times, we obtain

` OBuβ1 → (OBuβ2 → ...(OBuβn → OBuα)...). Hence, by applying n times clause (v) of lemma

5.2.2, and considering the fact that for all 1 ≤ i ≤ n, OBuβi ∈ Ψ, we get OBuα ∈ Ψ. Again,

both OBuα and ¬OBuα are in Ψ, which is a contradiction. �

The partitions resulted by ≡ relationships defined in Γ (set of the MA(DL)2 formulae) is

denoted by ĈΓ, which is defined as follows.

ĈΓ = {[C]Γ| C ∈ C}

[C]Γ = {C ′| C ≡ C ′ ∈ Γ∗ ∧ C,C ′ ∈ C}

Note that in the above definition of each partition [C]Γ, we used Γ∗ instead of Γ. It is due to

that fact that Γ∗ is closed under inference and includes all the equivalent concepts of each

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 70

concept C.

By the definition of ĈΓ, all the preliminaries for presenting the canonical model are

provided. Note that ĈΓ is used in the definition of ∆C in the canonical model.

Definition 5.2.3 (Canonical Model) Let Γ be a consistent set. By lemma 5.2.1 there

exists a maximal consistent set Γ∗ such that Γ ⊆ Γ∗. The canonical model generated by Γ

is a Kripke structure CM = 〈WC,ΛC,∆C, IC,ΦC〉 where:

(i) WC is defined as the smallest collection of maximal consistent sets such that

• Γ∗ is in WC,

• if w is in WC and α is a formula with ¬OBuα ∈ w, then (w↓uα)∗ is in WC.

Note that each world w ∈ WC is a maximal consistent set obtained through the above

definition.

(ii) ΛC is the mapping function from authorities to a set of binary relations on WC such

that for all authorities u and all wi, wj ∈ WC, 〈wi, wj〉 ∈ ΛC(u) iff for all formulae α,

whenever OBuα ∈ wi, then α ∈ wj.

(iii) ∆C is a non-empty set of objects in which for each concept Ci ∈ ĈΓ, there exists a

unique object ai, and for each instance dj appears in Γ, there exists a unique object aj.

Since we have unique name assumption (UNA) in this logic, two instances cannot refer

to the same object, and thus we should take for each instance a unique object in ∆C.

Note that ∆C at least contains the aforementioned members (and thus it is a non-empty

set) and it may contain other members, too.

(iv) IC is an interpretation function such that at each world w ∈ WC is defined as follows.

Considering the consistency of the formulae existing in Γ and completeness of the proof

theory derived from [136] for the inference of c-formulae and a-formulae, we can claim

that for c-formulae and a-formulae existing in Γ, there is a model (interpretation) J in

ALC for concepts, roles, and instances such that

• Γ ` Ci v Cj iff JCiKJ ⊆ JCjKJ

• Γ ` Ci ≡ Cj iff JCiKJ = JCjKJ

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 71

• Γ ` C(a) iff JaKJ ∈ JCKJ

• Γ ` R(a, b) iff 〈JaKJ , JbKJ〉 ∈ JRKJ

Now, we define the interpretation function IC in each world w ∈ WC by extending the

interpretation function J as follows.

• For each atomic concept Ci, and each role Ri, and each instance ai in Γ, IC is

defined as JCiKICw = JCiKJ , JRiKICw = JRiKJ , and JaiKICw = JaiKJ , respectively.

• For non-atomic complex concepts, IC is defined inductively as mentioned in se-

mantics of Core MA(DL)2 in Section 4.2.2.

• For each n-ary predicate symbol (name) p in the language of Γ, IC is defined as

JpKICw =
⋃

p(C1,...,Cn)∈w

n∏
i=1

JCiKICw .

(v) ΦC is a mapping function that maps each formula to a subset of WC, and is defined as

follows.

• For propositions, it is defined by φC; for each proposition x (appeared in the lan-

guage of Γ) and each w ∈ WC, w ∈ φC(x) iff x ∈ w.

• For T and F, it is defined as ΦC(T) = WC and ΦC(F) = ∅.

• For n-ary predicates on concepts C1, ..., Cn, such as p(C1, ..., Cn), it is defined as

follows:

ΦC(p(C1, ..., Cn)) = {w|
n∏
i=1

JCiKICw ⊆ JpKICw }

• For c-formulae, it is defined as follows:

ΦC(C v C ′) =

W ,if for all w ∈ WC, JCKICw ⊆ JC ′KICw

∅ ,otherwise

ΦC(C ≡ C ′) =

W ,if for all w ∈ WC, JCKICw = JC ′KICw

∅ ,otherwise

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 72

• for a-formulae, it is defined as follows:

ΦC(C(a)) =

W ,if for all w ∈ WC, JaKICw ∈ JCKICw

∅ ,otherwise

ΦC(R(a, b)) =

W ,if for all w ∈ WC, 〈JaKICw , JbKICw 〉 ∈ JRKICw

∅ ,otherwise

• For non-atomic formulae, it is defined inductively similar to function Φ in Section

4.2.2.

In the following, after proving some required properties of the canonical models for com-

pleteness proof, we verify that the defined canonical model is a valid Kripke model of the

Core MA(DL)2 logic.

Lemma 5.2.4 Let Γ be a consistent set and CM = 〈WC,ΛC,∆C, IC,ΦC〉 be a canonical model

generated by Γ. For all w ∈ WC and all formulae α, we have

(i) OBuα ∈ w iff for all w′ ∈ WC, if 〈w,w′〉 ∈ ΛC(u), then α ∈ w′,

(ii) PEuα ∈ w iff there exists w′ ∈ WC such that 〈w,w′〉 ∈ ΛC(u) and α ∈ w′.

Proof. They are proved as follows.

(i) [Only If Part] By the definition of ΛC, OBuα ∈ w implies that for all w′ ∈ WC, if

〈w,w′〉 ∈ ΛC(u), then we have α ∈ w′.

[If Part] We suppose that OBuα 6∈ w. Thus, ¬OBuα ∈ w, and by the definition of w↓uα,

¬α ∈ w↓uα, and since w↓uα⊆ (w↓uα)∗ , thus ¬α ∈ (w↓uα)∗ and α 6∈ (w↓uα)∗. Also, by

the definition of WC, (w↓uα)∗ ∈ WC and by the definition of w↓uα, for all formulae β, if

OBuβ ∈ w, then β ∈ (w↓uα)∗. Thus, by the definition of ΛC, 〈w, (w↓uα)∗〉 ∈ ΛC(u). Hence,

there exists a world w′ = (w↓uα)∗ ∈ WC such that 〈w,w′〉 ∈ ΛC(u) and α 6∈ w′, which

contradicts the hypothesis.

(ii) [Only If Part] If PEuα ∈ w, then by axiom PE-Def and inference rule MP, ¬OBu¬α ∈ w.

By the definition of w ↓uα, we have α ∈ (w ↓uα)∗, and thus, by the definition of WC,

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 73

(w↓uα)∗ ∈ WC. Hence, similar to the previous part, we can conclude that there exists a

world w′ = (w↓uα)∗ ∈ WC, such that 〈w,w′〉 ∈ ΛC(u) and α ∈ w′.

[If Part] Suppose PEuα 6∈ w, then ¬PEuα ∈ w, and thus, OBu¬α ∈ w. By clause (i),

this implies that for all w′ ∈ WC, if 〈w,w′〉 ∈ ΛC(u), then ¬α ∈ w′, i.e., α 6∈ w′, which

contradicts the hypothesis.

�

Lemma 5.2.5 Let Γ be a consistent set and CM = 〈WC,ΛC,∆C, IC,ΦC〉 be a canonical model

generated by Γ. For each c-formula and a-formula α, we have

(i) if Γ ` α, then for each w ∈ WC, we have α ∈ w, and

(ii) if there exists a world w ∈ WC such that α ∈ w, then Γ ` α.

Proof.

(i) If α = C v C ′, by induction on the definition of possible worlds in WC, we prove the

above lemma.

Basis: if Γ ` C v C ′, since maximal consistent set Γ∗ is closed under inference, we have

C v C ′ ∈ Γ∗.

Induction Step: if we suppose that C v C ′ ∈ w and ¬OBuβ ∈ w, then there exists

w′ = (w↓uβ)∗ such that w′ ∈ WC. Now, we prove that C v C ′ ∈ w′.

Since C v C ′ ∈ w, by axiom SOB and inference rule MP, formula OBu(C v C ′) is

inferable. Since w as a maximal consistent set is closed under inference, thus OBu(C v
C ′) ∈ w. Now, if ¬OBuβ ∈ w, then by the definition of WC, we have (w↓uβ)∗ ∈ WC. By

the definition of w↓uβ, because OBu(C v C ′) ∈ w, we have C v C ′ ∈ w↓uβ and thus,

C v C ′ ∈ (w↓uβ)∗.

Hence, by induction, we can prove that for each world w appearing in constructing set

WC, if Γ ` C v C ′, then C v C ′ ∈ w.

The proof of clause (i), for α = C ≡ C ′ is obvious, considering the proof presented for

α = C v C ′. For α = C(a) and α = R(a, b) we have similar proofs. Note that in these

two cases, axioms COB and ROB are used instead of SOB.

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 74

(ii) If α = C v C ′ and there exists w′ = (w↓uβ)∗ ∈ WC such that C v C ′ ∈ w′, then by

the definition w↓uβ, we have w ` OBu(C v C ′) and thus, by inference rule OB-MO and

considering the fact that w (as a maximal consistent set) is closed under inference, we

have C v C ′ ∈ w. Analogously, if we step backward the definition of worlds belonging

to WC, we conclude that C v C ′ ∈ Γ∗ and this means Γ ` C v C ′.

For case α = C ≡ C ′, α = C(a), and α = R(a, b) there exist similar proofs.

�

Lemma 5.2.6 Let Γ be a consistent set and CM = 〈WC,ΛC,∆C, IC,ΦC〉 be a canonical model

generated by Γ, then for each w ∈ WC we have

(i) for each Ci, Cj ∈ C∗, JCiKICw ⊆ JCjKICw iff Ci v Cj ∈ w, and analogously JCiKICw = JCjKICw
iff Ci ≡ Cj ∈ w,

(ii) for each C ∈ C and R ∈ R, JaKICw ∈ JCKICw iff C(a) ∈ w, and analogously 〈JaKICw , JbKICw 〉 ∈
JRKICw iff R(a, b) ∈ w,

(iii) for each n-ary predicate symbol p and concepts Ci ∈ C∗(1 ≤ i ≤ n),
n∏
i=1

JCiKICw ⊆ JpKICw
iff p(C1, ..., Cn) ∈ w.

Proof.

(i, ii) By the definition of IC, JCiKICw ⊆ JCjKICw iff Γ ` Ci v Cj and by Lemma 5.2.5 we have

Γ ` Ci v Cj iff Ci v Cj ∈ w. For other c-formulae and a-formulae, i.e., Ci ≡ Cj, C(a),

R(a, b), we have similar proofs.

(iii) [If Part] We prove that, if p(C1, ..., Cn) ∈ w, then
n∏
i=1

JCiKICw ⊆ JpKICw .

By the definition of IC for n-ary predicates, we have JpKICw =
⋃

p(C1,...,Cn)∈w

n∏
i=1

JCiKICw , and

thus, for every p(C1, ..., Cn) ∈ w, we have
n∏
i=1

JCiKICw ⊆ JpKICw .

[Only If Part] We prove that, if
n∏
i=1

JCiKICw ⊆ JpKICw , then p(C1, ..., Cn) ∈ w.

If
n∏
i=1

JCiKICw = ∅, implies that one of the arguments of the n-ary predicate is ⊥. Thus,

by axiom BP and by the fact that w as a maximal consistent set is closed under

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 75

inference, we have p(...,⊥, ...) ∈ w and the lemma holds. If
n∏
i=1

JCiKICw 6= ∅, for all Ci in

p(C1, ..., Cn), we have Ci 6= ⊥. Now we prove the lemma in two cases n = 1 and n > 1.

For case n = 1, we prove that if JCKICw ⊆ JpKICw , then p(C) ∈ w. By holding JCKICw ⊆
JpKICw , the following cases are possible:

1. There exists Ci ∈ C∗ such that JCKICw ⊆ JCiKICw and p(Ci) ∈ w. By the clause (i) of

this lemma, since JCKICw ⊆ JCiKICw , we conclude that C v Ci ∈ w and by the fact

that p(Ci) ∈ w, axiom SPP, and inference rule MP, we can infer that p(C) ∈ w.

2. There exist C1, ..., Ck ∈ C∗(k > 1) such that JCKICw ⊆
k⋃
i=1

JCiKICw and for every

1 ≤ i ≤ k, we have p(Ci) ∈ w. In this case, since JCKICw ⊆
k⋃
i=1

JCiKICw , by the clause

(i) of this lemma, we have C v
k⊔
i=1

Ci. By the fact that for every 1 ≤ i ≤ k , we

have p(Ci) ∈ w, by axiom UPP and inference rule MP, we infer that p(
k⊔
i=1

Ci) ∈ w.

Hence, since C v
k⊔
i=1

Ci by the previous case we infer that p(C) ∈ w.

For case n > 1, we prove that if
n∏
i=1

JCiKICw ⊆ JpKICw , then p(C1, ..., Cn) ∈ w. By holding

n∏
i=1

JCiKICw ⊆ JpKICw , the following cases are possible:

1. There exist Cj1, ..., Cjn ∈ C∗ such that for every 1 ≤ i ≤ n we have JCjiKICw ⊆ JCiKICw
and p(Cj1, ..., Cjn) ∈ w. Now by axiom SPP and inference rule MP (for every

argument of p), we conclude that p(C1, ..., Cn) ∈ w.

2. For each argument i of p, there exist Ci1, ..., Cik ∈ C∗ such that JCiKICw ⊆
k⋃
j=1

JCijKICw .

Similar to case (2) of n = 1, we conclude that p(C1, ..., Cn) ∈ w.

�

Lemma 5.2.7 (Verification of the Canonical Model) Canonical model CM generated

by Γ set of Core MA(DL)2 formulae, introduced in Definition 5.2.3, is a Kripke model of

MA(DL)2.

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 76

Proof. We prove that the definition of the elements WC,ΛC,∆C, IC, and ΦC of the canonical

model match the definition of the elementsW,Λ,∆, I, and Φ of the Kripke model of MA(DL)2

introduced in Section 4.2.2.

(i) By taking each maximal consistent set as a possible world, it is clear that WC is a set

of possible worlds, and it is non-empty, because at least Γ∗ is in WC.

(ii) By the definition of canonical model, ΛC is a mapping function that maps each authority

to a binary relation on WC. Now, we just need to prove that all relations ΛC(u) are

serial.

By taking one of the axioms (introduced in proof theory of MA(DL)2) as α, and by

inference rule OB-MO, for an arbitrary authority u, we get for all w ∈ WC, OBuα ∈ w
(because w as a maximal consistent set is closed under inference). Hence, by axiom

OB-MD and inference rule MP, we have ¬OBu¬α ∈ w, or PEuα ∈ w. Then, by Lemma

5.2.4, we conclude that there exists w′ ∈ WC, such that 〈w,w′〉 ∈ ΛC(u) and α ∈ w′.
Therefore, for all w ∈ WC, there exists w′ ∈ WC such that 〈w,w′〉 ∈ ΛC(u), i.e., ΛC(u)

is serial.

(iii) It is obvious that the definition of ∆C matches the definition of ∆.

(iv) It is clear that IC satisfies the condition mentioned for I, and the based on the definition

of IC, interpretation of all c-formulae and a-formulae are the same in the all possible

worlds.

(v) It is obvious that ΦC matches the definition of Φ.

�

Lemma 5.2.8 (Coincidence) For each formula α, and for each maximal consistent set

w ∈ WC in a canonical model CM, �CMw α iff α ∈ w.

Proof. We prove the lemma by induction on the length of α.

Basis: if α is an atomic formula

• α = T. Then, �CMw T iff due to the fact that w as a maximal consistent set is closed

under inference, by axiom TAUT, we have T ∈ w. Correspondingly, we have 6�CMw F iff

F 6∈ w.

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 77

• α = xi is a proposition. Then, �CMw xi iff by the definition of truth, w ∈ ΦC(xi) iff by

the definition of ΦC for propositions, w ∈ φC(xi), and by the definition of φC, xi ∈ w.

• α = Ci v Cj is a subsumption relationship. Then, �CMw Ci v Cj iff by the definition

of truth JCiKICw ⊆ JCjKICw iff by clause (i) of Lemma 5.2.6, we have Ci v Cj ∈ w, i.e.,

α ∈ w. If α = Ci ≡ Cj, similarly we have �CMw Ci ≡ Cj iff Ci ≡ Cj ∈ w.

• α = p(C1, ..., Cn) is an n-ary predicate on atomic or complex concepts. Then, �CMw
p(C1, ..., Cn) iff by the definition of truth, w ∈ ΦC(p(C1, ..., Cn)) iff by the definition of

ΦC,
n∏
i=1

JCiKICw ⊆ JpKICw , iff by clause (ii) of Lemma 5.2.6, p(C1, ..., Cn) ∈ w, i.e., α ∈ w.

• α = C(a) is an assertional formula. Then, by the definition of truth, �CMw C(a) iff

JaKICw ∈ JCKICw iff by clause (iii) of Lemma 5.2.6 we have C(a) ∈ w. If α = R(a, b),

similarly we have �CMw R(a, b) iff R(a, b) ∈ w.

Induction Step: suppose that the lemma holds for β with length n, i.e., �CMw β iff β ∈ w.

Now, we prove the lemma for formulae with n+ 1.

• By Proposition 4.2.1, and Lemma 5.2.2 on properties of maximal consistent sets, the

proof of the lemma for inductive cases ¬α, αi ∧ αj, and αi → αj can be shown easily.

• For case α = OBuβ, we have �CMw OBuβ

iff by Proposition 4.2.1, for all w′ ∈ ΛC(u)(w), �CMw′ β

iff by the induction hypothesis, for all w′ ∈ ΛC(u)(w), β ∈ w′

iff by clause (i) of Lemma 5.2.4, we have OBuβ ∈ w.

• For cases α = PEuβ, IMuβ, and GRuβ, we can easily prove by the result of the inductive

cases OBuβ, βi ∧ βj, and ¬β.

�

Lemma 5.2.9 (Model Existence) Let Γ be a set of formulae in Core MA(DL)2. If Γ is

consistent, then Γ is satisfiable.

Proof. Assume CM be a canonical model generated by Γ. Hence, by the definition of WC

we have Γ∗ ∈ WC. By the coincidence lemma, we have �CMΓ∗ α iff α ∈ Γ∗. Since Γ ⊆ Γ∗, we

have �CMΓ∗ α for every formula α in Γ. Thus, for consistent set Γ, we constructed a model, i.e.

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 78

CM, such that for a world, i.e. Γ∗, we have �CMΓ∗ α for every α in Γ. Hence, Γ is satisfiable.

�

Theorem 5.2.1 (Strong Completeness of Core MA(DL)2) Let Γ be a set of formulae

in Core MA(DL)2 and α be a formula in this logic. If Γ � α, then Γ ` α.

Proof. We first prove that the theorem holds iff the model existence lemma holds.

• (strong completeness theorem ⇒ model existence lemma)

Suppose Γ is a consistent set, thus, Γ 0 F. By the strong completeness theorem we

have Γ 2 F. Hence, there exists a model M, and a world w in this model such that

�Mw Γ, that means Γ is satisfiable. Therefore, the model existence lemma holds.

• (model existence lemma ⇒ strong completeness theorem)

Suppose Γ is a set of formulae and α is a formula in Core MA(DL)2 such that Γ � α

and Γ 0 α.

Γ � α holds iff for all worlds w, if �Mw Γ, then �Mw α. By the definition of consistency,

Γ 0 α means Γ ∪ {¬α} is consistent, and by the model existence lemma Γ ∪ {¬α} is

satisfiable, that means there exists a model M and a world w such that �Mw Γ and

�Mw ¬α. This contradicts the hypothesis.

In fact, the strong completeness theorem and the model existence lemma are equivalent. As

is shown in lemma 5.2.9, the model existence lemma holds in Core MA(DL)2, and thus, the

strong completeness theorem holds too. �

Corollary 5.2.1 (Weak Completeness of Core MA(DL)2) Let α be a formula in Core

MA(DL)2. If � α, then ` α. In other words, all valid formulae are provable.

Proof. Suppose Γ = ∅. By strong completeness, we have if ∅ � α, then ∅ ` α. This

immediately concludes that if � α, then ` α. �

5.2.2 Completeness of MA(DL)2[U−] Logic

The discussion on the required conditions for the Λ(ui) relations in Section 4.3.5 shows that

preserving some properties imposes some problems in completeness of the proposed proof

theory. It is shown that the collaboration operator (&) does not preserve the seriality, and

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 79

substituting the seriality with reflexivity (which implies seriality as well), makes the proposed

logic incomplete.

Furthermore, the existence of the collaboration operator (interpreted as the intersection

of worlds relations) results in some problems in having a complete proof theory regarding

Kripke-style semantics. The similar problem in programs dynamic logic (PDL) with intersec-

tion was open for several years [16]. Note that there are many differences between dynamic

logic and MA(DL)2[U−] that deters using the proposed approach for having a complete proof

theory for dynamic logic with intersection in the MA(DL)2[U−] logic1.

By the above discussion, we can conclude that we cannot have a complete proof theory

that satisfies our logical requirements, except that we waive the collaboration composition

from MA(DL)2[U−]. By such a modification in MA(DL)2[U−] (call it MA(DL)2[U−]&−), we reach

a complete logic regarding the presented semantics and proposed proof theory. Although,

the expressive power of the logic is decreased in MA(DL)2[U−]&− , in addition to obtaining

a complete proof theory, we can prove the decidability of MA(DL)2[U−]&− , and leverage the

analytical tableaux method for automated reasoning in real applications.

To prove the completeness of MA(DL)2[U−]&− , we follow the approach presented in the

previous section for Core MA(DL)2. Thus, by preserving the definition of maximal consistent

sets and their properties as well as the definition of Ψ↓uα, we define the canonical model in

this logic as follows.

Definition 5.2.4 (Canonical Model in MA(DL)2[U−]&−) Let Γ be a consistent set. By

Lemma 5.2.1, a maximal consistent set Γ∗ exists such that Γ ⊆ Γ∗. Thus, the canonical

model generated by Γ is a Kripke model CM = 〈WC,ΛC,∆C, JC, IC,ΦC〉 where its all elements

except ΛC are as the same as defined in 5.2.3, and ΛC is defined as:

• ΛC is the mapping function from authorities to a set of binary relations on WC such

that for primitive authorities u ∈ U are defined by λC. For all wi, wj ∈ WC, 〈wi, wj〉 ∈
ΛC(u) iff for all formulae α, whenever OBuα ∈ wi, then α ∈ wj. The definition of

ΛC is extended for composite authorities similar to the one defined in semantics of

MA(DL)2[U−] in Section 4.3.2.

1Some of the main differences are requirement of having the OB-MD and DAI axioms in MA(DL)2[U−], and
philosophical differences between the notion of possible worlds and the accessibility relations in Kripke-style
models of the two logics.

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 80

Regarding the above change in the definition of the canonical model, it is enough to refine

the proof of Lemma 5.2.4 for MA(DL)2[U−]&− . The proof of clause (ii) of this lemma does not

change, thus, we just prove the clause (i) of this lemma in the following.

Proof.[Clause (i) of Lemma 5.2.4]

[Only If Part] We prove it inductively as follows.

Basis (u ∈ U): it is immediately obtained by the definition of ΛC for primitive authorities.

Inductive Step (u ∈ U∗): suppose the lemma holds for composite authorities u1 and u2.

- Case u = (u1|u2): since w as a maximal consistent set is closed under inference, if

OB(u1|u2)α ∈ w, then OBu1α, OBu2α ∈ w. Due to the fact that the lemma holds for u1 and

u2, and ` ((p→ r) ∧ (q → r) ≡ (p ∨ q)→ r), we get ∀w′ ∈ WC, 〈w,w′〉 ∈ ΛC(u1) ∨ (w,w′) ∈
ΛC(u2)→ α ∈ w′.

Since ΛC(u1|u2) = ΛC(u1) ∪ ΛC(u2), the lemma holds for authority u = (u1|u2).

- Case u = (u1 . u2): since w is closed under inference, if OB(u1.u2)α ∈ w, then by axiom

DAD, we have OBu1(OBu2α) ∈ w. By the induction hypothesis, ∀w′ ∈ WC, 〈w,w′〉 ∈ ΛC(u1)→
OBu2α ∈ w′, and also because OBu2α ∈ w′, we have ∀w′′ ∈ WC, 〈w′, w′′〉 ∈ ΛC(u2)→ α ∈ w′′.
Thus, ∀w′ ∈ WC, 〈w,w′〉 ∈ ΛC(u1)→ (∀w′′ ∈ WC, (〈w′, w′′〉 ∈ ΛC(u2)→ α ∈ w′′))
iff ∀w′′,∃w′, 〈w,w′〉 ∈ ΛC(u1)→ (〈w′, w′′〉 ∈ ΛC(u2)→ α ∈ w′′)
iff ∀w′′,∃w′, 〈w,w′〉 ∈ ΛC(u1) ∧ 〈w′, w′′〉 ∈ ΛC(u2)→ α ∈ w′′

iff ∀w′′, 〈w,w′′〉 ∈ ΛC(u1) ◦ ΛC(u2)→ α ∈ w′′

iff ∀w′′, 〈w,w′′〉 ∈ ΛC(u1 . u2)→ α ∈ w′′.
[If Part] We suppose that OBuα 6∈ w. Thus, ¬OBuα ∈ w, and by the definition of w ↓uα,

¬α ∈ w↓uα, and since w↓uα⊆ (w↓uα)∗ , thus ¬α ∈ (w↓uα)∗ and α 6∈ (w↓uα)∗. Also, by the

definition of WC, (w↓uα)∗ ∈ WC and by the definition of w↓uα, for all formulae β, if OBuβ ∈ w,

then β ∈ (w↓uα)∗. Thus, by the definition of ΛC, 〈w, (w↓uα)∗〉 ∈ ΛC(u). Hence, there exists

a world w′ = (w↓uα)∗ ∈ WC such that 〈w,w′〉 ∈ ΛC(u) and α 6∈ w′, which contradicts the

hypothesis. �

The proofs of the other lemmas in MA(DL)2[U−]&−are similar to the ones presented for

Core MA(DL)2. Hence, we have the following theorem.

Theorem 5.2.2 (Strong Completeness of MA(DL)2[U−]&−) MA(DL)2[U−]&− is strongly com-

plete, i.e., if Γ � α, then Γ ` α

Proof. Since the model existence lemma holds, we conclude that strong completeness holds

as well; if Γ � α, then Γ ` α. �

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 81

5.2.3 Completeness of MA(DL)2[−D] Logic

The completeness proof of the MA(DL)2[−D] logic is similar to the completeness proofs of Core

MA(DL)2 and MA(DL)2[U−]&− . Thus, we do not mention the details of the completeness proof

of the MA(DL)2[−D] logic, and just concentrate on the parts that have significant different.

To this aim, at first, we should define Ψ↓u@d
α instead of Ψ↓uα.

Definition 5.2.5 (Ψ↓u@d
α Notation) Let u be an authority, d be a security domain, α be a

formula, and Ψ be a maximal consistent set such that ¬OBu@dα ∈ Ψ. We define a set Ψ↓u@d
α

of formulae as follows:

Ψ↓u@d
α = {β|OBu@dβ ∈ Ψ} ∪ {¬α}

By the above definition, Lemma 5.2.3 is stated by the new notation and proved similar

to the previous one. Now, we can define the canonical model in this logic. For this purpose,

we first define the following partitioning for the equivalent security domains.

D̂Γ = {[d]Γ| d ∈ D ∧ d exists in Γ}

[d]Γ = {d′| d � d′, d′ � d ∈ Γ∗ ∧ d, d′ ∈ D}

Definition 5.2.6 (Canonical Model in MA(DL)2[−D]) Let Γ be a consistent set. By Lemma

5.2.1, there exists a maximal consistent set Γ∗ such that Γ ⊆ Γ∗. The canonical model gener-

ated by Γ is a Kripke structure CM = 〈WC,ΛC,∆C, IC,ΦC,DC, JC〉, where all elements except

ΛC and DC, and JC are defined similar to the ones defined in Definition 5.2.3 and DC and JC

are defined as follows:

• ΛC is a function such that for each u ∈ U and for each wi, wj ∈ WC, we have 〈wi, wj〉 ∈
ΛC(u) iff for each formula α, if OBu@dα ∈ wi and x ∈ J(d), then α ∈ wj.

• DC is the smallest set such that for each [d]Γ ∈ D̂Γ, contains a unique element x.

• JC for all security domains dj existing in [d]Γ is defined as JC(dj) =
⋃

di�dj∈Γ∗
JC(di)∪{x}.

We have lemmas in the MA(DL)2[−D] logic similar to the ones mentioned for the Core

MA(DL)2 logic. Moreover, the following lemma holds in this logic.

Lemma 5.2.10 Let Γ be a consistent set in MA(DL)2[−D] logic and CM = 〈WC,ΛC,∆C, IC,ΦC,DC, JC〉
be a canonical model generated by Γ in this logic. The following statements hold in this logic.

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 82

(i) If Γ ` d � d′, then for each w ∈ WC we have d � d′ ∈ w.

(ii) If there exists a world w ∈ WC such that d � d′ ∈ w, then Γ ` d � d′.

(iii) For each d, d′ ∈ D, we have J(d) ⊆ J(d′) iff d � d′ ∈ w.

Proof. It is similar to the proof of Lemma 5.2.5 and Lemma 5.2.6. Note that in this proof,

we need to use axiom DSO. �

The above lemma is leveraged for verifying of the canonical model and proving the

coincident lemma in MA(DL)2[−D] logic. Now, we can prove the following theorem.

Theorem 5.2.3 (Strong Completeness of MA(DL)2[−D]) The MA(DL)2[−D] logic is strongly

complete, i.e., if Γ � α, then Γ ` α

Proof. Considering the definition of canonical model in this logic and holding the model

existence lemma, we conclude that strong completeness holds as well; if Γ � α, then Γ ` α.

�

5.2.4 Completeness of MA(DL)2[UD] Logic

As mentioned in previous sections, existence of collaboration composition operator (i.e., &

operator) in logic of authorities makes problems in the completeness of the MA(DL)2[U−] logic,

by eliminating it from this logic, we get a complete logic. Hence, similar to the two previous

sections, by integrating the completeness proofs of the MA(DL)2[U−]&−and MA(DL)2[−D] logics,

we conclude that the MA(DL)2[UD]&− logic is strongly complete.

5.3 Decidability

For employing logics in applications, they are supposed to be decidable. Decidability of a

logic has two meanings; decidability of the satisfiability problem, and decidability of the

validity problem. Since these problems can be reduced to each other, usually one of them

is investigated and then, the result is cascaded to other one. In the rest of this section, we

investigate the decidability of the satisfiability problem.

For making MA(DL)2 decidable, some restrictions are considered in designing it, e.g.,

variables over concepts are not taken into account, although, it might be useful for expressing

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 83

some properties in our application. Note that description logic and propositional poly-modal

logic, which are the bases of Core MA(DL)2 are decidable. However, their composition

accompanying with adding n-ary predicates on concepts in Core MA(DL)2, and also adding

logic of authorities and logic of security domains do not guarantee the decidability.

In this section, we prove the decidability of the MA(DL)2 logic family using two ap-

proaches; reducing to the satisfiability problem for two-variable first order logic (FO2), and

constructing finite model using filtering method.

5.3.1 Reduction to the Satisfiability Problem for FO2

One of the approaches to prove the decidability of satisfiability problem for a logic, is to

reduce the problem to satisfiability problem for a known decidable logic. For this purpose,

a function is defined for translating each formula in the first logic to a formula (or a set

of formulae) in the known decidable logic. Then, it is proven that the satisfiability of the

formula in the first logic is equivalent to the satisfiability of the translated formula(e) in the

known decidable logic.

Since description logic and modal logic are reducible to the satisfiability problem for de-

cidable fragments of first-order logic, we considered the same logic for proving the decidability

of the MA(DL)2 logic family. Three different approaches have been taken for extracting its

decidable fragments. Imposing restrictions on quantifier prefix and also on relation and func-

tion symbols (see e.g., [69]), imposing restrictions on the number of variables (see the surveys

by Grädel et al. [70, 71] for different types of two-variable FOL), and imposing restrictions

on the forms of quantification (see e.g., [9] for guarded and loosely guarded fragments of

FOL).

Scott [144] proved that satisfiability in two-variable first-order logic without equality

is decidable (by reducing it to the ∀2∃∗ Godel class without equality). Then, Mortimer

[119] proved that satisfiability in two-variable FOL (denoted by FO2 or L2) with equality is

decidable, too. To prove the decidability of satisfiability in Core MA(DL)2, we reduce it to

the satisfiability problem for FO2. For this purpose, we translate formulae of an MA(DL)2

security knowledge base K into formulae in FO2 in polynomial time by the following steps.

Then, we show that the satisfiability of formula α in the Core MA(DL)2 logic is equivalent

to the satisfiability of ∃w.απ(w) in FO2, where απ(w) is the translation of α at world w.

Moreover, it is proven that the validity of formula α in Core MA(DL)2 is equivalent to the

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 84

validity of ∀w.απ(w) in FO2.

Translation from Core MA(DL)2 to FO2

At first, we define an inductive translation function τ as C 7→ Cτ (y) for atomic and complex

concepts in T B according to the following.

Cτ (y) = C(y), if C ∈ C is an atomic concept

Rτ (x, y) = R(x, y)

(C1 u C2)τ (y) = C1
τ (y) ∧ C2

τ (y)

(C1 t C2)τ (y) = C1
τ (y) ∨ C2

τ (y)

(∀R.C)τ (y) = ∀x.(Rτ (y, x)→ Cτ (x))

(∃R.C)τ (y) = ∃x.(Rτ (y, x) ∧ Cτ (x))

(¬C)τ (y) = ¬Cτ (y)

In fact, the set of objects in ∆ satisfying C(y) construct the JCKIw set which is the interpre-

tation of concept C independent of the possible worlds. Similarly,the set of binary tuples in

∆×∆ satisfying R(x, y) construct the JRKIw set, which is the interpretation of role R inde-

pendent of the world w. Note that if we did not have the independency of the interpretation

of concepts and roles from the possible worlds, we could not prove the decidability of the

Core MA(DL)2 logic by reducing it to FO2.

We define another inductive translation function π as α 7→ απ(x) for formula α in Core

MA(DL)2 according to the following. Note that, the variable x in the translation can be

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 85

considered as a representative of a possible world.

(pi)
π(x) = pi(x), if pi ∈ P0 is a proposition

(T)π(x) = True (F)π(x) = False

(α1 ∧ α2)π(x) = (α1
π(x) ∧ α2

π(x))

(α1 ∨ α2)π(x) = (α1
π(x) ∨ α2

π(x))

(α1 → α2)π(x) = (α1
π(x)→ α2

π(x))

(¬α)π(x) = ¬απ(x)

(C1 v C2)π(x) = ∀y.(C1
τ (y)→ C2

τ (y))

(C1 ≡ C2)π(x) = (C1 v C2)π(x) ∧ (C2 v C1)π(x) = ∀y.(C1
τ (y)↔ C2

τ (y))

(p(C1, ..., Cn))π(x) = ∀y.(C1
τ (y)→ p

(−,C2,...,Cn)
(y, x)) ∧ ... ∧ ∀y.(Cnτ (y)→ p

(C1,...,Cn−1,−)
(y, x))

(OBuα)π(x) = ∀y.(Euρ(x, y)→ απ(y))

(PEuα)π(x) = ∃y.(Euρ(x, y) ∧ απ(y))

(IMuα)π(x) = ∀y.(Euρ(x, y)→ ¬απ(y))

(C(a))π(x) = Cτ (a)

(R(a, b))π(x) = Rτ (a, b)

Eu
ρ(x, y) = Eu(x, y), if u ∈ U is a primitive authority

In translation π, the following gists should be considered:

• In translation of t-subformulae C1 v C2 and C1 ≡ C2, the variable x on the left is not

appeared in the translation. This is resulted from the assumption about the ontology

(as a specification of a conceptualization[73]) where the interpretation of concepts and

roles in different possible worlds are the same and thus their translation is independent

of variable x. Having such an assumption and removing variable x in this step, prevents

increasing the number of variables in the translation of predicates on concepts and also

modal formulae defined over them.

• Each n-ary predicate on concepts is converted to a set of binary predicates with two

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 86

variables. Due to the subsumption relation between the concepts occurring in predi-

cates, after translating predicates on concepts to binary ones in FO2, we must append

certain formulae (resulted from the semantics of concepts) to represent the relationship

between the binary predicates with the same name but different indexes. For exam-

ple, the π translation of p(C1, C2) results in appearing a predicate p
(−,C2)

(y, x) and

p
(C1,−)

(y, x). Existence of C3 v C1 results in having p
(C1,−)

(y, x)→ p
(C3,−)

(y, x) seman-

tically. Thus, we require to append such relationships in a separate step as follows.

For each subformula2 ∀y.(C1(y)→ C2(y)) and predicate p
(...,C1,...)

(y, x) or p
(...,C2,...)

(y, x),

produced during the above translation step, the following formula must be appended.

∀y.(C1(y)→ C2(y))→ ∀y.(p
(...,C2,...)

(y, x)→ p
(...,C1,...)

(y, x))

• Binary predicate Eu
ρ(x, y) shows the binary relation between the possible world from

authority u’s viewpoint. ρ is a translation function that depends on authority u. Since

in Core MA(DL)2, only primitive (atomic) authorities exist, Eu
ρ(x, y) is translated to

Eu(x, y). Definition of ρ for composite (non-atomic) authorities is presented in next

section, when describing the decidability of MA(DL)2[U−].

After translating formulae in Core MA(DL)2 to formulae in FO2, we discuss the relationship

between the satisfying model in Core MA(DL)2 and satisfying model in FO2, and also the

relationships between the satisfiability problem for Core MA(DL)2 and FO2. The remained

gist that should be considered in this stage is the effect of seriality property of relations

Λ(u) (and other properties which are required in the extensions of the Core MA(DL)2 logic)

on the reduction process. As mentioned in the rest, this property (and other similar ones)

are taken into account by adding some conditional subformulae. For example, for seriality,

subformula
∧
u∈U
∀x.∃y.Eu(x, y) is added to the translated formula conditionally. In this way, a

formula α is satisfiable in MA(DL)2 if
∧
u∈U
∀x.∃y.Eu(x, y)→ (∃x.απ(x)) is satisfiable in FO2.

Definition 5.3.1 Let M = 〈W,Λ,∆, I,Φ〉 be a Kripke model in Core MA(DL)2. which

satisfies formula α. In other words, there exist a world w ∈ W , such that �Mw α. We

construct a model Mπ in FO2 and prove that M satisfies α if and only if Mπ satisfies

∃w.απ(w). M† = 〈D†, I†〉, where D† is a universe of discourse, I† is an interpretation

function of propositions, predicates, and terms (names of individuals). They are defined

2Note that C1 and C2 in predicate p are atomic and hence C1
τ = C1 and C2

τ = C2

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 87

formally as follows:

D† = W ∪∆

I†(pi) = Φ(pi), pi is a proposition

I†(Eui) = Λ(ui)

I†(p
(C1,...,Ci−1,−,Ci+1,...,Cn)

) =
⋃
w∈W

{〈ai, w〉|

for all a1 ∈ JC1KIw, ..., ai−1 ∈ JCi−1KIw, ai+1 ∈ JCi+1KIw, ..., an ∈ JCnKIw,

〈a1, ..., ai−1, ai, ai+1..., an〉 ∈ JpKIw}

I†(Ci) = JCiKIw, for an arbitrary w

I†(Ri) = JRiKIw, for an arbitrary w

I†(ai) = JaiKIw, for an arbitrary w

The interpretation of each predicate pi, which is produced from the π translation of

proposition pi, is the set of possible worlds in modelM, where pi is true. The interpretation

of each predicate Eui in the above definition, is the binary relation Λ(uI) on possible worlds

W , which is a subset of universe of discourse D†. The interpretation of each predicate

p
C1,..,Ci−1,−,Ci+1,...,Cn

is the union of vertical projection of interpretation of predicate p in model

M in worlds w in combination with w. The interpretation of predicate Ci is the set of objects

in the interpretation of Ci. Note that since the interpretation of concepts in different worlds

is the same, for all w ∈ W in modelM the sets JCiKIw are the same and they are independent

of the worlds w. The similar justifications exist for the interpretation of Ri and ai.

Proposition 5.3.1 Let α be a formula in Core MA(DL)2. α is satisfiable in model M of

Core MA(DL)2 logic if and only if ∃w.απ(w) is satisfiable in model M† of FO2 logic.

Proof. We prove the proposition by induction on the length of formula α.

Basis: α is an atomic formula. We prove for p(C1, ..., Cn) and C1 v C2 as an example. Other

cases including C1 ≡ C2, C(a), R(a, b), and pi (as a proposition) are easily proved following

the definition of M†.

• α = p(C1, ..., Cn), an n-ary predicate.

M satisfies p(C1, ..., Cn)

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 88

iff there exists a world w, �Mw p(C1, ..., Cn)

iff there exists w, such that w ∈ Φ(p(C1, ..., Cn)) and thus
n∏
i=1

JCiKIw ⊆ JpKIw
iff there exists w, such that

(for all a1, (if a1 ∈ JC1KIw, then for all a2 ∈ JC2KIw, ..., an ∈ JCnKIw, 〈a1, ..., an〉 ∈ JpKIw)

and ... and

(for all an, (if an ∈ JCnKIw, then for all a1 ∈ JC1KIw, ..., an−1 ∈ JCn−1KIw, 〈a1, ..., an〉 ∈
JpKIw)

iff there exists w, such that

(for all a1, if a1 ∈ I†(C1), then 〈a1, w〉 ∈ I†(p
(−,C2,...,Cn)

)), and ... and

(for all an, if an ∈ I†(Cn), then 〈an, w〉 ∈ I†(p
(C1,...,Cn−1,−)

))

iff �M
† ∃w.[∀y.(C1

τ (y)→ p
(−,C2,...,Cn)

(y, w)) ∧ ... ∧ ∀y.(Cnτ (y)→ p
(C1,...,Cn−1,−)

(y, w))]

iff �M
† ∃w.(p(C1, ..., Cn))π(w)

• α = C1 v C2, a subsumption relationship. Without scarifying generality, we suppose

that C1 and C2 are atomic concepts (i.e., C1, C2 ∈ C).
M satisfies C1 v C2

iff there exists a world w, such that �Mw C1 v C2

iff there exists w, such that w ∈ Φ(C1 v C2) and thus JC1KIw ⊆ JC2KIw
iff there exists w, such that for all y, if y ∈ JC1KIw, then y ∈ JC2KIw
iff there exists w, such that for all y, if y ∈ I†(C1), then y ∈ I†(C2)

iff �M
† ∃w.(∀y.C1

τ (y)→ C2
τ (y)) iff �M

π ∃w.(C1 v C2)π(w)

Induction Step: we suppose that the proposition holds for β, and prove for α = OBuβ as

a sample. Other cases including α = α1 ∗ α2 (∗ is ∧,∨, or →), α = ¬β, α = PEuβ, and

α = IMuβ are proved similarly.

• M satisfies α = OBuβ

iff by proposition 4.2.1, there exists a world w, �Mw OBuβ

iff there exists w, for all w′, if 〈w,w′〉 ∈ Λ(u), then �Mw′ β

iff there exists w, for all w′, if 〈w,w′〉 ∈ I†(Eu), then �M
π
βπ(w′)

iff �M
† ∃w.(∀w′.Eu(w,w

′)→ βπ(w′)) iff �M
† ∃w.(OBuβ)π(w)

�

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 89

Definition 5.3.2 Let N = 〈D, I〉 be a model in FO2 which satisfies the conditional formula

∀.∃.y.Eu(x, y) for all ui in the language. A Kripke model N]〈W],Λ],∆], I],Φ]〉 in Core

MA(DL)2 is defined as follows.

W] ⊆ D

∆] ⊆ D

Φ](pi) = I(pi), pi is a proposition

Λ](ui) = I(Eui)

JpKI
]

w = {〈a1, ..., an〉| 〈a1, w〉 ∈ I(p
(−,C2,...,Cn)

) ∧ ... ∧ 〈an, w〉 ∈ I(p
(C1,...,Cn−1,−)

))}, for all w ∈ W

JCiKI
]

w = I(Ci), for all w ∈ W]

JRiKI
]

w = I(Ri), for all w ∈ W]

JaiKI
]

w = I(ai), for all w ∈ W]

Proposition 5.3.2 Let α be a formula in Core MA(DL)2. If N is a model of FO2 such that

�N ∀x.∃y.Eui(x, y) for all authorities ui existing in formula α, then α in model N] of Core

MA(DL)2 is satisfiable if and only if ∃w.απ(w) is satisfiable in model N of FO2.

Proof. Satisfying the condition ∀x.∃y.Eui(x, y) for each authority ui concludes that N] is

a valid model for Core MA(DL)2 where the seriality of relations Λ(ui) hold. We can easily

prove the proposition by induction on the structure of formula α, analogous to the proof of

proposition 5.3.1. �

Definition 5.3.3 (Size of Formula) Size of a formula is equal to the number of nodes

in its parse tree, i.e., the number of occurrences of logical connectives, quantifiers, modal

operators, operators, and atomic symbols.

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 90

More precise, size of a formula in Core MA(DL)2 is calculated inductively as follows:

|C1 v C2| = |C1 ≡ C2| = |C1|+ |C2|+ 1

|C1 t C2| = |C1 u C2| = |C1|+ |C2|+ 1

|∀R.C| = |∃R.C| = |R|+ |C|+ 1

|¬C| = |C|+ 1

|C| = 1 C ∈ C

|R| = 1 R ∈ R

|C(a)| = |C|+ 1 a ∈ I

|R(a, b)| = |R|+ 2 a, b ∈ I

|p| = |T| = |F| = 1 p is a proposition

|¬α| = |α|+ 1

|p(C1, ..., Cn)| =
n∑
i=1

|Ci|+ 1

|α1 ∗ α2| = |α1|+ |α2|+ 1 ∗ ∈ {∧,∨,→,↔}

|dsuα| = |α|+ |u|+ 1 ds ∈ {OB, PE, IM, GR}

|u| = 1 u ∈ U

Following the above definition, the size of an SKB is the aggregation of the size of its formulae.

Lemma 5.3.1 Let K be an MA(DL)2 SKB and Kπ be the result of π translation of K in

FO2. Then, we have

(i) Kπ has size O(|K|).

(ii) Kπ is constructed from K in polynomial time.

(iii) K �M α holds in Core MA(DL)2 if and only if ∀w.Kπ(w) �M
† ∃w.απ(w) holds in FO2.

(iv)
∧
ui

∀x.∃y.Eui(x, y)∧∀w.Kπ(w) �N ∃w.απ(w) holds in FO2 if and only if K �N] holds in

Core MA(DL)2.

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 91

Proof.

(i) In translation of formulae of K, based on the definition of translation functions and

also definition 5.3.3 of the size of formula, the resulted formulae has a size of linear of

|K|. The formulae added to Kπ (due to the properties of Kripke structure) keeps the

size of linear of |K|, because:

1. For each Eu exists in Kπ, we add ∀x.∃y.Eu(x, y). The number of them is at most

|K|.

2. For each translated subsumption relationship (e.g., ∀y.C1(y) → C2
τ (y)) and every

related binary predicate (e.g., p
(...,C1,...)

(x, y)) resulted from n-ary predicates on con-

cepts, an aforementioned rule with constant size is added to Kπ. Since, the number

of required rules are less than |K|, |Kπ| remains linear order of |K|.

(ii) The proof of item (i) shows that π translation of formulae in K takes O(|K|) time.

Adding extra formulae resulted from the properties of Kripke structure semantics,

takes O(|K|2), because in the second case (specified above), searching for the binary

predicates for each formula resulted from the translation of subsumption relationships,

takes O(|K|2). Hence, the time complexity of translation K to Kπ takes O(|K|2) that

is a polynomial order of |K|.

(iii) K �M α is equal to �M K → α. By Lemma 5.3.1 we have �M K → α iff �M
†

∃w.(K → α)π(w) or in other words �M
† ∀w.Kπ(w) → ∃w.απ(w), which holds iff

∀w.Kπ(w) �M
† ∃w.απ(w).

(iv) By proposition 5.3.2, we can easily prove analogous to the proof of (iii).

�

Theorem 5.3.1 (Decidability of Core MA(DL)2) The satisfiability problem for the Core

MA(DL)2 logic is decidable.

Proof. By items (ii) to (iv) of Lemma 5.3.1, the satisfiability problem for Core MA(DL)2 is

reducible to the satisfiability problem for FO2 in polynomial time. Since FO2 is decidable

[71], it is obvious that the satisfiability problem for the Core MA(DL)2 logic (with empty or

non-empty SKB) is decidable as well. This concludes that validity problem for this logic is

decidable, too. �

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 92

5.3.2 Decidability of MA(DL)2[U−] by Reduction

Supplementing MA(DL)2 with logic of composite authorities, enables us to have modal for-

mulae of the form dsuα where u is a composite authority. Thus, to reduce the satisfiability

problem from MA(DL)2[U−] to FO2, we require that the translation function ρ (used in defi-

nition of π translation function) to be defined as follows.

(OBuα)π(x) = ∀y.(Euρ(x, y)→ απ(y))

Eu
ρ(x, y) = Eu(x, y), if u ∈ U is a primitive authority

E(u1|u2)
ρ(x, y) = Eu1

ρ(x, y) ∨ Eu2

ρ(x, y)

E(u1&u2)
ρ(x, y) = Eu1

ρ(x, y) ∧ Eu2

ρ(x, y)

E(u1.u2)
ρ(x, y) = ∃z. (Eu1

ρ(x, z) ∧ Eu2

ρ(z, y))

In the above definition, translation of (u1 . u2) requires three variables. This is resulted

from the fact that composition of two relations (i.e., Λ(u1) ◦ Λ(u2)) is not definable from

relations (i.e., Λ(u1) and Λ(u2)) in FO2 [71]. However, in our case we can limit the number

of variables to two, by rewriting the translation of (OB(u1.u2)α)π(x) as follows:

(OB(u1.u2)α)π(x) =

∀y.((∃z.Eu1

ρ(x, z) ∧ Eu2

ρ(z, y))→ απ(y)) =

∀z.(Eu1

ρ(x, z)→ ∀y.(Eu2

ρ(z, y)→ απ(y)))

By replacing z with y and concurrently reusing variable x instead of y (because x is not free

or bound in the subformula) in the above formula we obtain the following:

(OB(u1.u2)α)π(x) = ∀y.(Eu1

ρ(x, y)→ ∀x.(Eu2

ρ(y, x)→ απ(x)))

Following the above discussion, we require to convert the π translation of OB(u1|u2)α and

OB(u1&u2)α to the combination of formulae in canonical form ∀y.(Euρ(x, y) → βπ(y)). It is

convenient to show that the π translation of OB(u1|u2)α can be written in the canonical form

as follows:

(OB(u1|u2)α)π(x) = (∀y.(Eu1

ρ(x, y)→ απ(y))) ∧ (∀y.(Eu2

ρ(x, y)→ απ(y)))

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 93

However, we cannot convert the π translation of OB(u1&u2)α to the canonical form. Thus,

we cannot translate the composition of . and & into FO2 because we require at least three

variables for this purpose. Note that, this does not mean that their composition makes the

logic undecidable, because there might exist other approaches to prove its decidability (e.g.,

we might prove that it has the finite model property and hence it is decidable).

Following the above discussion, we cannot prove the decidability of MA(DL)2[U−] using

the reduction approach; however, we can prove the decidability of a restricted version of this

logic, where the composition of . and & operators in defining composite authorities is not

allowed.

Theorem 5.3.2 (Decidability of Restricted MA(DL)2[U−]) The satisfiability problem for

restricted version of MA(DL)2[U−], where the composition of . and & operators in defining

composite authorities is not allowed, is decidable.

Proof. By extending the definition of 5.3.3 by the following equation, the definition of the

size of formula in MA(DL)2[U−] is obtained.

|u1#u2| = |u1|+ |u2|+ 1, # ∈ {&, |, .}

By removing the seriality condition on relations between the possible worlds, and proving

propositions 5.3.1 and 5.3.2, and also proving the items (i) to (iv) of Lemma 5.3.1 in restricted

MA(DL)2[U−], we can conclude that this logic is decidable. �

By the discussion presented in Section 4.3.5, the seriality condition cannot be preserved

in collaborative composition (by & operator). This operator also makes the presented proof

theory incomplete. Thus, in practice it is better to remove this operator to have a complete

and decidable logic; based on theorem 5.2.2 and the following decidability theorem.

Theorem 5.3.3 (Decidability of MA(DL)2[U−]&−) The satisfiability problem for MA(DL)2[U−]&−

is decidable.

Proof. It is similar to the proof of theorem 5.3.2. �

5.3.3 Decidability of MA(DL)2[−D] by Reduction

For translating the formulae in the MA(DL)2[−D] logic, we just require to change the definition

of translation function π for the modal formulae as follows.

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 94

(OBu@dα)π(x) = ∀z.d(z)→ (∀y.(Euρ(z, x, y)→ απ(y)))

Since D is finite and the domain of variable z is limited to set D. Thus, we can eliminate

variable z and replace z with the elements of D. In this way, we can replace each predicate

Eu(z, x, y) with predicates of the form Eu,z(x, y) with two variables, and also replace each

predicate d(z) with a set of propositions dz. Regarding the above discussion, the π translation

of the modal formulae is as follows.

(OBu@dα)π(x) =
∧
z∈D

∀y.(dz → (Eu,z
ρ(x, y)→ απ(y)))

(PEu@dα)π(x) =
∨
z∈D

∃y.(dz ∧ (Eu,z
ρ(x, y) ∧ απ(y))

(IMu@dα)π(x) =
∧
z∈D

∀y.(dz → (Eu,z
ρ(x, y)→ ¬απ(y)))

The translation of subdomain relationship d � d′ is defined as follows:

(d � d′)π(x) =
∧
z∈D

(dz → d′z)

Now, we need to change definitions 5.3.1 and 5.3.2 as follows.

Definition 5.3.4 Let M = 〈W,Λ,∆, I,Φ,D, J〉 be a Kripke model of MA(DL)2[−D]. FO2

model M† = 〈D†, I†〉 is defined similar to definition 5.3.1 with the following changes.

D† = W ∪∆ ∪ D

I†(Eu,z) = Λ(u)(z)

I†(dz) =

1, if z ∈ J(d)

0, if 6∈ J(d)
d ∈ D is a security domain

Definition 5.3.5 Let N = 〈D, I〉 be a model of FO2 that satisfies conditional formula

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 95

∀x.∃y.Eu(x, y). Definition of model N] = 〈W],Λ],∆], I],Φ],D], J]〉 of MA(DL)2[−D] is simi-

lar to definition 5.3.2 with the following changes.

D] ⊆ D

Λ](u)(z) = I(Eu,z)

J](d) = {z| I(dz) = 1}

Theorem 5.3.4 (Decidability of MA(DL)2[−D]) The satisfiability problem for the MA(DL)2[−D]

logic is decidable.

Proof. By extending definition 5.3.3 by the following equation, the definition of the size of

formula in MA(DL)2[−D] is obtained.

|dsu@dα| = |α|+ |u|+ |d|+ 1 ds ∈ {OB, PE, IM, GR}

|d| = 1 d ∈ D

By proving propositions 5.3.1 and 5.3.2, and also proving the items (i) to (iv) of Lemma 5.3.1

in MA(DL)2[−D], we can conclude that this logic with the finite security domains is decidable.

�

5.3.4 The Finite Model Property of MA(DL)2[UD]

A logic has the finite model property (FMP) if and only if every satisfiable formula in the

logic is satisfiable in a finite model [29]. If L is finitely axiomatizable and has the finite

model property, then it is decidable (Theorem 8.5 in [81]).

To prove that the MA(DL)2 logic family has the finite model property, we use the filtration

method, which is the most widely used method to prove this property in modal logics.

In the filtration method, the main idea is constructing the finite model w.r.t a given

formula α in the logic (here MA(DL)2[UD]) in the following manner. Given a formula α in

MA(DL)2[UD] and a modelM satisfying α, we construct a finite modelMα satisfying α . To

this aim, we define the closure of formula α (denoted by cls(α)) as a set of its subformulae.

The closure set cls(α) partitions the set of worlds W inM to a finite number of equivalent

classes in which each class is satisfying the same subset of cls(α).

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 96

Definition 5.3.6 (Closure) Given a formula α in MA(DL)2[UD], the closure of α, denoted

by cls(α), is the smallest set of formulae that is closed under subformula relation.

In a more precise way, cls(α) in the above definition is obtained by the following rules:

1. α ∈ cls(α)

2. if α1 ∗ α2 ∈ cls(α), then α1, α2 ∈ cls(α); where ∗ ∈ {∧,∨,→,↔}

3. if ¬α1 ∈ cls(α), then α1 ∈ cls(α)

4. if dsu@dα1 ∈ cls(α), where ds ∈ {OB, PE, IM, GR} and u ∈ U∗, then α1 ∈ cls(α)

Lemma 5.3.2 If cls(α) is the closure of formula α, then cls(α) is finite.

Proof. It is clear that in all the rules introduced for calculating cls(α), the size of the

formulae added by the right side is less than the size of formulae on the left side. Since the

number of rules are finite, and the size of formula α is finite too, the number of formulae

added to set cls(α) is also finite. Thus, set cls(α) is finite. �

Definition 5.3.7 (Equivalence Relation ≈Γ) Let Γ be a finite set of formulae in MA(DL)2[UD].

The equivalence relation ≈Γ on worlds W in model M is defined as w ≈Γ w
′ if and only if

for all α ∈ Γ, we have �Mw α if and only if �Mw′ α.

Following the definition of ≈Γ, the equivalence class of a world w w.r.t. ≈Γ is defined as

[w]Γ = {w′ ∈ W |w ≈Γ w
′}.

Definition 5.3.8 (Filtration of a Model) Given a model M = 〈W,Λ,∆, I,Φ,D, J〉 and

a set of formulae Γ in MA(DL)2[UD], a modelMΓ = 〈WΓ,ΛΓ,∆Γ, IΓ,ΦΓ,DΓ, JΓ〉 is a filtration

of M w.r.t. Γ if for every α ∈ Γ and w ∈ W , we have �Mw α if and only if �MΓ

[w]Γ
α.

We define a model MΓ as follows and prove that it is a filtration of M w.r.t. Γ.

Definition 5.3.9 If α is a formula in MA(DL)2[UD] and Γ = cls(α), then model MΓ =

〈WΓ,ΛΓ,∆Γ, IΓ,ΦΓ,DΓ, JΓ〉 is defined as follows:

• WΓ = {[w]Γ|w ∈ W}, it is obvious that if Γ is finite, then WΓ is finite too.

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 97

• ΛΓ(u)(z) = {〈[w]Γ, [w
′]Γ〉|〈w,w′〉 ∈ Λ(u)(z)}, u ∈ U

• ∆Γ = ∆

• IΓ = I, i.e., JσKIΓ[w]Γ
= JσKIw, JCKIΓ[w]Γ

= JCKIw, JRKIΓ[w]Γ
= JRKIw, JaKIΓ[w]Γ

= JaKIw, JpKIΓ[w]Γ
=

JpKIw

• ΦΓ(p) =

{[w]Γ|w ∈ Φ(p)} , if p is a proposition and p ∈ Γ;

∅ , if p is a proposition and p 6∈ Γ.

• DΓ = D

• JΓ = J

In the above definition, ΛΓ(u)(z) is defined for primitive authorities (i.e., u ∈ U). In the rest,

in Lemma 5.3.4, we get the definition of ΛΓ(u)(z) for composite authorities (i.e., u ∈ U∗).
Also, interpretation function ΦΓ is only defined for propositions. The definition of this

function for other formulae can be obtained from the definition of other elements of the

model (see the proof of Theorem 5.3.5).

Lemma 5.3.3 For every C ∈ C∗, we have JCKIw = JCKIΓ[w]Γ
.

Proof. It is easy to prove. For example, for C1 u C2 and ∀R.C, we have

JC1 u C2KIw = JC1KIw ∩ JC2KIw = JC1KIΓ[w]Γ
∩ JC2KIΓ[w]Γ

= JC1 u C2KIΓ[w]Γ

J∀R.CKIw = {a|∀b, 〈a, b〉 ∈ JRKIw → b ∈ JCKIw} = {a|∀b, 〈a, b〉 ∈ JRKIΓ[w]Γ
→ b ∈ JCKIΓ[w]Γ

} = J∀R.CKIΓ[w]Γ

�

Lemma 5.3.4 Given u ∈ U∗, if 〈w,w′〉 ∈ Λ(u)(z), then 〈[w]Γ, [w
′]Γ〉 ∈ ΛΓ(u)(z).

Proof. We prove by induction on the structure of composite authority u.

Basis: By the definition of ΛΓ, the lemma holds for primitive authorities (u ∈ U).

Induction Step: Suppose that the lemma holds for u1, u2 ∈ U∗. Now, we prove that it holds

for different compositions of u1 and u2 as follows.

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 98

• If u = (u1|u2), then 〈w,w′〉 ∈ Λ(u1|u2)(z), iff 〈w,w′〉 ∈ Λ(u1)(z) ∪ Λ(u2)(z), and thus,

〈w,w′〉 ∈ Λ(u1)(z) or 〈w,w′〉 ∈ Λ(u2)(z). By the induction assumption, 〈[w]Γ, [w
′]Γ〉 ∈

ΛΓ(u1)(z) or 〈[w]Γ, [w
′]Γ〉 ∈ ΛΓ(u2)(z), and hence, 〈[w]Γ, [w

′]Γ〉 ∈ ΛΓ(u1)(z)∪ΛΓ(u2)(z).

Thus, we have 〈[w]Γ, [w
′]Γ〉 ∈ ΛΓ(u1|u2)(z).

• If u = (u1&u2), the proof is analogous to case u = (u1|u2).

• If u = (u1 . u2), then 〈w,w′〉 ∈ Λ(u1 . u2)(z) iff 〈w,w′〉 ∈ Λ(u1)(z) ◦ Λ(u2)(z), and

thus there exists w′′ ∈ W , 〈w,w′′〉 ∈ Λ(u1)(z) and 〈w′′, w′〉 ∈ Λ(u2)(z), implies that

there exists w′′ ∈ W , 〈[w]Γ, [w
′′]Γ〉 ∈ ΛΓ(u1)(z) and 〈[w′′]Γ, [w′]Γ〉 ∈ ΛΓ(u1)(z). Thus,

there exists l ∈ W , 〈[w]Γ, l〉 ∈ ΛΓ(u1)(z) and 〈l, [w′]Γ〉 ∈ ΛΓ(u2)(z), that concludes

〈[w]Γ, [w
′]Γ〉 ∈ ΛΓ(u1)(z) ◦ ΛΓ(u2)(z), and hence 〈[w]Γ, [w

′]Γ〉 ∈ ΛΓ(u1 . u2)(z).

�

Theorem 5.3.5 (Filtration) If α is a formula in MA(DL)2[UD] and Γ = cls(α), then model

MΓ (as defined in 5.3.9) is a filtration of model M w.r.t. Γ.

Proof. We show for all β ∈ Γ, �Mw β if and only if �MΓ

[w]Γ
. We prove it by induction on the

structure of formula β as follows.

Basis: Suppose that β ∈ Γ and β is an atomic formula. we have the following cases:

• If β = p is a proposition, then �Mw p iff w ∈ Φ(p) iff by the definition of MΓ, [w]Γ ∈
ΦΓ(p) iff �MΓ

[w]Γ
p.

• If β = p(C1, ..., Cn) is an n-ary predicate, then �Mw p(C1, ..., Cn) iff w ∈ Φ(p(C1, ..., Cn))

iff by the definition of Φ in semantics,
n∏
i=1

JCiKIw ⊆ JpKIw iff by the definition of MΓ,

n∏
i=1

JCiKIΓ[w]Γ
⊆ JpKIΓ[w]Γ

iff by definition of ΦΓ in semantics, [w]Γ ∈ ΦΓ(p(C1, ..., Cn)) iff

�MΓ

[w]Γ
p(C1, ..., Cn).

• If β = C1 v C2 is a subsumption relationship, then JC1KIw ⊆ JC2KIw iff by Lemma 5.3.3,

JC1KIΓ[w]Γ
⊆ JC2KIΓ[w]Γ

iff �MΓ

[w]Γ
C1 v C2.

• If β = C1 ≡ C2 is a definition, then the proof is analogous to case β = C1 v C2.

• If β = C(a) is a concept assertional formula, then �Mw C(a) iff w ∈ Φ(C(a)) iff

JaKIw ∈ JCKIw iff by the definition of MΓ, JaKIΓ[w]Γ
∈ JCKIΓ[w]Γ

iff �MΓ

[w]Γ
C(a).

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 99

• If β = R(a, b) is a role assertional formula, then the proof is similar to case β = C(a).

• If d1 � d2 is a subdomain relationship. Since JΓ = J and regarding the definition of

subdomain relation, we can easily prove that if �Mw d1 � d2, then �MΓ

[w]Γ
d1 � d2.

Induction Step: We suppose that the theorem holds for formulae β1, β2 ∈ Γ.

• If β = β1 ∧ β2, then �Mw β1 ∧ β2 iff by proposition 4.2.1, �Mw β1 and �Mw β2 iff by the

induction hypothesis �MΓ

[w]Γ
β1 and �MΓ

[w]Γ
β2 iff �MΓ

[w]Γ
β1 ∧ β2.

• We have the proof similar to case β = β1 ∧ β2 for cases β = β1 ∨ β2, β = β1 → β2, and

β = β1 ↔ β2.

• If β = ¬β1, then �Mw ¬β1 iff 6�Mw β1 iff by the induction assumption 6�MΓ

[w]Γ
β1 iff �MΓ

[w]Γ
β.

• If β = OBu@dβ1, where u ∈ U∗ we have the following proof.

[If Part] Since, OBu@dβ1 ∈ Γ and �Mw OBuβ1, by the definition of ≈Γ, for all w1 ∈ [w]Γ, we

have �Mw1
OBu@dβ1. In other words, for each z ∈ J(d), ∀x ∈ [w]Γ.∀y. if 〈x, y〉 ∈ Λ(u)(z),

then �My OBuβ1.

Also, for each z ∈ JΓ(d) and each l ∈ WΓ, if 〈[w]Γ, l〉 ∈ ΛΓ(u)(z), by the definition

of ΛΓ and Lemma 5.3.4, we have ∃x, y ∈ W. x ∈ [w]Γ ∧ y ∈ l ∧ 〈x, y〉 ∈ Λ(u)(z) and

following the previous paragraph, we get �My OBu@dβ1, which holds if and only if by

the induction hypothesis, �MΓ

[y]Γ
β1 that is equals to �MΓ

l β1.

Thus, for each z ∈ J(d), for all l ∈ WΓ, if 〈[w]Γ, l〉 ∈ ΛΓ(u)(z), then �MΓ
l β1, and hence,

�MΓ

[w]Γ
OBu@dβ1.

[Only If Part] For each z ∈ J(d) and all w′ ∈ WΓ, if 〈w,w′〉 ∈ Λ(u)(z), then by

the definition of ΛΓ, we have 〈[w]Γ, [w
′]Γ〉 ∈ ΛΓ(u)(z), and by the assumption that

�MΓ

[w]Γ
OBu@dβ1 (which means for all l ∈ WΓ, if 〈[w]Γ, l〉 ∈ ΛΓ(u)(z), then �MΓ

l β1) we

have �MΓ

[w′]Γ
β1, which holds if and only if by the induction hypothesis, we have �Mw′ β1.

Thus, we proved that for each z ∈ J(d) (regarding to the fact that JΓ = J) and all

w′ ∈ W , if 〈w,w′〉 ∈ Λ(u)(z), then �Mw′ β1, and hence, �Mw OBu@dβ1.

• Since the theorem holds for β = OBu@dβ1, we can easily prove it for cases β = PEu@dβ1,

β = IMu@dβ1, and β = GRu@dβ1.

�

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 100

Theorem 5.3.6 (The Finite Model Property of MA(DL)2[UD]) The MA(DL)2[UD] logic

has the finite model property.

Proof. Considering the definition of the finite model property (which is mentioned in this

section) and Theorem 5.3.5, it is obvious that the MA(DL)2[UD] logic has the finite model

property. � In fact MA(DL)2[UD] has the strong finite model property. A logic has the

strong finite model property, if it has F (n) size model property, where f is a mapping from

integers to integers, and n is the size of the input (here the size of the formula we would like

to check its satisfiability) [30]. Since the number of the worlds in the defined finite model

MΓ (w.r.t. Γ = cls(α)) is always limited to O(2|cls(α)|), it is obvious that MA(DL)2[UD] has

the strong finite model property. Note that we can easily prove3 that the size of cls(α) is

of O(|α|2) and thus, the number of possible worlds in WΓ in model MΓ is of O(2|α|
2
).

Theorem 5.3.7 (Decidability of MA(DL)2[UD]) The satisfiability problem for the MA(DL)2[UD]

logic decidable.

Proof. Since this logic has the strong finite model property, and the set of finite models

defined in this section is a recursive set, we can have a general algorithm in which given a

formula α in MA(DL)2[UD], we generate all the finite models MΓ with at most 2|α|
2

possible

worlds. Then, in each model, we search for a world where α is true. If we find such a world,

the formula is satisfiable, otherwise (α is true in none of the generated worlds) it is not

satisfiable.

The proof of this theorem can be presented with another approach. Since this logic has

the finite model property (by Theorem 5.3.6) and MA(DL)2[UD] is axiomatizable, by Theorem

8.5 in [81], MA(DL)2[UD] is decidable. �

5.4 Computational Complexity and Expressive Power

There exist a direct relationship between the complexity of the satisfiability problem for a

logic and expressive power of its language. In other words, the more expressive power, the

3There exist at most |α| number of subformulae of size one, |α| − 1 number of subformulae of size two,
..., and one subformula of size |α| in cls(α). Thus, totally, there are at most |α|(|α| + 1)/2 number of
subformulae in cls(α), and hence the size of cls(α) is of O(|α|2).

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 101

more complexity of the satisfiability problem. Thus, there is a trade-off between the expres-

sive power and algorithmic properties of a logic (such as decidability, and time and space

complexity). In the rest of this section, first, we investigate the computational complexity

of the MA(DL)2 logic family, and then, compare its expressive power with other comparable

logics.

5.4.1 Computational Complexity

In sections 5.3.1, 5.3.2, and 5.3.3, it is proved that the satisfiability problem for the MA(DL)2

logic family (with some mentioned constraints which are required for completeness, too) is

polynomial time reducible to the satisfiability problem for FO2. Since, Grädel et al. [70]

proved that the satisfiability problem for FO2 is NExpTime-Complete, we can conclude

that the upper bound for the complexity of the satisfiability problem for the MA(DL)2 logic

family is NExpTime. Note that this is only an upper bound, and it might be possible to

find more efficient algorithms to improve the complexity.

As mentioned in the next section, ALC is included in MA(DL)2. Since the satisfiability

problem for ALC is PSpace-Complete, it is clear that the satisfiability problem for the

MA(DL)2 logic family would be in PSpace-Hard. Furthermore, as ALC is properly included

in MA(DL)2, the satisfiability problem for MA(DL)2 is not PSpace decidable.

Therefore, the satisfiability problem for MA(DL)2 is in NExpTime\PSpace. Figure 5.1

shows the complexity of the satisfiability problem for the MA(DL)2 logic family in comparison

with the other related logics.

5.4.2 Expressive Power

In the MA(DL)2 logic family, Core MA(DL)2 has the least and MA(DL)2[UD] has the most

expressive power as shown in Figure 4.1.

Following the results get in sections 5.3.1, 5.3.2, and 5.3.3, MA(DL)2 languages are less

expressive than FO2; however, they are more expressive than poly-modal logic (PML) and

ALC description logic. Figure 5.1 shows the expressive power of the MA(DL)2 logic family

in comparison with the other related logic.

To be more precise about the expressive power of MA(DL)2, the following points are

worth mentioning:

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 102

PML

PMLc

FO
2

FO TC
2

CTLMA(DL)
2

ALC

CL
2

C
2

F.M.P.= Finite Model Property

L1 → L2= L2 is more expressive than L1

FO= First-Order Logic

FO
2
= Two-Variable First Order Logic

PML= Poly Modal Logic

PMLc= Graded Poly Modal Logic (with graded modalities ◊≥m, ◊≤m, ◊=m)

C
2
= Two-Variable Counting Logic (with counting quantifiers $≥m, $≤m, $=m)

TC
2
= FO

2
 + Transitive Closures TCφ(x, y): there is a φ-path from x to y

CL
2
= FO

2
 + Reachability <φ(x, y)>ψ(y): there is a φ-path from x to y s.t. ψ(y)

CTL= Computational Tree Logic

ALC= Attributive Language with Complements

PSPACE

F.M.P.

PSPACE-Comp

F.M.P.

EXPTIME-Comp

F.M.P.

NEXPTIME-Comp

F.M.P.

NEXPTIME \ PSPACE

F.M.P.

2-NEXPTIME

UndecidableUndecidableUndecidable

PSPACE

F.M.P.

Figure 5.1: Expressive power and properties of the MA(DL)2 logic family in comparison with
the other related logics.

CHAPTER 5. PROPERTIES OF MA(DL)2 LOGIC FAMILY 103

• Since the MA(DL)2 logic family can be translated into FO2, but the inverse does not

hold, we can conclude that MA(DL)2 FO2.

• As mentioned in Section 4.1, the core of the MA(DL)2 logic family is founded based

on the combination of ALC description logic and multi-authority (poly-modal) version

of deontic logic. Therefore, all formulae in poly-modal logic (PML) can be stated in

Core MA(DL)2 as well as the other members of the MA(DL)2 logic family; however,

there are many kinds of formulae (such as concept predicates, terminological and asser-

tional formulae), which cannot be expressed in PML. Thus, we have PML MA(DL)2.

Since terminological and assertional formulae in MA(DL)2 are defined based on ALC
description logic, it is clear that ALC MA(DL)2.

5.5 Summary

Following the discussion on the properties of the MA(DL)2 logic family in this chapter, the

following results are obtained.

• Soundness: the soundness of proof theory of all members of the MA(DL)2 logic family

are proved.

• Completeness: Core MA(DL)2 and MA(DL)2[−D] are proved to be complete, while the

other members of the MA(DL)2 logic family with some constraints are proved to be

complete.

• Decidability: two approaches are taken in this chapter to prove the decidability of

this logic family; reducing the satisfiability problem for MA(DL)2 to the satisfiability

problem for FO2, and constructing a finite model using the filtration method. Both of

these approaches show the decidability of the MA(DL)2 logic family.

• Expressive Power: Core MA(DL)2 has the least and MA(DL)2[UD] has the most expres-

sive power in this logic family. Also, the MA(DL)2 logic family is more expressive than

ALC description logic and poly-modal logic (PML and more precisely the KDn system

in this logic). However, it is less expressive than FO2 logic.

• Computational Complexity: the satisfiability problem for the MA(DL)2 logic family is

in NExpTime \PSpace.

Chapter 6

MA(DL)2 based Authorization Model

Considering the semantic relationships beside the distribution of semantic-aware environ-

ments (SAEs) makes the authorization and access control a complicated problem in them.

Since SAEs are distributed environments that are constructed over a logical foundation

(i.e., description logic), and we need to infer implicit policies from the explicit ones based

on the semantic relationship defined in the abstract (semantic) layer of SAEs, we inclined to

employ a logic for policy specification and inference in the proposed authorization model for

SAEs. Using logic for this purpose ensures the soundness and consistency of policy inference

in the proposed model as well.

In this chapter the MA(DL)2-AM authorization model is introduced for authorization in

SAEs. The model is founded based on the MA(DL)2 logic family and it is possible to spec-

ify policy rules at the both conceptual and ground (individual) levels in distributed manner.

Supporting cooperative security management for shared subdomains, context-awareness, and

ability to derive the implicit policy rules from the explicit ones based on the semantic rela-

tionships defined in subjects, objects (resources), and actions ontologies are other important

characteristics of the proposed model for SAEs in this chapter.

6.1 Authorization Model — Formal Specification

Following the overall framework proposed for security in SAEs, and narrative description of

overall models of its main elements, we formally define our authorization model for SAEs,

named MA(DL)2-AM, in the rest of this section.

104

CHAPTER 6. MA(DL)2 BASED AUTHORIZATION MODEL 105

Definition 6.1.1 (MA(DL)2 Authorization Model) MA(DL)2 Authorization Model for

SAEs is a 4-tuple 〈FDS, SDS, PAO, ACP 〉, where:

• FDS=〈S,O,A,DS,X ,U ,D〉 is the fundamental data set of the model containing the

following elements:

– S (resp. Ŝ) as a type (resp. set) of subjects,

– O (resp. Ô) as a type (resp. set) of objects or resources,

– A (resp. Â) as a type (resp. set) of actions or operations on resources,

– DS as the set of deontic statuses (DS = {OB (obligatory that), PE (permissible

that), IM (impermissible that), GR (gratuitous that)}),

– X as a set of contextual propositions,

– U as a set of primitive authorities (as mentioned in Section 4.3.1, U∗ denotes the

closure set of composite authorities obtained from U),

– D as a finite set of security domain names.

• SDS is a mapping function, which maps each security domain (such as di ∈ D) to

the related elements of the domain. The formal specification of security domain is

presented in the rest.

• PAO={hFPR, dFPR, CPR, WPC, SPC} is a set of policy administration operators

which are used by the primitive authorities. In this set, FPR stands for forced policy

revision, CPR for consistent policy revision, WPC for weak policy contraction, and

SPC for strong policy contraction. More details are described in Section 6.3.2.

• ACP is an access control procedure that is used by security agents to infer and enforce

security policy rules. The detailed steps of ACP are presented in Section 6.3.3.

To formally define a security domain, we need to define an MA(DL)2 signature, which

is required for specifying security knowledge base in this model. The signature is defined

based on the elements of FDS. Signature Sig = 〈Σ, C,R,P , I,U ,D〉 in this model is defined

as follows:

• Σ = {S,O,A} includes subjects, objects, and actions concept-types.

CHAPTER 6. MA(DL)2 BASED AUTHORIZATION MODEL 106

• C = CS ∪ CO ∪ CA, where CS is a set of subject concepts, CO is a set of concepts of

accessible objects or resources, CA is a set of concepts of possible actions on the objects

or resources.

• R is a set of roles or attributes on concepts C.

• P includes the set of contextual propositions in FDS, a triple predicate do, and a

binary predicate cap. These predicates are defined in the rest, in Section 6.2.

• I is the union of the instances of the subjects, objects (resources), and actions, i.e.,

I = Ŝ ∪ Ô ∪ Â.

• U is equal to U in FDS.

• D is equal to D in FDS.

Definition 6.1.2 (Security Domain) Each security domain with the name di ∈ D is de-

fined with a 4-tuple 〈ui, Oi,Ki,MPi〉, where

• ui ∈ U∗ is the authority of the security domain (whose policy rules are applied),

• Ki is the local SKB of the security domain,

• Oi ⊆ Ô is the set of under protection objects registered in the security domain, and

• MPi is the meta policy of the security domain, which is defined in the following.

Regarding the above definition of security domains, SDS maps each name di of a security

domain to a 4-tuple, i.e., SDS(di) = 〈ui, Oi,Ki,MPi〉.

Definition 6.1.3 (Meta Policy) Meta policy is the policy about the security policy rules

and it is defined as a 2-tuple 〈ResSt,DefAcc〉, where ResSt ∈ {PO,NO} is a resolution

strategy (NO and PO strategies are defined in Section 6.3.1), and DefAcc = {Grant,Deny}
is the default access decision, which is used in access control procedure described in Section

6.3.3.

CHAPTER 6. MA(DL)2 BASED AUTHORIZATION MODEL 107

Note that each authority can state policy rules over each security domain; however, the

policy rules of the authority who is determined for the domain are applied by the security

agent.

By the above formal definition of security domains, if a security domain di (defined as

SDS(di) = 〈ui, Oi,Ki,MPi〉) is a subdomain of a security domain dj (defined as SDS(dj) =

〈uj, Oj,Kj,MPj〉), or in other words, we have di � dj, then Oi ⊆ Oj. Analogously, if dl

(defined as SDS(dl) = 〈ul, Ol,Kl,MPl〉) is a shared subdomain of di and dj, or in other

words, dl � di and dl � dj, then Ol ⊆ Oi ∩Oj.

Example 6.1.1 Running Case Study- Semantic Virtual Organization:

There are different semantic-aware environments that can be taken as a case study to em-

ploy the proposed model for authorization. Examples of them are Semantic Grid (and Virtual

Organization), Semantic Peer-to-Peer, Semantic Social Networks, and Semantic Web. Be-

tween these cases, semantic Virtual Organization based on the Semantic Grid platform is

considered as a case study, because it uses all the features and capabilities of the model

proposed based on the MA(DL)2 logic.

Grid computing environments provide a platform for multiple institutes to share their

resources in a wide range. The Grid technology in combination with the Semantic technology

constitutes Semantic Grid [160, 135, 40], where Grid resources and services are described by

explicit semantics. The descriptions in the forms of ontologies enables computers and people

to easily discover, aggregate, and use the resources and work in cooperation [160, 123].

Semantic grid is in fact a multi-institutional (multi-domain) environment, where the

authorities (e.g, the owner) of different institutional or individual domains need to specify

their authorization policies at the both conceptual (semantics) layer and ground (individual)

level. Since a grid environment is a combination of domains of resources with variety of users

who are unknown to other domains, it is required to identify users based on their attributes

specified in some credentials (see e.g., the approach taken in Globus [60], or its extension for

semantic grid oriented e-tourism [165]).

Grid has emerged as a platform that enables multiple institutions/ organizations/ groups/

individuals to build a shared space known as Virtual Organization (VO) to achieve a shared

goal by collaboration [59]. A VO encompass users and resources supplied by the different

partners for achieving the VOs creation goal. Employing semantic technology in a collabo-

rative problem solving in VOs (based on Semantic Grid platform), entails semantic virtual

CHAPTER 6. MA(DL)2 BASED AUTHORIZATION MODEL 108

organizations (SVO) [102]. In this chapter, we define an SVO as a running case study.

Company A as an IT company wants to outsource the implementation of one of its IT

projects to cheap programmers in the world (with more priority to the native ones). For this

purpose, A collaborates with company B as a Grid resource provider company to provide the

required resources for programmers in an SVO. In this case, dB is a security domain of B

for its shared resources, dA is a security domain determined by A for the project, and dX is

the shared subdomain of dA and dB.

By the above description, the elements of FDS in the model are defined as follows for this

case study.

Ŝ = set of programmers

Ô = {proc1, ..., proc10,mem1, ...,mem20, stg1G, .., stg10G}

Â = {read, write, lock, unlock, exec, wait}

X = {isWorkT ime, is1stOct09To30thDec09, isHoliday}

U = {admA, admB}

The set of security domains is defined as SDS = {SDA, SDB, SDX}, where shared domain

SDX is defined as follows:

SDX = 〈dX , admA|admB, Ô,KX , 〈NO,Deny〉〉

SKB KX of domain dX is defined as KX = 〈T BX ,ABX ,SBX〉, where T BX = Sub∪Obj∪Act.
Sub is subjects ontology and is defined as follows:

People ≡ Foreigner tNative

Programmer ≡ SysProg tNetProg

ForeignProg ≡ Programmer u Foreigner

NativeProg ≡ Programmer uNative

Obj is objects ontology and is defined as follows:

Memory ≡ V olatileMem t PermanentMem

EncryptedStorage v PermanentMem

Processor ≡ 32bitsProc t 64bitsProc

CHAPTER 6. MA(DL)2 BASED AUTHORIZATION MODEL 109

Act is actions ontology and is defined as follows:

ProcAct

MemAct v V olatileMemAct

In KX , AB is initialized with assertions about the resources registered in the domain, and

possible actions as follows:

V olatileMem(mem1), ..., V olatileMem(mem10),

EncryptedStorage(stg1G), P ermanentMem(stg2G), ..., P ermanentMem(stg10G),

32bitsProc(proc1), ..., 32bitsProc(proc7),

64bitsProc(proc8), ..., 64bitsProc(proc10),

P rocAct(exec), P rocAct(wait),

MemAct(read),MemAct(write),

V olatileMemAct(lock), V olatileMemAct(unlock)

SBX in SKB KX is defined later in this chapter, where the security policy rules are defined.

6.2 Security Policy Specification

In the MA(DL)2-AM authorization model, we use the MA(DL)2[UD] language from the MA(DL)2

logic family for policy specification and inference. The logical foundation of this language

enables us to infer implicit security policy rules from the explicit ones based on the semantic

relationships defined in the ontologies of subjects, objects, and actions.

We describe in the following how to use MA(DL)2[UD] to specify policy rules at the both

conceptual and ground levels.

6.2.1 Conceptual Level Security Policy

A security policy is a set of security policy rules that are defined at the conceptual level as

follows.

Definition 6.2.1 (Conceptual Level Policy Rule) A conceptual level policy rule is a

CHAPTER 6. MA(DL)2 BASED AUTHORIZATION MODEL 110

formula in MA(DL)2 with the schema of the form α→ dsu@ddo(S,O,A), where

• α is a formula specifying the contextual constraint, and it is a logical combination of

the contextual propositions 1,

• ds ∈ DS is a deontic normative status,

• u ∈ U∗ is an authority,

• d ∈ D is the name of the security domain, where the policy rule is defined,

• do : (S,O,A) ∈ P is a ternary predicate that determines a possible access of a subject

to a resource (object) for doing an action,

• S : S of type S is a concept of subjects defined in T B of the SKB,

• O : O of type O is a concept of under protection resources (objects) defined in T B of

the SKB, and

• A : A of type A is a concept of actions defined in T B of the SKB.

Example 6.2.1 Some samples of the conceptual level policy rules for the SVO case study

are as follows:

• Regarding the contract between the two companies, company B allows access to the

shared resources just during the project (1st Oct. 2009 till 30th Dec. 2009). For ex-

ample, we have the following rule for the processors.

is1stOct09To30thDec09→ PEadmB@dXdo(SysProg, Processor, ProcAct)

• Foreign programmers cannot access the resources in working time of working days (>O
and >A refer to concept of all objects and concept of all actions respectively).

¬isHoliday ∧ isWorkT ime→ IMadmA@dXdo(ForeignProg,>O,>A)

1α can be defined more complicated; however, we limit it here.

CHAPTER 6. MA(DL)2 BASED AUTHORIZATION MODEL 111

• System Programmers are allowed to access the 64 bits processors.

¬isHoliday ∧ isWorkT ime ∧ is1stOct09To30thDec09→

PEadmA@dXdo(SysProg, 64bitsProc, ProcAct)

6.2.2 Ground Level Security Policy

The ground level policy is taken into consideration, because we may require to specify finer

grained policy rules for instances of the resources registered in the domain. Also we may

need to have contextual constraints for access at the ground level beside the ones specified

at the conceptual level, and there might exist policy rules from legacy systems at the ground

level, which should be imported in the new security system founded on our proposed model.

Definition 6.2.2 (Ground Level Policy Rule) A ground level policy rule for an action

a on an under-protection resource (object) o is specified as a 6-tuple 〈±u, d, cx,Reqs, Caps〉,
where

• (+) represents permission and (−) represents prohibition.

• u, d, and cx are similar to the ones defined at the conceptual level policy rule.

• Reqs = {Si|(Si : S) ∈ C} is a set of subject concepts. It shows credentials which a

subject requires to present in order to access the object. In other words, it determines

the classes of subjects (in the ontology defined in T B) that are allowed to access the

resource.

• Caps = {Ci|(Ci : O) ∈ C} is a set of attributes that the resource supplies when the

security policy is satisfied. In other words, it determines the classes of objects (in

the ontology defined in T B) that the object belongs to, based on its attributes. It is

worthwhile to note that in prohibition rules (where the sign is −), Caps is empty (i.e.,

Caps = {}).

The security capabilities provided by the resource in a ground level policy rule should sat-

isfy the requirements of the requester in order to the requested access be granted. For

example, the requester may need the output data of a web service (the requested action) to

CHAPTER 6. MA(DL)2 BASED AUTHORIZATION MODEL 112

be encrypted using a specific algorithm. This requires the resource to be an individual of

WithEncryptedOuput concept based on its capabilities.

By representing the under-protection resource o with a nominal2 concept No, and the

action a with a nominal concept Na, we can define a ground level policy rule in the MA(DL)2

language as follows.

Definition 6.2.3 (Ground Level Policy Rule in MA(DL)2) A ground level policy rule

for permitting an action a on an under-protection object o (i.e., for 〈+, u, d, cx,Reqs, Caps〉)
is specified as an MA(DL)2 formula with the schema of the form:

cx→ (PEu@ddo(
l

Si∈Reqs

Si, No, Na) ∧ OBu@dcap(
l

Ci∈Caps

Ci, No))

, where cap is a binary predicate that assigns the capabilities of a resource to the resource,

and a rule for prohibiting the action (i.e., for 〈−, u, d, cx,Reqs, {}〉) is specified as a formula

of the form:

cx→ IMu@ddo(
l

Si∈Reqs

Si, No, Na)

Note that stating the ground level policy rules in MA(DL)2[UD] has many advantages,

such as deriving ground level policy rules for shared resources in shared subdomains using

MA(DL)2 proof theory (for composite authorities), simplifying the access control procedure

using the MA(DL)2 inference service, and uniforming security policy specification at the

conceptual and ground levels.

Example 6.2.2 Some samples of the ground level policy rules for the SVO case study that

are specified by company B (which is the real owner of resources) are as follows:

• Foreign programmers cannot have write access to the storage with 10 GB capacity.

IMadmB@dXdo(ForeignProg,Nstg10G
, Nwrite)

2A nominal is a special concept that has only one individual [13]. We assume that the name of a nominal
of an individual is a unique name made based on the identity (name) of the individual.

CHAPTER 6. MA(DL)2 BASED AUTHORIZATION MODEL 113

• Programmers can write their data on the storage with 1 GB capacity encrypted. En-

cryption of data is the capability of resource stg1G.

1stOct09To30thDec09→PEadmB@dXdo(Programmer,Nstg1G
, Nwrite)∧

OBadmB@dXcap(EncryptedMem,Nstg1G
)

6.3 Security Policy Administration and Enforcement

Conflicts between policy rules is an important issue that might be handled to have a sound

and reliable security system. This issue has a considerable effect on security policy base ad-

ministration and also on policy enforcement. Hence, in the rest, at first we have a discussion

on the conflict types in MA(DL)2-AM and our approach on resolving the conflicts. Then we

describe the administration operators and access control procedure in the proposed model.

6.3.1 Conflict Types and Resolution

A conflict arises when the objectives of two or more active policy rules can not be met

simultaneously. Since in MA(DL)2-AM, primitive authorities are independent from each

other, the conflicts between the policy rules of different authorities do not make any problem.

Also note that, in cooperative management, existence of such conflicts does not make any

problem in policy inference for composite authorities. Thus, conflicts might occur only in

policy space of an authority.

The possible conflicts in policy space of an authority can be classified into

1. the intra-level conflicts, i.e., between the policy rules of the same level (ground or

conceptual level), and

2. the inter-level conflicts, i.e., between the policy rules of the ground level with the ones

in the conceptual level.

In the rest, we just consider intra-level conflicts and resolve the inter-level ones by taking a

special sequence for the steps of the access control procedure. The intra-level conflicts are

of two types; persistent conflicts and potential conflicts. To define such sorts of conflict, we

require to define modal conflicts in advance.

CHAPTER 6. MA(DL)2 BASED AUTHORIZATION MODEL 114

Definition 6.3.1 A pair of normative statuses has modal conflict if they are completely

modally contradictory. The possible conflicting pairs of normative statuses are 〈PE, IM〉,
〈OB, IM〉, 〈OB, GR〉.

Definition 6.3.2 (Persistent Conflict) Two policy rules are persistently in conflict, if

they are in conflict in all circumstances. Formally, there is a persistent conflict between a

pair of policy rules p1 = α1 → dsu@d1do(S1, O1, A1) and p2 = α2 → ds′u@d2do(S2, O2, A2), if

1. ` α1 ↔ α2,

2. there exists S,O, A, and d such that

T B ∪ {dsu@d1do(S1, O1, A1)} ` dsu@ddo(S,O,A) and T B ∪ {ds′u@d2do(S2, O2, A2)} `
ds′u@ddo(S,O,A),

3. ds and ds′ are one of the possible conflicting pairs of normative statuses.

For example, policy rules ¬isWorkT ime→ PEadmA@dXdo(Programmer,Memory,MemAct)

and ¬isWorkT ime → IMadmA@dXdo(NetProg, V olatileMem,MemAct) are persistently in

conflict.

Definition 6.3.3 (Potential Conflict) There is a potential conflict between two policy

rules, if they are in conflict in some contextual conditions. Formally, there is a poten-

tial conflict between a pair of policy rules p1 = α1 → dsu@d1do(S1, O1, A1) and p2 = α2 →
ds′u@d2do(S2, O2, A2), if ` α1 6↔ α2, α1 6= ¬α2, and conditions (2) and (3) in Definition

6.3.2 are fulfilled.

For example two policy rules ¬isWorkT ime→ PEadmA@dXdo(Programmer,Memory,MemAct)

and ¬isHoliday → IMadmA@dXdo(NetProg, V olatileMem,MemAct) are not always in con-

flict. However, when it is a working time in a working day, both policy rules are activated

and a conflict occurs.

The time points where the aforementioned conflicts might occur are as follows.

• A persistent conflict might occur in adding a new policy rule to an SKB. More formally,

it occurs when we want to add a new policy rule pnew = α → dsu@d(S,O,A) to an

SKB K, and we have K ` ¬pnew. In other words K ∪ {pnew} ` F, which means pnew

has conflict with some of the existing policy rules.

CHAPTER 6. MA(DL)2 BASED AUTHORIZATION MODEL 115

Table 6.1: Conflict resolution based on the NO and PO strategies.
Conflicting Pair Overriding Relation Label NO Strategy PO Strategy

〈PE, IM〉 PE
PO−→ IM, PE

NO←− IM IM PE

〈OB, IM〉 OB
PO−→ IM, OB

NO←− IM IM OB

〈OB, GR〉 OB
PO−→ GR, OB

NO←− GR GR OB

• A conflict might occur in access control time (by receiving an access request) and

updating a contextual information. In this step, some potential conflicts might be

realized. More precisely, if we update an SKB K with the new contextual facts, the

SKB becomes inconsistent, and thus K ` F.

We can easily prevent the occurrences of persistent conflicts in the operators used for adding

a new policy (see Section 6.3.2). However, detecting and resolving potential conflicts should

be performed dynamically in access control procedure. For this purpose, we construct a

potential conflict graph (similar to the approach we proposed in [114]) when adding policy

rules to the SKB. We use this graph to detect the realized conflicts and resolve them.

To resolve the conflicts using the potential and realized conflict graphs, we should first

determine the possible conflict resolution strategies. Analyzing the modal conflicting pairs in

Definition 6.3.1 shows that they are originated from one of the 〈OB¬p, OB¬p〉 or 〈OB¬p,¬OB¬p〉
primitive conflicting pairs. On this basis, we can define two strategies for conflict resolution

including:

• Negative Obligation takes precedence (NO) strategy: This is a pessimistic

strategy, which aims at decreasing access to the under-protected objects to increase

the security assurance. In this strategy, OB¬p and ¬OBp override OBp in the primitive

conflicting pairs. The results of following such a strategy is shown in Table 6.1.

• Positive Obligation takes precedence (PO): Unlike the NO strategy, the PO

strategy is an optimistic strategy. It aims at providing maximum accessibility to the

resources and executing actions. In this strategy, OBp overrides OB¬p and ¬OBp in the

primitive conflicting pairs. The results of following such a strategy is shown in Table

6.1.

As mentioned earlier, we use two following graphs for detecting and resolving the conflicts

in access control procedure of the MA(DL)2-AM authorization model.

CHAPTER 6. MA(DL)2 BASED AUTHORIZATION MODEL 116

p1

p4

p2

p3

áa1Ùa4, POñ

áa1Ùa4, NOñ

áa3Ùa4, POñ

áa3Ùa4, NOñ

áa2Ùa3, POñ

áa2Ùa3, NOñ

(a) Sample of a potential conflict graph.

p1

p4 p3

áa1Ùa4, POñ

áa1Ùa4, NOñ

áa3Ùa4, POñ

áa3Ùa4, NOñ

(b) Realized conflict graph in situation
that α1, α3, and α4 are satisfied.

p1

p4 p3

áa1Ùa4, POñ

áa1Ùa4, NOñ

áa3Ùa4, POñ

áa3Ùa4, NOñ

(c) Conflict resolution based on PO strat-
egy. Bolded vertices should be removed.

Figure 6.1: Potential conflict detection and resolution steps.

Definition 6.3.4 (Potential Conflict Graph) A potential conflict graph is an edge-labeled

directed graph such that each vertex represents a policy rule that is potentially in conflict with

another policy rule, and each edge represents a potential conflict between a pair of policy rules

p1 = α1 → dsu@d1do(S1, O1, A1) and p2 = α2 → ds′u@d2do(S2, O2, A2), and has a label of

the form 〈α1 ∧ α2, OR〉. α1 ∧ α2 determines the contextual condition in which the potential

conflict becomes realized, and OR determines overriding relation and is one of NO (negative

obligation precedence) and PO (positive obligation precedence). OR is determined based on

the second column of Table 6.1. NO and PO are used for conflict resolution and are defined

for normative statuses (belong to DS) in Table 6.1.

Figure 6.1(a) shows a sample of potential conflict graph.

CHAPTER 6. MA(DL)2 BASED AUTHORIZATION MODEL 117

Definition 6.3.5 (Realized Conflict Graph) A realized conflict graph is a subgraph of a

potential conflict graph. It contains only the edges that the first element of their labels are

satisfied based on the current contextual information in the SKB.

Figure 6.1(b) shows the realized conflict graph of the graph shown in Figure 6.1(a) in a

special contextual condition.

For dynamic resolution of realized conflicts, we just need to remove the policy rules on

the tails of the edges that the second elements of their labels are equal to the determined

conflict resolution strategy in the meta policy of the security domain (i.e., in ResSt in meta

policy MP of the security domain). For example, if we have the PO strategy, the filled

vertices (policy rules) in Figure 6.1(c) are removed temporarily from the SKB for access

decision.

6.3.2 Security Policy Base Administration

In MA(DL)2-AM, each authority can administrate his specified security policy rules in

his/her security domain using the following administration operators provided through the

PAP’s interface. Note that we can use the following operators for the policy rules of each

level (i.e., conceptual and ground) separately.

Policy Revision Operators: Add policy rules to the SKB, and update the potential

conflict graph if it is required. These operators are as follows.

• FPR (Forced Policy Revision): Adds a new policy rule by removing all the conflicting

old policy rules. We have two kinds of FPR operator:

– hFPR: harmonizes the conflicting policy rules w.r.t. the new one. Harmonizing

a policy rule p1 = α→ dsu@d1do(S1, O1, A1) regarding the new policy rule pnew =

α→ dsu@d2do(S2, O2, A2) results in a policy rule p′1 = α→ dsu@d1do(S1u¬S2, O1u
¬O2, A1 u ¬A2), which replaces p1.

– dFPR: deletes or removes the policy rules conflicting with the new one.

• CPR (Consistent Policy Revision): Adds a new policy rule only if it is consistent with

the existing ones in the SKB.

Policy Contraction Operators: Remove policy rules from the SKB, and update the

potential conflict graph if it is required.

CHAPTER 6. MA(DL)2 BASED AUTHORIZATION MODEL 118

• WPC (Weak Policy Contraction): Removes an explicit policy rule existing in the SKB.

• SPC (Strong Policy Contraction): Removes a policy rule and all the policy rules entails

such a rule. Note that the determined policy rule might be an explicit rule existing in

the SKB, or might be an implicit rule, which is inferred from the other ones.

6.3.3 Access Control Procedure

The access control procedure, which is used by the security agent of a security domain, has

the following steps. Suppose that the following procedure is employed in a security domain

d, such that SDS(d) = 〈u,O,K,MP 〉.

1. Request Reception: PEP receives an access request in the form 〈sr, or, ar, Crdr, Reqr〉
from a subject, where sr, or, and ar are subject (access requester), resource (object),

and requested action respectively. Crdr is the set of credentials that sr presents, and

Reqr is the set of requirements that sr requires to be satisfied by the capabilities of the

requested resource.

2. Request Validation:

(a) PEP checks whether or is registered in the security domain, and ar is an eligible

action on or (by checking the description of the resource’s Web service specified

in OWL-S).

(b) PEP checks the validaty of the received credentials using Credential Verifier and

Source of Authority (SOA), and sends the validated credentials to PDP.

3. SKB Initialization:

(a) PDP generates a set of assertions based on the received credentials and inserts

them to AB of SKB K. The assertions are of the form C(sr), where C ∈ Crdr.
For example if it receives a credential that says “Ali is a student” and concept

“Student” is defined in T B of SKB K, we add the assertion “Student(Ali)” to

AB.

(b) By the request of PDP, SKB K updates itself with the last changes in contextual

information (using the Context Handler component).

CHAPTER 6. MA(DL)2 BASED AUTHORIZATION MODEL 119

(c) PDP derives the realized conflict graph (from the potential conflict graph con-

structed during the specification of the security policy rules), performs conflict

resolution based on the determined resolution strategy, and removes the selected

conflicting policy rules from the SKB.

4. Ground Level Access Decision Making: PDP makes initial access decision based

on the ground level policy rules of the requested resource in the following steps. Nor

and Nar are nominals for or and ar respectively.

(a) If K ` PEu@ddo(
d

crdi∈Crdr
crdi, Nor , Nar) ∧ OBu@dcap(

d

reqi∈Reqr
reqi, Nor), it means all

the requirements of the requester are satisfied by the capabilities of the resource.

Therefore, the requester is permissible to receive the requested access based on

the ground level policy rules.

(b) If K ` IMu@ddo(
d

crdi∈Crdr
crdi, Nor , Nar), the access is denied and the access control

procedure terminates after executing the last step (SKB Purging).

(c) If K ` PEu@ddo(
d

crdi∈Crdr
crdi, Nor , Nar)∧¬OBu@dcap(

d

reqi∈Reqr
reqi, Nor), it means the

requester is permissible to take the requested access; however, all of its require-

ments can not be satisfied. In this case, the security agent can negotiate with the

requester and then

• the requester can cancel the request, and the procedure terminates after ex-

ecuting the last step (SKB Purging), or

• it can enquire for the available capabilities and then make its final decision

(to change the requirements in the request or cancel the request).

5. Conceptual Level Access Decision Making: PDP makes its final access decision

based on the conceptual level policy rules in the following steps:

(a) PDP maps sr, or, and ar to appropriate concepts in the ontologies by the follow-

ing equations. Note that these concepts are different from the nominals for the

individuals. PDP leverages its inference engine over the SKB to infer the most

CHAPTER 6. MA(DL)2 BASED AUTHORIZATION MODEL 120

specific concepts (msc3) of each of the individuals sr, or, and ar for this purpose.

Csr =
l

Si∈msc(sr)

Si Cor =
l

Oi∈msc(or)

Oi Car =
l

Ai∈msc(ar)

Ai

(b) If K ` PEu@ddo(Csr , Cor , Car), the request is granted.

(c) If K ` IMu@ddo(Csr , Cor , Car), the request is denied.

(d) If none of the above inferences are made and default access policy (specified in

DefAcc of meta policy MP) is Deny, the request is denied; otherwise it is granted.

6. SKB Purging: After completing the decision making process, PDP

(a) removes the current contextual facts from the SKB,

(b) removes the assertions related to the requester subject from AB of the SKB, and

(c) returns back the policy rules that are removed for realized potential conflicts to

the SKB.

In the above procedure, the inter-level conflicts do not make any problem, because the

policy rules of the two levels are considered in two separated steps. In fact, negative takes

precedence approach is employed for inter-level conflict resolution.

Example 6.3.1 As an example, suppose the security agent of domain dX receives an access

request 〈Ali, stg1G, write, {SysProg,Native}, {EncryptedStorage}〉 in 10 am of 6th Oct.

2009. It can infer the following formula from the ground level policy rules in the SKB KX

PE(admA|admB)@dXdo(SysProg uNative,Nstg10G
, Nwrite)∧

OB(admA|admB)@dXcap(EncryptedStorage,Nwrite)

and can infer the following formula from the conceptual level policy rules

PE(admA|admB)@dXdo(SysProg uNative, PermanentMem,MemAct).

Hence, the access request is granted.

3Formally, msc of an individual a of type σ is a set of incomparable concepts C1, ..., Cn of type σ satisfying
AB ` Ci(a) (1 ≤ i ≤ n) and if there exist a concept D such that AB ` D(a), then there exist a Ci in the
above set such that T B ` Ci v D.

CHAPTER 6. MA(DL)2 BASED AUTHORIZATION MODEL 121

Table 6.2: Evaluation of MA(DL)2-AM in comparison with some other authorization models.

Model R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

FGAC [46] G - C Yes Yes Yes A+/− No IB G, E No

XACML [121] G - D Yes Yes Yes A+/−, O+/− No AB R, G No

CLAC [132] C O C Yes No Yes A+/− No AB R, G No

SBAC [91] C, G S, O, A C Yes No Yes A+/− No AB R, G, E No

SAC (SPL) [162] G - D No Yes Yes A+ No IB R, G Yes

Rei [96] G - D Yes Yes Yes A+/−, O+/− Yes AB R, G, D Yes

KAoS [154] G A D Yes Yes Yes A+/−, O+/− Yes AB R, G Yes

MA(DL)2-AM [7] C, G S, O, A D Yes Yes Yes A+/−, O+/− Yes AB R, G, D Yes

R1=Policy specification granularity level [C: Conceptual level, G: Ground (individual) level]
R2=Policy propagation and inference domains [S: subjects domain, O: objects domain, A: actions domain]
R3=Policy specification and management [D: distributed, C: centralized]
R4=Existence an approach for conflict detection and resolution [Yes, No]
R5=Support of contextual constraints in policy specification [Yes, No]
R6=Is abstract enough to be independent from implementation [Yes, No]
R7=Policy types supported in the model

[A+/−: positive/negative authorization, O+/−: positive/negative obligation]
R8=Existence of formal semantics for the policy language of the model [Yes, No]
R9=Subject (user) identification in policy rule specification [IB: identity-based, AB: attribute-based]

R10=Administration Facilities [E: exception policy, R: role, G: group, D: delegation]
R11=Has ability for policy composition [Yes, No]

6.3.4 Evaluation of the MA(DL)2-AM Authorization Model

It is not easy to evaluate a proposed authorization model or access control enforcement

mechanism, because there is not a set of acceptable criteria for this purpose. In fact, com-

paring the different models might not be acceptable, due to the difference in the meaning or

definition of security for which a model is proposed. Thus, to the best of our knowledge, the

best way to compare the authorization models proposed for the same environment is to de-

termine the authorization requirement for that environment in advance. Such requirements

can be used as criteria for comparing the proposed models for such environments. Since

we investigated the authorization requirements for SAEs in Section 3.2, the MA(DL)2-AM

authorization model in comparison with other famous models proposed for SAEs, based on

these requirements are illustrated in Table 6.2.

CHAPTER 6. MA(DL)2 BASED AUTHORIZATION MODEL 122

The following points in evaluating the proposed model and filling Table 6.2 are taken

into account:

(R1, R2, R4, R5, R6, R11) Regarding the specification of the proposed model, it is clear

that how the model satisfies the requirements R1 (policy specification in both conceptual

and ground levels), R2 (supporting policy propagation and inference based on the ontologies

of subjects, objects, and actions), R4 (conflicting rules detection and resolution), R5 (sup-

porting contextual conditions in policy rule specification), R6 (has an acceptable abstraction

level), and R11 (policy composition for shared subdomains).

(R3) To satisfy authorization requirement R2 (distributivity of policy specification), the

model follows the multi-security-domain structure, where the environment is divided into

some security domains and policy specification done in the distributed manner. In each

security domain, we may have some authorities who are authorized to specify the security

policies, and we can use the cooperative security management approach to policy inference

over the distributed policy rules. Note that conceptual level policy rules of each domain is

maintained centrally in the SKB of the domain. However, ground-level policy rules of each

resource is stored in service provider of the resource (as it is mentioned in canonical model

of resources in Section 3.4.3).

(R7) Supporting different deontic (normative) statuses (defined in set DS) in the MA(DL)2

language for policy rule specification enables the model to support the specification of positive

and negative authorization as well as positive and negative obligations.

(R8) The model is based on the MA(DL)2 logic which is placed in logic layer in the semantic

layer cake and it has a clear formal semantics as presented in Chapter 4.

(R9) Each concept in the subjects ontology is a representative of a set of principals (subjects)

that have some common attributes. Thus, possibility of the model in specification of policy

rules over the subject concepts categorizes it in the class of the attribute-based (credential-

based) authorization models. Refer to the description of stage 3(a) in the access control

procedure to see how the provided attributes of the requester (by some credentials) used for

access decision making.

(R10) Each Role and group in our proposed model can be defined as a concept in subjects

ontology. Thus, roles and groups can be defined easily in our model. Note that the hierarchy

of roles can be defined, too. If a role R1 (e.g., Manager) is a subrole of R2 (e.g., Employee),

in our model corresponding concept R2 should be defined as a subsumer of corresponding

CHAPTER 6. MA(DL)2 BASED AUTHORIZATION MODEL 123

concept R1 in subjects ontology (i.e., R1 v R2). It is clear that each subject or user of

R1 is a subject or user of R2 as well (by relationship R1 v R2 and axiom DLA), and each

permission assigned to R2 is assigned to R1 as well. By delegative cooperative management

(provided by MA(DL)2[U−] in our model, the administrative delegation is also possible.

6.4 Summary

The main objective of this thesis is presenting an appropriate authorization model for SAEs.

In this chapter an authorization model (named MA(DL)2-AM) based on the MA(DL)2[UD]

logic is formally defined. The fundamental elements of the model, as well as the knowledge

base administration operators, and access control procedure (which uses the inference service

over the security knowledge base) are defined precisely. Since occurring conflicts between

the policies specified by different authorities is inevitable, the possible types of conflicts are

investigated and prevented or resolved in the proposed model. Finally, MA(DL)2-AM is

evaluated qualitatively in comparison with the analogous models using the criteria extracted

from the investigated authorization requirements for SAEs.

Quantitative evaluation of the MA(DL)2-AM authorization model, using an access control

system (of a security agent) implemented based on the access control procedure proposed in

this model is presented in the next chapter.

Chapter 7

Implementation and Experimental

Results

To show the applicability of the MA(DL)2-AM authorization model, and also to evaluate

it in practice, a simple version of a security agent based on the proposed model has been

implemented as a prototype. For this purpose, considerable efforts devoted to the develop-

ment of the MA(DL)2 inference engine, where analytic tableaux approach is leveraged. The

implemented prototype of the security agent uses this inference engine to do the inferences

required in the access control procedure of MA(DL)2-Am authorization model. The experi-

mental results of evaluating the implemented inference engine and security agent prototype

are also presented in this chapter.

7.1 MA(DL)2 Inference Engine

There are variants of reasoning algorithms which in them analytic tableaux is more match

with non-classical logics like MA(DL)2 [64]. Analytic tableaux is essentially based on the

semantics of logical connectors and modal operators in these logics. In this research we

used refutation approach in analytic tableaux method. In refutation tableaux reasoning,

the objective is to demonstrate that the negation of a given formula cannot be satisfied. In

refutation tableaux, we have a tableaux tree with a given negation formula F at its root,

and sub-formulae of F at each node. Constructing the tableaux tree is performed based on

the tableaux expansion rules, which are introduced for MA(DL)2 logic in this section. If in

124

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 125

all leaves of tableaux tree we reach the contradiction, the tree is closed and the negation

formula is not satisfiable.

There are many implementations of theorem provers based on the tableaux method for

modal logics [17, 36, 63, 125], and modalized description logics [112]; however, non of them

could be employed for reasoning in MA(DL)2 logic. Some of the well-known theorem provers

for modal and deontic logics are MLTP [105], KED [12], KEM [68, 127], and GQML-Prover

[151]. The most popular reasoners for description logics are RACER [75], FaCT++ [153],

and Pellet [146].

7.1.1 Analytic Tableaux for MA(DL)2

We use refutation tableaux approach for MA(DL)2 logic family. In this approach, for checking

the validity of a formula α in an SKB K = 〈T B,AB,SB〉, we add the negation of α to the

SKB and check the consistency of the resulted SKB. Since the tableaux rules presented

in this chapter are provided for the inference of c-formulae, it is sufficient to check the

unsatisfiability of SB ∪ {¬α} w.r.t. terminological box T B. Note that assertional box AB
is not required for the inference of c-formulae.

We follow set-labeling tableaux approach [76] in our proposed approach in which each

node in the tableaux tree is labeled with a set of formulae. The expansion rules determine

how to add new nodes to the leaves of the tree based on their set-label. In this approach

we do not need to consider the labels of nodes in a branch to attach a new node to a leaf,

and just the label of the leaf is enough. In our proposed tableaux system, each set-label of

a node is a block, which is in fact a set of sets. Before introducing the content of the block

and also the tableaux expansion rules, we require to introduce some notations.

• X and Y are sets of formulae.

• p, q, l, and dl are formulae

• OBX = {OBu@dp| p ∈ X, u ∈ U∗, d ∈ D}

• PEX = {PEu@dp| p ∈ X, u ∈ U∗, d ∈ D}

• OBu@dX = {OBu@dp| p ∈ X}

• PEu@dX = {PEu@dp| p ∈ X}

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 126

• X, p = X ∪ p

• [TB;F ;L;OBF ;PEF] is a set-block-label, where TB is a set of t-formula of the ter-

minological box of an SKB (including subsumptions and definitions), F is a set of raw

formulae, L is a set of non-modal literals, OBF is a set of obligation formulae (in the

form OBu@dp), and PEF is a set of permissible formulae (in the form PEu@dp).

[TB;F ; {}; {}; {}] is an initial block which is a label of the root of a tableaux tree. In

this block, F is a formula which should be proven that it is unsatisfiable; more precisely it

is defined as F =
∧

pi∈SB
pi ∧ ¬α, where α is the c-formula in MA(DL)2 that we like to check

its validity. In our approach, F must be in negation normal form (NNF).

Definition 7.1.1 (Negation Normal Form (NNF)) A formula F is in NNF, if

• it only contains logical connectors ∧, ∨, and ¬, deontic statuses OB and PE,

• negations appear just before atomic formulae, and

• arguments of predicates (defined on ALC concepts) would be in expanded and negation

normal form as defined in description logic.

To convert a c-formula in MA(DL)2 logic family to a formula in NNF, we use the NNF

function. In the following, the definition of NNF for the special formulae in MA(DL)2

are presented. The NNF function for other formulae can be find in most of the logic text

books1.

NNF (OBu@dF) = NNFM(OBu@d(CNF (NNF (F))))

NNF (PEu@dF) = NNFM(PEu@d(DNF (NNF (F))))

NNFM(OBu@d(F1 ∧ F2)) = NNFM(OBu@dF1) ∧NNFM(OBu@dF2)

NNFM(OBu@dl) = OBu@dl (l is a literal)

NNFM(PEu@d(F1 ∨ F2)) = NNFM(PEu@dF1) ∨NNFM(PEu@dF2)

NNFM(PEu@dl) = PEu@dl (l is a literal)

NNF (p(C1, ..., Cn)) = p(CNFC(NNFC(EXPC(C1))), ..., CNFC(NNFC(EXPC(Cn))))

1The full definition of NNF can be found in Prolog code of the MA(DL)2 reasoner in Appendix B.

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 127

In the above definition, two conversion functions CNF and DNF are convertors to conjunc-

tion normal form and disjunction normal form, respectively. NNFM just converts the modal

formulae OBu@dF and PEu@dF
′, only if F is in CNF and NNF forms, and F ′ is in DNF and

NNF forms.

In converting predicates p, functions CNFC and NNFC convert concepts like Ci (which

are the arguments of predicate p) to conjunction and negation normal form in ALC logic.

Function EXPC expands the description of concepts like Ci based on the definitions exist in

T B.

Note that such conversions are necessary to correctly apply the tableaux expansion rules,

which are introduced in the rest.

The tableaux expansion rules for MA(DL)2 logic family, are written in the way that we

have the following steps by running the proposed tableaux method. Each step is resulted

from applying some of the proposed rules.

Step 1 Fragmentation: fragmenting the formulae to their subformulae by applying the α

and β rules.

Step 2 Categorization: categorizing atomic sub-formulae (resulted from the complex ones

after fragmentation) in their categories (i.e. sets L,OBF , and PEF) by applying

the γ rules.

Step 3 Sub-Tableaux Construction: existing modal formulae results in constructing sub-

tableaux trees by applying the κ and θ rules. In fact, each sub-tableaux tree run the

tableaux method in a new possible world, and the output resulted from running the

method in the new world affects the output of its running in the world accessing to

the new world. The description of the rules in the rest shows that the κ rule can

never be applied after the θ rule in a tableaux tree.

Step 4 Closure: closes the branches of the tableaux tree when some conditions are satisfied.

Applying the did1, did2, did3, iid1, and iid2 rules close the branches in the tableaux

tree.

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 128

p Ù q

p, q

a

p Ú q

p q

b

Conjunction

Branching

OBu@dp

PEu@dq

PEu@dr

PEu@ds

p, r

k

p, s

k

Disjunction

Branching

p, q

k

Figure 7.1: The impact of applying the α, β, and κ rules on constructing an MA(DL)2

tableaux tree.

7.1.2 Tableaux Expansion Rules for MA(DL)2

The expansion rules, which are employed in our proposed tableaux approach to break down

a tableaux tree, are as follows.

Fragmentation Rules

Rules α and β are used to decompose conjunction and disjunction formulae respectively in

F . In rule α, a new node for tableaux tree is created; however, in rule β, two new nodes

are created. In fact, applying the β rule, cause a conjunction branching in the tree, since

for closing the node, both subtrees should be closed. Figure 7.1 shows the effect of applying

these two rules graphically.

(Rule α)
[TB;F, p ∧ q;L; OB X; PE Y]

[TB;F, p, q;L; OB X; PE Y]

(Rule β)
[TB;F, p ∨ q;L; OB X; PE Y]

[TB;F, p;L; OB X; PE Y] | [TB;F, q;L; OB X; PE Y]

Rules ξJO and ξJP in combination with the α and β rules, decompose the modal formulae

containing disjunctive composite authorities (in the form of ds(u1|u2)@d p). Since in NNF, we

just have OB and PE statuses, we have the fragmentation rules for these statuses as follows.

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 129

(Rule ξJO)
[TB;F, OB(u1|u2)@dp;L; OB X; PE Y]

[TB;F, OBu1@dp ∧ OBu2@dq;L; OB X; PE Y]

(Rule ξJP)
[TB;F, PE(u1|u2)@dp;L; OB X; PE Y]

[TB;F, PEu1@dp ∨ PEu2@dq;L; OB X; PE Y]

Rules ξDO and ξDP decompose the the modal formulae containing delegative composite

authorities (in the form of ds(u1.u2)@d p).

(Rule ξDO)
[TB;F, OB(u1.u2)@dp;L; OB X; PE Y]

[TB;F, OBu1@d(OBu2@dp);L; OB X; PE Y]

(Rule ξDP)
[TB;F, PE(u1.u2)@dp;L; OB X; PE Y]

[TB;F, PEu1@d(PEu2@dp);L; OB X; PE Y]

Rules λ+U and λ−U decompose the predicates containing the union of two concepts as

one of their arguments. The semantics of predicates shows the philosophy of existing such

rules.

(Rule λ+U)
[TB;F, p(..., C1 t C2, ...);L; OB X; PE Y]

[TB;F, p(..., C1, ...), p(..., C2, ...);L; OB X; PE Y]

(Rule λ−U)
[TB;F,¬p(..., C1 t C2, ...);L; OB X; PE Y]

[TB;F,¬p(..., C1, ...) ∨ ¬p(..., C2, ...);L; OB X; PE Y]

Categorization Rules

The γ rules, categorize the subformulae resulted from the fragmentation rules. γO categorize

obligation subformulae (of the form OBu@dp) into OBF of the set-block. The γP categorize

permission subformulae (of the form PEu@dp) into PEF , and the γL rule categorize the literals

into L. Note that by literal, we mean a proposition, a predicate, a subdomain relationship,

or their negations.

(Rule γO)
[TB;F, OBu@dp;L; OB X; PE Y]

[TB;F ;L; OB X, OBu@dp; PE Y]

(Rule γP)
[TB;F, PEu@dp;L; OB X; PE Y]

[TB;F ;L; OB X; PE Y, PEu@dp]

(Rule γL)
[TB;F, l;L; OB X; PE Y]

[TB;F ;L, l; OB X; PE Y]
(l is a literal)

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 130

Sub-Tableaux Construction Rules

In a modal tableaux calculi (like the one we introduce in this chapter), modal formulae

specify not only conditions over a world, but also on the worlds which are accessible from

it. The κ and θ rules are modal expansion rules. The κ rule is based on this fact that in

MA(DL)2, OBu@dp is true in a world if p is true in its all accessible worlds from u’s viewpoint

in domain d or its subdomains. Thus, consequence of this rule introduces a new node which

holds in a different world from the world in which the rule’s assumption holds. In other

words, if in an accessible world (here the world of the consequence), the tableaux of formula

p closes (which means p is unsatisfiable), in the main tableaux tree, the path ending to it

closes, too (because it shows OBu@dp is unsatisfiable).

In the κ rule, we have the same situation. The consequence of this rule, states that a set

of formulae X ′ must be true accompanying with formulae p in at least one new accessible

world. Note that by this rule, for each PEu@dp we should create a new node in tableaux tree

for the set of formulae X ′ ∪ p.

(Rule θ)
[TB; {};L, d1 � d, ..., dn � d; OB X, OBu@di(1≤i≤n)X

′; PE Y, PEu@d{}]
[TB;X ′; {}; {}; {}]

(Rule κ)
[TB; {};L, d1 � d, ..., dn � d; OB X, OBu@di(1≤i≤n)X

′; PE Y, PEu@dp]

[TB;X ′, p; {}; {}; {}]

In these two expansion rules, which are introducing new worlds, in contrast with world-

labeling approach, we do not label formulae with the world where they are true (for example

we do not need to have w : p for showing that p is true in world w). In fact, we employ

auxiliary tableaux approach in which for dealing with formulae holding in new alternate

worlds, a (sub)tableaux algorithm is started.

In θ and κ rules, OBu@di(1≤i≤n)X
′ includes all formulae OBu@dipi where di � d. Also, these

rules show that in constructing the initial block-set of formulae for subtableaux tree (i.e.,

the block-set in the consequences of the rules) the set of t-formulae in TB are remained

unchanged. This is resulted from the assumption we have in MA(DL)2 that says ontologies

(as a set of t-formulae in T B of an SKB) describe a shared conceptualization.

The last remaining point about these two rules is that they create a disjunctive branching,

which means closing one of the branches results in closing the branching node. Figure 7.1

shows a disjunctive branching created by applying κ rule graphically.

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 131

ALC Tableaux Rules

To infer the subsumption relationships between the concepts in ALC, we used the tableaux

rules that are described (and implemented in Prolog) by Herchenröder [80]. We do not

mention these rules here.

Closure Rules

The did1 rule closes a node and consequently, closes all the pathes end to it; due to the

existence of a direct clash in the set of literals, i.e., existence of l and its negation l. Note

that this rule is applicable, when the second element in the assumption of the rule is empty.

Such a condition is not necessary in theory; however, in practice, it causes to postpone the

search for finding a clash to the situation where all formulae are decomposed to its atomic

subformulae, and are categorized. Therefore, the performance is increased in this situation.

(Rule did1)
[TB; {};L, l, l; OB X; PE Y]

closed

Furthermore, we require the did2 and did3 closure rules as described below.

(Rule did2)
[TB; {};L, F; OB X; PE Y]

closed
(Rule did3)

[TB; {};L,¬T; OB X; PE Y]

closed

The iid1 rule closes a node and all pathes ended to the node, due to the existence of an

indirect clash (by subsumption relationships between the concepts). This rule is applicable,

when a subsumption relationship C ′ v C is inferrable from TB. Inference of subsumption

relationships are done based on the ALC tableaux rules [80].

(Rule iid1)
[TB ` C ′ v C; {};L, p(..., C, ...),¬p(..., C ′, ...); OB X; PE Y]

closed

The iid2 rule closes a node by existing a clash in the defined subdomain relationships,

i.e., existence of ¬(d � d′) and ability ro infer d � d′ in set L. Inference of subdomain

relationships are done based on the reflexivity and transitivity of subdomain relation. The

required tableaux rules for this purpose are easy and not described here.

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 132

[TB, F, {},

{}, {}]

a

b

Conjunction

Branching

k k

Disjunction

Branching

k

[TB, F, {},

{}, {}]

a

b

Conjunction

Branching

k k

Disjunction

Branching

k

Closed Node

Open Node

Figure 7.2: The right side is a sample of open tableaux tree, and the left side is a sample of
closed tableaux tree.

(Rule iid2)
[TB; {};L,¬(d � d′),` d � d′; OB X; PE Y]

closed

Closed Tableaux Tree

The description of tableaux expansion rules for MA(DL)2 shows that we have two kinds of

branching in the tableaux tree. Therefore, in a MA(DL)2 tableaux tree, a node is closed in

the following situations:

• if it is a leaf, a closure rule is applicable,

• if it is an inner node that is a parent of another node, its child is a closed node,

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 133

• if it is a node over a conjunction branching, its all branches are closed,

• if it is a node over a disjunction branching, at least one of its branches are closed.

A path, from the root to a leaf, is closed, if it does not contain a closed node; otherwise,

it is open. An MA(DL)2 tableaux tree is closed, if it does not contain an open path, or in

other words, if its root node is closed; otherwise, it is an open tree. Figure 7.2 shows samples

of open and closed MA(DL)2 tableaux tree.

7.1.3 Properties of Tableaux Rules

The three properties, which are investigated for each tableaux algorithm, are termination,

soundness, and completeness. In the rest, we prove that the proposed tableaux proof system

for MA(DL)2 logic family has the three properties.

Theorem 7.1.1 (Termination) The proposed tableaux proof system for MA(DL)2 logic

famuily terminates.

Proof. To prove the termination of the proposed tableaux, we need to prove that the max-

imum number of rule applications in the proposed approach is finite. As mentioned earlier,

the described rules force four steps in running a tableaux procedure.

• In fragmentation rules, rules α, β, ξJO, and ξJP always decompose a formula to its

subformulae. Since the length of the initial formula in tableaux procedure is finite,

these rules are applicable for a finite number.

• Although the ξDO and ξDP rules, do not decrease the length of formulae, they decrease

the number of . operators, which are finite in the initial formula.

• Rules λ+U and λ−U decrease the length of the arguments of the predicates existing

finitely in the initial formula.

• The γ categorization rules only categorize the subformulae produced by applying frag-

mentation rules. Since the number of the subformulae is finite, the number of applica-

tion of these formulae is finite, too.

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 134

• Sub-tableaux construction rules extract subformulae in modal formulae and run a

tableaux procedure with shorter length formulae. Since the number of modal operators

is finite, the number of applications of these rules is finite, too.

• The termination of tableaux algorithm for inference of subsumptions inALC are proved

in [80].

• Application of each closure rule, results in closing a path or branch in the tableaux

tree.

Following the above discussion, the total number of rule applications in tableaux procedure

is finite. Thus, the proposed tableaux procedure terminates. �

The proof of the soundness of a tableaux system is equal to prove that all its rules preserve

the unsatisfiability. In other words, we should prove that in each rule, if the consequence is

unsatisfiable, its assumption is unsatisfiable, too.

Theorem 7.1.2 (Soundness of Tableaux) If there exists a closed tableaux for a c-formula

F in MA(DL)2[UD]&− logic, then F is unsatisfiable.

Proof. It is enough to prove that in each rule, if the consequence is unsatisfiable, its as-

sumption is unsatisfiable, too. Then, by induction we can prove that if there exists a closed

tableaux tree, formula F is unsatisfiable. Existence of such property in the fragmentation

and categorization rules is obvious. Considering the semantics of MA(DL)2, existence of

this property in sub-tableaux construction rules (i.e., rules θ and κ) can be proved easily.

For example, it is clear that if X in one of the accessible world is unsatisfiable, OBu@dX is

unsatisfiable as well. The soundness of the tableaux rule for ALC is presented in [80]. In

the closure rules, the consequences are closed, due to the existence of direct or indirect clash

in the assumptions (showing unsatisfiability). Therefore, by existing a closed tableaux tree

for a formula F , by stepping backward from the leaves (which are closed) to the root, we

conclude that the formula in the root (i.e., formula F) is unsatisfiable. �

The completeness of a tableaux system, means for each c-formula in MA(DL)2[UD]&− , there

exists a closed tableaux tree. The proof sketch of the completeness theorem is presented in

the rest after proving a lemma.

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 135

Lemma 7.1.1 Let F be a c-formula in MA(DL)2[UD]&− in negation normal form (NNF),

such that does not contain any modal subformula (or modal statuses OB and PE). If T is

a tableaux tree resulted from applying the tableaux rules (except θ and κ, which are not

applicable), and contains an open path, formula F is satisfiable.

Proof. Since in the proposed tableaux system, we used set-labeling method, each leaf con-

tains all the subformulae of the formulae exist in the inner nodes of the tree from the

leaf to the last branching node. Therefore, in the open path, the leaf node is in the form

[TB; {};L; {}; {}] (w.r.t. the fact that there is no modal status in F), where L contains all

atomic subformulae of the inner nodes to the last branching node. In the tableaux rules

(except θ and κ) only the β rule creates a conjunctive branching. If we suppose β is n times

applicable, we can write F as F = F1 ∨ ...∨Fn such that the open path contains subformula

F1. Therefore, L contains all subformulae of F1. Since the path is open, L is a consistent set

(there is no clash in it), and hence, F1 and F are satisfiable. �

Theorem 7.1.3 (Completeness of Tableaux) If F is unsatisfiable in MA(DL)2[UD]&− logic,

then there exists a closed tableaux for F .

Proof. Considering the termination of the proposed tableaux method for MA(DL)2 logic

family, we assume Tn as a finite tableaux tree obtained from formula F by applying all

possible expansion rules. Now, we prove by induction that if Tn is not closed, then F is

satisfiable, which contradicts the assumption of the theorem.

If Tn is not closed, it contains a subtree in which none of the paths are closed, and if it

contains a disjunction branching node of Tn, it contains all the branches from that node as

well.

1. If F does not contain modal subformulae (i.e., with OB and PE operators), the open

subtree is only an open path. In this case, by Lemma 7.1.1, formula F is satisfiable,

which contradicts the assumption.

2. If there exist modal subformulae in F , certainly θ and κ rules are applied for construct-

ing Tn. Considering the preconditions of these two rules, it is clear that they can be

applied after applying α, β, ξ, and γ rules. Thus, before applying the θ and κ rules,

we can just have conjunctive branching (by applying the β rule). Note that in subtrees

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 136

resulted from applying the θ and κ rules, it is possible to apply the α, β, ξ, and γ rules.

Similar to the proof of Lemma 7.1.1, we can write formula F as F = F1∨ ...∨Fn. Since,

we assumed that Tn is open, the branch of one the Fi’s should be open. If Fi contains

modal operators, in the open subtree, we have a disjunction branching resulted from

applying the θ and κ rules, and its all branches are open.

• If the κ rule by existing OBu@di(1≤i≤n) X
′ is applied, each resulted branch is a

tableaux tree. If the created subtableaux tree does not contain modal operators

OB and PE, by previous case, X ′, p are consistent and satisfiable.

• If the θ rule is applied, openness of the all branches means we can easily construct

a model in which set OB X of formulae is consistent.

If any branch in the tree contains a modal subformula, we can continue by induction

and get the same result, i.e., the consistency of sets OB X and PE Y of formulae.

In each of the above cases, since L in the set-block of the branching node in consistent

(because no closure rule is applied) and the consistency of OB X and PE Y , we conclude

that Fi is valid. Thus, F is valid, too. By applying the θ rule, we have the same proof.

Therefor, by assuming that Tn is open, formula F is valid, which contradicts the

assumption of the theorem. Thus, the theorem holds.

Hence, the assumption that there exists an open path in Tn cannot hold and a closed tableaux

tree exists for formula F . �

7.1.4 Implementation in Prolog

For ensuring the correctness and applicability of the proposed tableaux system for MA(DL)2

logic in practice, the tableaux rules are implemented in Prolog. Prolog is a declarative

language with backtracking execution strategy. Efficient implementation of unification and

goal-oriented search strategy, makes this language a proper choice for implementing tableaux

algorithms.

To use the implemented inference engine, terminological box T B and security rule box

SB should be defined as follows.

assert(tbox([comma separated list of t-formulae])).

assert(sbox([comma separated list of c-formulae])).

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 137

Table 7.1: Syntax of formulae in MA(DL)2 inference engine implemented in Prolog.
MA(DL)2 Formula Syntax in the Engine MA(DL)2 Formula Syntax in the Engine

c1 ≡ c2 equiv(c1,c2) p(c1, ..., cn) pred(p, [c1,...,cn])

c1 v c2 subsum(c1,c2) p ∧ q p ^ q

c1 t c2 or(c1,c2) p ∨ q p v q

c1 u c2 and(c1,c2) ¬p -p

¬c ~c p→ q p=>q

∀r.c forall(r,c) p↔ q p<=>q

∃r.c exist(r,c) OBu@dp ob(u@d,p)

u1|u2 u1#u2 PEu@dp pe(u@d,p)

u1 . u2 u1>u2 IMu@dp im(u@d,p)

d1 � d2 subdomain(d1,d2) GRu@dp gr(u@d,p)

For checking the validity (or proof) of c-formula F , we should call proof(F). The syntax

of MA(DL)2 logic in Prolog is shown in Table 7.1. The Prolog code of version 2.07 of the

MA(DL)2 inference engine can be find in Appendix B.

7.1.5 Evaluation and Experimental Results

The MA(DL)2 inference engine, which is implemented in Prolog, is used to evaluate the

time complexity of inference in MA(DL)2 logic family, in practice. To this aim, the program

was loaded in SWI-Prolog interpreter and was run on a PC with Intel Core2 Dou 3.00 GHz

processor, 3 GB RAM, and Windows XP operating system. All tests run times (inference

times) were measured using Statistics/2 predicate in SWI-Prolog.

In evaluating the MA(DL)2 inference engine, two parameters, i.e., the complexity of t-

formulae, and the length of c-formulae (based on the number of modal operators), are taken

as variables in the different prepared test cases.

Evaluation based on the Complexity of T-Formulae

For this purpose, the Extended-Mindswap test cases are used. These test cases are the

extension of the Mindswap test cases, and they were prepared by Herchenröder [80] for

evaluating ALC inference engines. Mindswap test cases were initially produced by the group

working on the Mindswap project at University of Maryland2. In Extended-Mindswap test

2For more details about the Mindswap project and access to the prepared test cases, you can visit
http://www.mindswap.org.

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 138

0

1

2

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

In
fe
re
n
ce
 T
im

e
(m

s)

Test Case ID

Inference Time of C‐Formulae

Inference Time of T‐Formulae

Figure 7.3: Inference time of t-formulae and produced c-formulae in MA(DL)2 based on the
Extended-Mindswap test cases.

cases, there are 44 queries such that each of them has a special complexity or focuses on the

special properties.

To leverage such test cases for evaluating the MA(DL)2 inference engine, for each test

case, the set of formulae taken for TBox are added to T B in the SKB. SB in the SKB is

filled based on the atomic subformulae of the query in the test case as mentioned here. For

each atomic subformulae of the query3 like Ci, a formula OBu@dp(Ci) is added to SB. Finally,

the query for evaluating the MA(DL)2 inference engine in the resulted SKB, is PEu@dp(C),

where C is the query in the Extended-Mindswap test case. The set of test cases created from

the Extended Mindswap test cases by the above method are presented in Appendix C. The

results of the evaluation of the inference engine based on the prepared test cases are shown

in Figure 7.3.

Evaluation based on the Size of the SKB

The impact of the size of the SKB on the inference time has been evaluated by generating the

content of the SKB by different sizes randomly. For each generated case, the inference time

3Note that a query in a Mindswap test case is a description of a complex concept in ALC, which its
satisfiability should be inferred.

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 139

in the worst case (i.e., the inference time of for an unsatisfiable formula) has been measured.

Note that in a tableaux method, the inference of an unsatisfiable formula using refutation

approach, results in constructing the whole tableaux tree (for finding a possible close tree).

The size of the SKB in this evaluation, is taken as a function of the number of OB modal

formulae, the number of PE modal formulae, and the number of subsumption relationships.

The description of generated test cases, as well as the results of the evaluations are as follows.

The reported inference time in each test, is the average of 100 runs. The evaluated response

time is the aggregation of the time required for the all required conversions (e.g., to NNF,

DNF, and NNF), the time of constructing the required data structures, the time of building

the tableaux tree, and the time of freeing the memory occupied by the data structures.

Evaluation with Variable Number of OB Modal Formulae: The fixed parameters in this

case are as follows:

Number of concepts= 20 Number of subsumption relationships= 10

Number of conceptual predicates= 5 Number of authorities= 10

Number of security domains= 1 Number of PE modal formulae= 20

The results are shown in Figure 7.4. The diagram shows that by keeping other parameters

unchanged, the inference time in MA(DL)2 inference engine is a linear function of the number

of OB modal formulae.

Evaluation with Variable Number of PE Modal Formulae: The fixed parameters in this

case are as follows:

Number of concepts= 20 Number of subsumption relationships= 10

Number of conceptual predicates= 5 Number of authorities= 10

Number of security domains= 1 Number of OB modal formulae= 20

The results are shown in Figure 7.5. The diagram shows that similar to the previous case,

by keeping other parameters unchanged, the inference time in MA(DL)2 inference engine is

a linear function of the number of PE modal formulae.

Evaluation with Variable Number of OB and PE Modal Formulae: The fixed parameters

in this case are as follows:

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 140

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000

In
fe
re
nc
e
Ti
m
e
in
 th

e
W
or
st
 C
as
e
(m

s)

Number of OB Modal Formulae in the SKB

Figure 7.4: Evaluation of inference time in MA(DL)2 inference engine with variable number
of OB modal formulae.

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700 800 900 1000

In
fe
re
nc
e
Ti
m
e
in
 th

e
W
or
st
 C
as
e
(m

s)

Number of PE Modal Formuale in the SKB

Figure 7.5: Evaluation of inference time in MA(DL)2 inference engine with variable number
of PE modal formulae.

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 141

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800 900 1000

In
fe
re
nc
e
Ti
m
e
in
 th

e
W
or
st
 C
as
e
(m

s)

Number of OB and PE Formulae in the SKB

Figure 7.6: Evaluation of inference time in MA(DL)2 inference engine with variable number
of OB and PE modal formulae.

Number of concepts= 20 Number of subsumption relationships= 10

Number of conceptual predicates= 5 Number of authorities= 10

Number of security domains= 1

The results are shown in Figure 7.6. The diagram shows that the inference time is

polynomial of order 2 in this case. Since in the implemented inference engine, in the worst

case, for each PE formula, all the OB formulae are visited, by having n number of OB and PE

formulae, the time complexity of inference is O
(
(n

2
)2
)
.

Evaluation with Variable Number of Subsumption Relationships: The fixed parameters

in this case are as follows:

Number of conceptual predicates= 5 Number of authorities= 10

Number of security domains= 1 Number of OB modal formulae= 20

Number of PE modal formulae= 20

In this case, the number of subsumption relationships and the number of concepts (par-

ticipating in these relationships) are variable. The number of concepts are twice the number

of relationships. The results of the evaluation of the system in this case are shown in Figure

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 142

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800 900 1000

In
fe
re
nc
e
TI
m
e
in
 th

e
W
or
st
 C
as
e
(m

s)

Number of Subsumption Relationships in the SKB
(number of concepts is twice the number of subsumptions relationships)

Figure 7.7: Evaluation of inference time in MA(DL)2 inference engine with variable number
of subsumption relationships (and concepts).

7.7. Comparing the measured inference times in this case with the values obtained in the

previous cases shows that modal formulae has more significant overhead in the inference

engine. The main reason is constructing subtableaux trees by the expansion rules of modal

formulae in the proposed tableaux system.

7.2 Security Agent Prototype

A prototype of a security agent, which enforces the security policies based on the MA(DL)2-

AM authorization model, is implemented in this research. In this prototype, we tried to

use the tools and components that are provided for semantic-aware environments. The

source code of the security agent prototype is available at http://ce.sharif.edu/~m_

amini/madl2/prototype under GNU GPL license.

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 143

Resources

(Objects)

Subject

(User)

Security Agent

PDP

Contex

Handler

PAP

access request + credentials

meta policies

(MSP)

security policy

rules (SPR) Context

Sensors
context

 information

context

 information

access

request

Access

response

response (data/service) data / service

request

Protégé

PEP

 Access Contorl

Point (ACP)

MA(DL)
2
 SKB

JIP ground level policy rules

Resource Service Provider

API

Resource Service Provider

API

Resource Service Provider

API
Resource Service Provider

API

TB

Ontologies

SB

SPR MSP CI

AB

Assertions context

propositions

Authorities

ground level

policy rules

Ontologies

(in OWL)

Jena
MA(DL)

2

Inference

Engine

Ontologies

(TB)

W
e

b

S
e

rv
e

r

Jena

Conceptual

Level Policy

Rules and

Meta Policies

(in OWL)

OW
L-S

OW
L-S

OW
L-S

OW
L-S

Figure 7.8: The master design of the implemented security agent prototype.

7.2.1 Master Design

A prototype of a security agent based on the architecture shown in Figure 3.5 is implemented

using Google Web Toolkit (GWT4) on Java platform. The important characteristics of the

current version of this prototype are as follows.

• We can use Protégé5 for specifying the ontologies of subjects, objects (resources), and

actions. In fact, Protégé plays the role of the UI for PAP (Policy Administration Point)

component in the security agent. The ontologies written in Protégé are stored in OWL

files, which are read by the security agent.

• Security policy rules and also meta-policies are specified in Protégé, too. They are

stored in OWL files.
4Available at http://code.google.com/webtoolkit.
5Available at http://protege.stanford.edu.

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 144

• The ground (individual) level policy rules of resources (objects) are specified in OWL-S

in their related Web services, based on the model described in Section 3.4.3.

• Jena6 framework is used to read OWL and OWL-S files. The conceptual level and

ground level policy rules are read by Jena and are written in the MA(DL)2 SKB. The

inferences over T B (for subsumption relationships) and AB (for most specific concepts,

i.e., msc, and instance checking) are also done by Jena.

• The MA(DL)2 inference engine (implemented in Prolog) is employed by the JIP7 pro-

filing tool for policy inference in PDP.

• In this prototype, the access requests can be received from a Web user interface and

access decision is made based on the procedure described in Section 6.3.3; however, the

obligations cannot be enforced in this implementation. Obligation enforcement is itself

an interesting research field, whose some approaches can be found in [109, 26, 62, 118].

Based on the above characteristics, the master design of the implemented security agent

prototype is shown in Figure 7.8.

7.2.2 Experimental Results

To evaluate the current implementation of the proposed framework, some test cases were

run on a system with 1.66 GHz Core2Duo CPU and 2 GB of RAM. Note that the current

implementation is not perfect and its performance can be improved in different ways.

In figures 7.9 and 7.10, the number of policy rules (in both conceptual and ground

levels) has a near to linear relationship with the number of the concepts. As depicted in

the diagrams, by increasing the number of the concepts and policy rules, the response time

increases in a very slight exponential manner, near to linear. This means that the agent

decides and responses in an acceptable time, in practice. In Figure 7.11, the response time

with different number of concepts is shown. In this diagram, one conceptual level policy

rule beside a ground level policy rule exist in the SKB. In this diagram, we just consider the

worst case.

6Available at http://jena.sourceforge.net.
7Available at http://jiprof.sourceforge.net.

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 145

0
20
40
60
80

100
120
140
160
180
200

9 18 27 36 45 54 63 72 81 90

Re
sp

on
se

 T
im

e
(m

s)

Number of Concepts

Figure 7.9: Response time of granting an access vs. the number of concepts, while policy
rules increase relative to the number of concepts.

0

500

1000

1500

2000

2500

3000

9 18 27 36 45 54 63 72 81 90

Re
sp

on
se

 T
im

e
(m

s)

Number of Concepts

Figure 7.10: Response time of denying an access vs. the number of concepts, while policy
rules increase relative to the number of concepts.

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 146

0

200

400

600

800

1000

1200

9 18 27 36 45 54 63 72 81 90

Re
sp

on
se

 T
im

e
(m

s)

Number of Concepts

Figure 7.11: Response time of denying an access vs. the number of concepts, while there is
only a single policy rule.

Comparing the three diagrams show that the size of SB in the SKB has more effect than

the size of T B on the response time of the agent. Note that when the size of SB increases

(by adding the random policy rules) randomly, the possibility of the conflicts between the

policy rules and therefore the response time increase as well.

7.3 Summary

A practical access control system based on the proposed authorization model can show the

applicability of the proposed model. for this purpose, since the model is based on the

MA(DL)2 logic family, we require to develop an inference engine for MA(DL)2. The proof

system introduced in Chapter 4 is an axiomatic system, which cannot be automated in

practice. Thus, in this chapter, an analytic tableaux approach for MA(DL)2 logic family is

proposed, and also implemented in Prolog. The implemented MA(DL)2 inference engine was

evaluated and the results are presented in this chapter.

Using the MA(DL)2 inference engine, a security agent prototype, based on the MA(DL)2-

AM authorization model has been implemented. The master design of this prototype and

experimental results are presented in this chapter. The results show that although the

CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 147

logical inference is very time-consuming in theory, in this application, its cost is acceptable in

practice. In future work described in Chapter 8, some approaches for decreasing the response

time in the access control systems developed (based on the MA(DL)@-AM authorization

model) are introduced.

Chapter 8

Conclusions and Future work

The shift from the current computational environments to the semantic aware environments

provides a basis for interoperability and increasing the capability of machines in process-

ing and interpreting the information. Characteristics of such semantic-aware environments

suppress using the traditional and classical authorization models for them. Also, the main

drawback of most of the new models presented specifically for SAEs, is that they do not have

a trustable consistent set of rules for policy inference based on the semantic relationships

defined in the abstract conceptual layer. The problem which could be tackled by logics in

such models.

The most important advantages of using logic for authorization in semantic-aware en-

vironments are the abstraction of logic (enables composition of security policies for hetero-

geneous distributed environments), inference ability (enables inferring implicit policy rules

from the explicit ones), expressiveness (enables specifying different types of policies), and

providing a basis for ensuring the soundness of the model in policy derivation. In this the-

sis, a logic family, called MA(DL)2, and an authorization model based on this logic, called

MA(DL)2-AM, have been proposed for policy specification and inference in SAEs. Using

MA(DL)2 logic in MA(DL)2-AM model, ensures that the set of rules employed for implicit

policy derivation (due to the semantic relationships exist in the abstract layer) would be

sound, consistent, and complete. Such a guarantee is the result of existing a formal se-

mantics for the proposed logical language, and proving the soundness, completeness, and

decidability of its proof system. This property, is one of the outstanding characteristics of

MA(DL)2-AM in comparison with other authorization models proposed for SAEs.

148

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 149

MA(DL)2 logic, which is introduced in this thesis, is in fact a normative logic fam-

ily, whose core is resulted from the integrating description logic with n-ary predicates on

concepts, and multi-authority (poly-modal) version of standard deontic logic. Using Core

MA(DL)2 logic, we can express explicit norms on concepts and infer the implicit norms based

on the defined semantic relationships in ontologies. This is the answer to the main require-

ment that we have for authorization in conceptual level in SAEs. Extending Core MA(DL)2

by logic of composite authorities (employed for cooperative security administration in shared

subdomains) results in MA(DL)2[U−], and by logic of security domains results in MA(DL)2[−D]

in this family. MA(DL)2[UD] in this logic family has the most expressive power and has all

the capabilities of the other members.

Considering the Kripke semantics presented for the members of MA(DL)2 logic family,

the soundness of them has been proved. However, the completeness of some of them are

proved by applying some constraints in the proposed logics. Although MA(DL)2 logic has

been proposed for authorization in SAEs, the expressive power of the proposed logic besides

its proved soundness, completeness, and decidability properties make it useful for using in

other applications in computer science. Samples of these applications are specification and

inference of the behavior of the mobile agents, and composition of Web services.

MA(DL)2-AM is the authorization model proposed in this thesis, based on MA(DL)2 logic

family, for access and obligation policy specification, composition, and inference in SAEs in

both conceptual (abstract) and ground (individual or resource) levels. The policies can be

specified distributed, by different authorities in different security domains. Preserving the

consistency of the policy rules in the security knowledge base is the principle considered in

this model in adding, updating, and removing policy rules, by using the inference ability that

MA(DL)2 gives to the model. All the possible conflicts in this model are also surveyed and the

solutions required to solve or prevent them are fed to the model. Evaluating the capabilities

of the proposed model shows that MA(DL)2-AM is an attribute-based (credential-based)

model, which capables us to specify discretionary, mandatory, and role-based policies. Such

expressive power is the result of the abstraction level of the model and existence of normative

statuses, i.e., permission, prohibition, obligation, and gratuitousness.

In order to use MA(DL)2 logic in real applications (in our case, in access control systems),

we require to have a automated inference engine. Since the Hilbert style proof theory, which

is presented in this thesis for MA(DL)2, cannot be automated, an analytic tableaux method

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 150

has been proposed for this purpose. The termination, soundness, and completeness of the

proposed tableaux method have been proved, and its expansion rules have been implemented

in Prolog. Using the MA(DL)2 inference engine, a prototype of a security agent for access

control based on the proposed access control procedure in MA(DL)2-AM has been developed

and the experimental results have been reported in this thesis.

Using logics (especially modal logics) in different applications of computer science has

many advantages. In this thesis, one of its usage, i.e., for authorization in SAEs, has been

targeted. Proposing a new logic, or adapting or combining existing logics for a special

purpose is a difficult task. Regarding this fact, to make this thesis more educational, we

presented MA(DL)2 logic family, step by step, and in each step, we focused on the effects of

the new features added to the logic. The overall process, which is taken in this thesis, can be

used as a pattern for developing and using logics in other applications of computer science.

The steps of this overall process is requirement analysis, designing the required logic by

presenting syntax, semantics, and proof theory (and step by step from the core requirements),

proving the required logical and computational properties (such as soundness, completeness,

and computational complexity) and applying the required limitations to obtain the proper

properties, using the logic in the desired application, and finally presenting an automated

reasoning approach to make the proposed logic implementable in that application.

8.1 Future Work

Although MA(DL)2-AM authorization model has many advantages, and satisfies the main

security requirements of SAEs, we can increase the expressive power of this model by en-

hancing the capabilities of its logical language, i.e., MA(DL)2. The drawback of this model

is that the specification of exceptions is impossible in this model. Also the default access

policy cannot be specified using its logical policy specification language. Thus, we cannot

participate the default access policy in automated policy rule inference. Such weaknesses

can be solved by proposing a non-monotonic version of this logic, which has a paraconsistent

semantics. Note that we foremost, need to survey that how much is useful to have excep-

tions in this model, and how much complexity will be imposed by adding such a feature.

Worthwhile to note that existing semantic relationships (in conceptual abstract layer) might

make specifying and handling the exceptions so much complicated and useless.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 151

In designing MA(DL)2 logic family, we used ALC description logic as a basis. Thus,

in specification of subjects, objects (resources), and actions ontologies we are limited to

the expressive power of ALC. Whereas nowadays, more powerful variants of description

logics are being used for description of ontologies in the abstract conceptual layer of SAEs.

Therefore, we can extend MA(DL)2 by employing more expressive description logics in its

core. For this purpose, the effect of the new constructors (for complex concept definition)

on the inference of n-ary predicates should be considered in the first step.

Moreover than extending the logic, we can enumerate some research topics as future work

related to the application of MA(DL)2 logic and MA(DL)2-AM authorization model. One of

the main issues in this regard is the access control mechanisms that can be designed based on

MA(DL)2-AM. The prototype introduced in this thesis is one of the possible access control

mechanisms implemented based on this model. The important problem in logic-based access

control systems (mechanisms) is the low performance (long response time) of these systems.

There are some techniques that can be used to propose more efficient access control systems

based on the MA(DL)2-AM model, although in this application (i.e., access control), in real

environments, we have a low number of non-complicated policy rules, which do not make

policy inference so much time-consuming in practice. Some of the applicable techniques for

this purpose are as follows.

• The MA(DL)2 inference engine is implemented using analytic tableaux approach. The

tableaux systems have clear opportunities for parallelization, which significantly de-

creases the inference time [92, 106] (The different branches of the tableaux proof tree

can be processed in parallel). Parallelization of the proposed tableaux for policy in-

ference can have a great effect on decreasing the response time. This research topic

becomes more important by considering the widespread usage of multi-core CPUs in

new computer systems.

• One of the major techniques in logical systems is client proof carrying approach. In

this approach, the requester (subject) provides some of the proofs that the security

agent requires (e.g., most specific concepts or the authorization rules that shows the

requester can access the requested resource), and the security agent just needs to verify

the proof (which has a very low cost). In fact, in this technique, requesters sustain

part of the inference cost.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 152

The last point worthwhile to note is that MA(DL)2-AM is a general authorization model for

the environments that are using semantic technology for providing an abstract meta-data

layer. Therefore, we may customize or simplify the model for special environments where

special requirements exist or semantic technology is used in a restricted way. Thus, in the

customized or simplified version of MA(DL)2-AM, we may reach more efficient access control

procedure.

Appendix A

Case Studies

The MA(DL)2-AM authorization model, which is introduced in this thesis, can be leveraged

in different kinds of semantic-aware environments. Two case studies describing the usage of

this model are presented in this appendix. Note that in describing these case studies, we

focus more on how to specify the authorization policies in them.

A.1 Comprehensive Election System

The comprehensive election system (ES) works in a distributed manner and includes Pres-

idential Election System (PES), Mayor Election System (MES) and Parliament Election

System (LES). Each type of election system has instances executed in a city or village based

on its functionality and people of that area can use its services through the web or exclusive

intranet.

A.1.1 Fundamental Elements

In the following, you can see the description of the ontology of resources (objects) that should

be protected in our system. Note that the concepts like PESi describing the individuals of

election subsystems for cities or villages.

ES ≡ PES tMESt LES

PES ≡ PESc1 t PESc2 t PESv1 t PESv2 t PESv3

MES ≡ MESc1 tMESc2

153

APPENDIX A. CASE STUDIES 154

Council-C2

City2

Council-V3

Village3

Council-V2

Village2

Council-C1

City1

Council-V1

Village1

Interior Minister

Governor2 Governor1

Figure A.1: Authorities structure and their domains.

LES ≡ LESc1 t LESc2 t LESv1 t LESv2 t LESv3

ES1 ≡ ESc1 t ESv1

ESc1 ≡ LESc1 tMESc1 t PESc1

ESv1 ≡ LESv1 t PESv1

As a result of regionalism, each city or village has an election council that manages and

controls the elections. Each city with its surrounding villages are under administration of a

governor who is the authority of all election subsystems in them. The election system (ES)

is under administration of interior minister. In Figure A.1, the structure of authorities and

their domains are represented.

The set of action concepts, which are possible to be requested on the election systems, is

defined as A = {Vote, Count, RegisterCandidate,SeeResults}.
The ontology of subjects is represented in Figure A.2 and specified in description logic

as follows. Note that the system is based on credentials and each user or agent for proving

APPENDIX A. CASE STUDIES 155

Person

Graduated

MS/A

Holder

PhD

Holder

Presidential

Candidate

Resident
Non

Resident

Upper18

Voter

Iranian

Union

In
te

rs
ec

tio
n

Intersection

Parliament

Candidate

Intersection

Under18

U
n
io

n

Committee

Member

ComC1

Member

ComV1

Member

ComV3

Member

Union

Figure A.2: Subjects ontology of election system.

his/her subjective role in the system, provides a special credential.

Iranian v Person Upper18 v Person Under18 ≡ Person u ¬Upper18

Iranian ≡ Resident t NonResident Graduated v Person

MS/A Holder v Graduated PhD Holder v MS/A Holder

PresidentialCandidate ≡ MS/A Holder u Resident

ParliamentCandidate ≡ Graduated u Resident

Voter ≡ Iranian u Upper18

CommitteeMember v Resident

CommitteeMember ≡ ComC1Member t ComV1Member t ... t ComV3Member

The set of context propositions that are used to describe the policy rules in the system

are as follows.

APPENDIX A. CASE STUDIES 156

CX = {cx0, cx1, cx2, cx3, cx4, cx5, cx6}

cx0 = time is 8am - 18pm

cx1 = date is 2008/5/21

cx2 = date is 2008/3/15 - 2008/3/31

cx3 = time is after 21pm of 2008/5/21

cx4 = date is 2008/3/25 - 2008/4/5

cx5 = time is after 19pm of 2008/5/21

cx6 = time is between 18pm 2008/5/21 and 18pm 2008/5/22

A.1.2 Sample Policy Rules

The sample policy rules of the system are defined as follows.

1. Everybody who is resident in the country and has at least MS/A degree can register

as a presidential candidate with any presidential election system, during 2008/3/15 to

2008/3/31.

cx2 → PE
InteriorMinister

do(MS/A Holder u Resident,PES, RegisterCandidate)

2. Everybody who is graduated and resident in the country, during the 2008/3/25 to

2008/4/5, can register as a parliament candidate with any parliament election system.

cx4 → PE
InteriorMinister

do(Graduated u Resident,LES, RegisterCandidate)

3. The presidential and parliament election will be held in 2008/5/21, between 8am to

18pm and a voter must be Iranian and at least 18 years old.

cx0 ∧ cx1 → PE
InteriorMinister

do(Iranian u Upper18,ES, Vote)

4. Counting the votes in cities must be started at most 3 hours and in villages 1 hour

after the voting deadline by the committee selected by each city’s or village’s election

APPENDIX A. CASE STUDIES 157

council. This policy rule, for City1 and Village1 can be stated as follows.

cx3 → OB
Council-C1

do(ComC1Member,PESc1 t LESc1 tMESc1 ,Count)

cx5 → OB
Council-V1

do(ComV1Member,PESv1 t LESv1 ,Count)

5. Following Interior Minister’s statement, everybody can see the results of elections, 3

hours after finishing the elections. However, an authority of an area (domain) can

restrict this access. Some sample policy rules are as follows.

cx3 → PE
InteriorMinister

do(Person,ES, SeeResults)

cx6 → PE
Governor1

do(NonResident,PESc1 , SeeResults)

In the above policy rules, Governor1 prevents NonResident people to see the results of

presidential election in city 1 for 24 hours after the elections. It is obvious that Resident

people can see the results following the Interior Minister’s statement.

A.2 Distributed Semantic Digital Library

In Sharif University of Technology, each department had a set of digital scientific resources

in its local digital library. To make all the scientific resources accessible to different users

and having inter-university collaboration for science evolution, the deans of the departments

decided to share their resources with the central library of the university. The central library

has a set of resources other than the resources shared by the departments, and also has access

to the resources of some scientific institutes (e.g., IET, IEEE, ACM, and ScienceDirect).

Figure A.3 shows some of the security domains of this distributed digital library. In this

case we take two departments (i.e., Dept. of Comp. Eng. and Dept. of Math. Sci.) and one

scientific institute (i.e., IEEE).

Each department has its security policy rules for its shared scientific resources other

than the policies specified by the central library. Each resource itself may has some policies

regrading the author’s or publisher’s copyrights (good examples of such policies can be

found in http://books.goolge.com). Some of the departments (e.g., Dept. of Math. Sci.)

delegate the security management of the shared resources to the central library. Thus,

central library specifies the security policies on behalf them to access the shared resources.

APPENDIX A. CASE STUDIES 158

IEEE

Central Library

(CL)

Interface

Dept. of

Math. Sci.

(MS)

Dept. of

Comp. Eng.

(CE)In
te

rf
a

c
e

Interface

In
te

rfa
c
e

A
c
c
e

s
s
 R

e
q

u
e

s
ts

Access Requests

A
c
c
e

s
s
 R

e
q

u
e

s
ts

Access Requests

Disjunctive Style

Cooperative Management

Delegative Style

Cooperative Management

S
A

SA

S
A

SA

Figure A.3: Security domains in distributed semantic digital library.

However some of the others (e.g., Dept. of Comp. Eng.) cooperatively with the central

library manage their shared digital resources. The shared subdomain between each foreign

scientific institute and the central library is cooperatively managed based on the disjunctive

management style. This means, everybody can access these resources if the rules of the

institute or the rules of the central library allow.

A.2.1 Semantic Technology and Security Management

Due to the high volume of digital scientific resources and different types of the users access to

them, semantic technology is used to describe the resources, the users, and the action types

to access the resources. Figures A.4, A.5, and A.6 show parts of the ontologies of the users

(subjects), the resources (objects), and the actions respectively. Note that the ontologies

shown in these figures are not complete and many details (e.g., the attributes that each

concept has and many other concepts) are eliminated to decrease the complexity of the case

APPENDIX A. CASE STUDIES 159

Sharif
Member

Sharif
Faculty
Member

Library Staff
Univ.

Official Staff Student

Sharif Staff

Union

Intersection

External
Member

Union

Physics
Fac. Mem.

Comp. Eng.
Fac. Mem.

Mechanics
Fac. Mem.

Union

MSc
Student

BSc
Student

PhD
Student

Lib.
Admin.

TSubject

Ext. Faculty
Member

Ghadir Plan
Member

Administrator

Dept. Staff

Dept.
Admin.

Intersection

X is subsumed by Y

role R from X to Y

X Y

DepartmentAffliated To

RX Y

IEEE
Subscriber

IEEE Free
Subscriber

Authorized
IP Holder

Sharif IP
Holder

Figure A.4: Subjects ontology in the distributed semantic digital library case study.

study.

Following the formal specification of the authorization model in Section 6.1, it is clear

that the definition of the elements of FDS is not difficult in this case study (e.g., Ô is the set

of all resources in the distributed digital library). Note that the authority of each security

domain is denoted by authX , where X is the abbreviation of the domain’s name. The shared

domain between domains X and Y is also denoted by X GY .

For each security domainX in this case study, SKBKX is defined asKX = 〈T BX ,ABX ,SBX〉,
where T BX contains the descriptions of the ontologies shown graphically in figures A.4, A.5,

and A.6.

The assertions introducing the resources registered in the domain X are stored in ABX .

For example for a conference paper p1, we have the assertion ConferencePaper(p1) in ABX .

For each action concept, we define an instance with the same name (e.g., edit for the action

concept Edit). Thus, the assertions about the actions are defined as follows.

Edit(edit), Upload(upload), Delete(delete), Read(read), Download(download),

OnlineRead(onlineread), OnlinePreview(onlinepreview), Search(search), P rint(print)

Note that in this way, for example read is an instance of Read and also is an instance of

Edit, which means read is a kind of edit action; where we read, but do not write.

APPENDIX A. CASE STUDIES 160

Document

Thesis

Technical

Report

Industrial

Report

Article

Report

Union

Multimedia

Union

MSc Thesis

BSc Thesis

PhD Thesis

Union

Conference

Paper

Journal

Article

Workshop

Paper

TObject

Union

Vocal

Resource

Visual

Resource
Book News

Voice

Music

MicroFilm

ImageMovie

Geographic

al Material

Map

Sci. Inst.

Resource

IET Res.

 IEEE Res.

ACM Res.

Science

Direct Res.

Atlas

X is subsumed by Y

X Y

Plain
Encrypted

Figure A.5: Objects (resources) ontology in the distributed semantic digital library case
study.

Edit

Delete Upload

TAction

Read

X is subsumed by Y

X Y

OnlineRead Download

PrintSearch

Online

Preview

Figure A.6: Actions ontology in the distributed semantic digital library case study.

APPENDIX A. CASE STUDIES 161

The assertions about the requesters (subject instances) are inserted dynamically during

the access control procedure as described in Section 6.3.3.

A.2.2 Security Policy Rules

The samples of concept-level security policy rules specified in each security domain in this

case study (stored in SBX) are as follows.

Dept. of Comp. Eng. (CE)

The policy rules specified in domain CE and its shared subdomains are as follows.

• The students of CE can have read access to the CE’s resources.

T→ PE
(authCE@CE)

do(Student u ∃AffliatedTo�{compEng},>Object, Read)

• Visiting professors and students in CE can access to CE’s resources except theses.

T→ PE
(authCE@CE)

do((Student t ExtFacultyMember) u V isitor,
>Object \ Thesis, Read)

• The shared domain CE GCL is defined as a subdomain of CE, i.e., CE GCL � CE.

Central Library (CL)

The policy rules specified in domain CL and its related shared subdomains are as follows.

• Graduate level students (i.e., MSc and PhD students) and Sharif faculty members can

get read access to the resources of external scientific institutes including IEEE.

T→ PE
(authCL@IEEEGCL)

do(MScStudent t PhDStudent t SharifFacultyMember,

SciInstResource, Read)

• The members of Ghadir plan and faculty members of other universities can only read

the CE’s theses online.

T→ PE
(authCL@CE GCL)

do(GhadirP lanMember t ExtFacultyMember, Thesis,

APPENDIX A. CASE STUDIES 162

OnlineRead)

• PhD students of Sharif can upload their theses and technical reports to the digital

library; however, MSc and BSc theses should be added by the library’s administrator.

T→ PE
(authCL@CL)

do(PhDStudent, Thesis t TechnicalReport, Upload)

T→ IM
(authCL@CL)

do(Student \ PhDStudent, Thesis, Upload)

T→ PE
(authCL@CL)

do(LibAdmin, Thesis, Edit)

• Authority of domain Dept. of Math. Sci. (MS) should grant read right to all Sharif

members as well as the external members to access all registered resources in domain

MS. Similarly, full access to the administrators of central library.

T→ PE
(authCL@MS)

(PE
(authMS@MS)

do(SharifMember t ExternalMember,

>Object, Read))

T→ PE
(authCL@MS)

(PE
(authMS@MS)

do(LibAdmin,>Object,>Action))

IEEE Institute

The policy rules specified in domain IEEE and its shared subdomains are as follows.

• The users connected with Sharif’s IP can get read access to the shared resources with

Sharif during year 2010 (that they have contract).

Y earIs2010→ PE
(authIEEE@IEEEGCL)

do(SharifIPholder,>Object, Read)

• The free subscribed users of IEEE digital library (with username and password) freely

have read access to the papers of conferences and workshops in the case that the traffic

is less than 120 M.

TrafficLessThan120M → PE
(authIEEE@IEEE)

do(IEEEsubscriber,

ConferencePaper tWorkshopPaper,Read)

• The shared domain IEEE G CL is defined as a subdomain of IEEE, i.e., IEEE G

CL � IEEE.

APPENDIX A. CASE STUDIES 163

Ground-Level Policy Rules

The samples of ground-level policy rules in this case study are as follows.

• The book entitles ’Computer Security Basics’ with ID ’qa76.9’ cannot be downloaded

by non-library-administrators.

T→ IM
(authCE@CEGCL)

do(>Subject \ LibAdmin,Nqa76.9, Download)

• The content of the above book (with ID ’qa76.9’) can be searched by all users and if

they require the results of the search can be encrypted.

T→ PE
(authCE@CEGCL)

do(>Subject, Nqa76.9 , Search)

∧ OB
(authCE@CEGCL)

cap(Encrypted,Nqa76.9)

• The users who are not the faculty members of Sharif Univ. cannot see the aerial map

with ID ’m103’.

T→ IM
(authCL@CL)

do(>Subject \ SharifFacultyMember,Nm103 , OnlinePreview)

Appendix B

MA(DL)2 Reasoner in Prolog

The source code of the MA(DL)2 reasoner in Prolog is presented in this appendix. The

following code has been run and tested in SWI-Prolog version 5.7.15. To use the reasoner,

TBox T B and SBox SB of the MA(DL)2 security knowledge base should be filled using the

following commands.

assert(tbox([comma separated list of t-formulae])).

assert(sbox([comma separated list of c-formulae])).

For checking the validity (or proof) of a given c-formula F , proof(F) should be called.

/**

Theorem prover of MA(DL)^2 logic using an analytic tableaux algorithm

Version: 2.07

Language: SWI Prolog

Date: 2010.07.31

Author: Morteza Amini

Copyright (C) 2008-2010 Morteza Amini

**/

:- op(300,xfy,#), % disjunctive authority

op(310,xfy,&), % cooperative authority

op(320,xfy,>), % delegative authority

op(360,xfy,<), % subsumption

164

APPENDIX B. MA(DL)2 REASONER IN PROLOG 165

op(400,fy,-), % negation

op(500,xfy,^), % conjunction

op(600,xfy,v), % disjunction

op(650,xfy,=>), % implication

op(700,xfy,<=>), % equivalence

op(800,xfy,@). %authority at domain

/**

Negation Normal Form (nnf)

Usage: nnf(+Fml,-NNF)

**/

nnf(ob(U,F),NNF) :- !, nnf(F,NNF1), cnf(NNF1,CNF), obRule(ob(U,CNF), NNF).

nnf(pe(U,F),NNF) :- !, nnf(F,NNF1), dnf(NNF1,DNF), peRule(pe(U,DNF), NNF).

nnf(pred(P,X),pred(P,Y)) :- !, expand_param(X,Y).

nnf(-pred(P,X),-pred(P,Y)) :- !, expand_param(X,Y).

nnf(A ^ B,NNF) :- !, nnf(A,NNF1), nnf(B,NNF2), NNF = (NNF1 ^ NNF2).

nnf(A v B,NNF) :- !, nnf(A,NNF1), nnf(B,NNF2), NNF = (NNF1 v NNF2).

nnf(F,NNF) :-

(F = -(-A) -> F1 = A;

F = -ob(U,A) -> F1 = pe(U,-A);

F = -pe(U,A) -> F1 = ob(U,-A);

F = im(U,A) -> F1 = ob(U,-A);

F = -im(U,A) -> F1 = pe(U,A);

F = gr(U,A) -> F1 = pe(U,-A);

F = -gr(U,A) -> F1 = ob(U,A);

F = -(A v B) -> F1 = (-A ^ -B);

F = -(A ^ B) -> F1 = (-A v -B);

F = (A => B) -> F1 = (-A v B);

F = -(A => B) -> F1 = (A ^ -B);

F = (A <=> B) -> F1 = ((A ^ B) v (-A ^ -B));

F = -(A <=> B) -> F1 = ((A ^ -B) v (-A ^ B)))

,!,nnf(F1,NNF).

nnf(P,P).

APPENDIX B. MA(DL)2 REASONER IN PROLOG 166

obRule(ob(U,(A ^ B)), (OBA ^ OBB)) :- !, obRule(ob(U,A),OBA), obRule(ob(U,B),OBB).

obRule(F, F).

peRule(pe(U,(A v B)), (PEA v PEB)) :- !, peRule(pe(U,A),PEA), peRule(pe(U,B),PEB).

peRule(F, F).

/**

Expansion of Parameteres of Concept Predicates

Usage: expand_param(+X,-EX)

**/

expand_param([],[]):-!.

expand_param([NC|X],[EC|Y]) :- expand_defs(NC,D),

negnormform(D,E), disnormform(E,EC), !, expand_param(X,Y).

/**

Disjunction Normal Form of a Concept Description

Usage: disnormform(+NNF,-CNF)

**/

disnormform(or(A, B), or(A1, B1)):- !, disnormform(A, A1),

disnormform(B, B1).

disnormform(and(A, B),DNF):- !, disnormform(A, A1),

disnormform(B, B1), disnormform1(and(A1, B1), DNF).

disnormform(DNF,DNF).

disnormform1(and(A, or(B, C)), or(A1, B1)):- !,

disnormform1(and(A, B), A1), disnormform1(and(A, C), B1).

disnormform1(and(or(A, B), C), or(A1, B1)):- !,

disnormform1(and(A, C), A1), disnormform1(and(B, C), B1).

disnormform1(DNF,DNF).

/**

Conjunctive Normal Form (cnf)

Usage: cnf(+NNF,-CNF)

**/

cnf(A ^ B, (A1 ^ B1)):- !, cnf(A, A1), cnf(B, B1).

APPENDIX B. MA(DL)2 REASONER IN PROLOG 167

cnf(A v B,CNF):- !, cnf(A, A1), cnf(B, B1), cnf1(A1 v B1, CNF).

cnf(CNF,CNF).

cnf1((A ^ B) v C, (A1 ^ B1)):- !, cnf1(A v C, A1), cnf1(B v C, B1).

cnf1(A v (B ^ C), (A1 ^ B1)):- !, cnf1(A v B, A1), cnf1(A v C, B1).

cnf1(CNF,CNF).

/**

Disjunctive Normal Form (dnf)

Usage: nnf(+NNF,-DNF)

**/

dnf(A v B, (A1 v B1)):- !, dnf(A, A1), dnf(B, B1).

dnf(A ^ B,DNF):- !, dnf(A, A1), dnf(B, B1), dnf1(A1 ^ B1, DNF).

dnf(DNF,DNF).

dnf1(A ^ (B v C), (A1 v B1)):- !, dnf1(A ^ B, A1), dnf1(A ^ C, B1).

dnf1((A v B) ^ C, (A1 v B1)):- !, dnf1(A ^ C, A1), dnf1(B ^ C, B1).

dnf1(DNF,DNF).

/**

Usage: proof(+F) --> checks the proof of an MA(DL)^2 formula F.

**/

:- dynamic(sbox/1).

:- dynamic(tbox/1).

proof(F) :- ((tbox(TB) -> buildOnt(TB)); \+tbox(_)),

((sbox(SB) -> (buildFormula(SB,SBF), S=SBF ^ -F)) ;

(\+ sbox(_) -> S= -F)),

unsat(S), %run tableaux algorithm

retractall(ont(_)). %remove assertions from SKB.

proof(_) :- retractall(ont(_)), fail.

unsat(F) :- nnf(F,NNF), dnf(NNF,DNF), !, tab([DNF], [], [*], []).

APPENDIX B. MA(DL)2 REASONER IN PROLOG 168

buildFormula([X],X):- !.

buildFormula([A|SB],SBF ^ A) :- buildFormula(SB,SBF).

buildOnt([]):-!.

buildOnt([equiv(X,X)|TB]) :- !, buildOnt(TB). %ignore self loop

buildOnt([subsum(X,X)|TB]) :- !, buildOnt(TB). %ignore self loop

buildOnt([equiv(X,Y)|TB]) :- !, assert(ont(equiv(X,Y))), buildOnt(TB).

buildOnt([subsum(X,Y)|TB]) :- !, concat(X,’__restrict__temp’,Z),

assert(ont(equiv(X,and(Y,Z)))), buildOnt(TB).

/**

Anlytical Tableaux Algorithm

Usage: tab(+F, +L, +OBF, +PEF)

**/

%################# FRAGMENTATION AND CLASSIFICATION RULES #################

tab([A ^ B|F], L, OB, PE) :- !, tab([A,B|F], L, OB, PE). % Alpha Rule

tab([A v B|F], L, OB, PE) :- !, tab([A|F], L, OB, PE),

tab([B|F], L, OB, PE). % Beta Rule

tab([ob((U1#U2)@D,X)|F], L, OB, PE) :- !, tab([ob(U1@D,X) ^ ob(U2@D,X)|F], L, OB, PE).

tab([pe((U1#U2)@D,X)|F], L, OB, PE) :- !, tab([pe(U1@D,X) v pe(U2@D,X)|F], L, OB, PE).

tab([ob((U1>U2)@D,X)|F], L, OB, PE) :- !, tab([ob(U1@D,ob(U2@D,X))|F], L, OB, PE).

tab([pe((U1>U2)@D,X)|F], L, OB, PE) :- !, tab([pe(U1@D,pe(U2@D,X))|F], L, OB, PE).

tab([pred(P,X)|F], L, OB, PE) :- !,

((hasUnion(X) -> (unionDecom(X,X1,X2),

tab([pred(P,X1),pred(P,X2)|F], L, OB, PE))); % Lambda-{+U} Rule

tab(F, [pred(P,X)|L], OB, PE)). % Gamma-L Rule

tab([-pred(P,X)|F], L, OB, PE) :- !,

((hasUnion(X) -> (unionDecom(X,X1,X2),

APPENDIX B. MA(DL)2 REASONER IN PROLOG 169

tab([-pred(P,X1) v -pred(P,X2)|F], L, OB, PE))); % Lambda-{-U} Rule

tab(F, [-pred(P,X)|L], OB, PE)). % Gamma-L Rule

tab([ob(U@D,A)|F], L, OB, PE):- !, tab(F, L, [ob(U@D,A)|OB], PE). % Gamma-O

tab([pe(U@D,A)|F], L, OB, PE):- !, tab(F, L, OB, [pe(U@D,A)|PE]). % Gamma-P

tab([subdomain(D1,D2)|F], L, OB, PE) :- !,

tab(F, [subdomain(D1,D2)|L], OB, PE). % Gamma-L Rule

tab([-subdomain(D1,D2)|F], L, OB, PE) :- !,

tab(F, [-subdomain(D1,D2)|L], OB, PE). % Gamma-L Rule

tab([P|F], L, OB, PE) :- !, tab(F, [P|L], OB, PE).% Gamma-L Rule

%#################### SUB-TABLEAUX CONSTRUCTION RULES ####################

tab([], L, OB, [pe(U@D,X)|PE]) :- removeOB(L, OB, U, D, FOB), !,

(tab([X|FOB], [], [*], []); tab([], L, OB, PE)). % Kappa Rule

tab([], L, [ob(U@D,X)|OB], []) :- removeOB(L, OB, U, D, FOB), !,

(tab([X|FOB], [], [*], []); tab([], L, [OB|ob(U@D,X)], [])). % Theta Rule

tab([], L, _, _) :- !, contradiction(L).

%############################# CLOSURE RULES #############################

contradiction(L) :- (member(false, L); member(-true, L)), !.

contradiction(L) :- member(P,L), member(-P,L), !.

contradiction(L) :- member(pred(P,X), L), member(-pred(P,Y), L),

subpred(Y, X), !.

contradiction(L) :- member(-subdomain(D1,D2),L), subdomain(L,D1,D2), !.

% return true if there is at least one union composition of

concepts in the arguments of a given predicate

hasUnion([or(_,_)|_]) :- !.

hasUnion([_|X]) :- !, hasUnion(X).

% takes a list of concepts and decomposes the first union composition

(e.g., decomposes or(C1,C2) to C1 and C2) and separates it to two lists.

unionDecom([], [], []).

unionDecom([or(C1,C2)|X], [C1|Y1], [C2|Y2]) :- !, copy(X,Y1), copy(X,Y2).

APPENDIX B. MA(DL)2 REASONER IN PROLOG 170

unionDecom([C|X],[C|Y1],[C|Y2]) :- !, unionDecom(X,Y1,Y2).

% copies a list into another

copy([],[]).

copy([A|X],[A|Y]) :- copy(X,Y).

% removes ob(u@d1,x) from OB where d1 is subdomain of d, and collects x’s in FOB.

removeOB(_,[], _, _, []) :- !.

removeOB(L,[ob(U@D1,X)|OB], U, D, [F|FOB]) :- subdomain(L, D, D1), F=X, !,

removeOB(L,OB, U, D, FOB).

removeOB(L,[_|OB], U, D, FOB) :- !, removeOB(L, OB, U, D, FOB).

%checks whether p(x) is sub-predicate of p(x’) based on subsumption inference

service (must be obtained by an appropriate inference engine from TBox (TB)).

subpred([], []) :- !.

subpred([HX|X], [HY|Y]) :- (HX=HY ; subsume(HX, HY)), !, subpred(X, Y).

subsume(C1,C2):- tab_proof(subsum(C1,C2)).

subdomain(L, D1, D2) :- (D1=D2 ; subdomain1(L, D1, D2)), !.

subdomain1(L, D1, D2) :- member(subdomain(D1, D2), L).

subdomain1(L, D1, D2) :- member(subdomain(D1, D3), L),

subdomain1(L, D3, D2).

%############################# ALC REASONER ##############################

% Tableaux reasoner for ALC description logic, by Thomas Herchenroder,

University of Edinburgh, 2006.

:- use_module(library(lists)).

:- op(100,fy,~).

:- dynamic ont/1.

:- dynamic id/1.

% Main Proof Goal

tab_proof(Exp) :- % true/false = satisfiable/unsatisfiable

alc_proof(Exp).

APPENDIX B. MA(DL)2 REASONER IN PROLOG 171

%construct_goal

alc_proof(equiv(A,B)) :- \+ tabl(and(A,~B)), \+ tabl(and(B,~A)).

alc_proof(subsum(A,B)) :- \+ tabl(and(A,~B)).

alc_proof(disjoint(A,B)) :- \+ tabl(and(A,B)).

alc_proof(unsat(A)) :- % unsatisfiable A

\+ tabl(A).

alc_proof(A) :- % try to satisfy everything else

tabl(A).

% main worker

tabl(Exp) :- expand_defs(Exp,Exp1), % expand expression into most basic

negnormform(Exp1,Exp2), % NNF transformation

setID(0), !,

search([[Exp2]],df,_). % do the proof as an agenda search

%negation normal form

negnormform(~ ~X,X1) :- negnormform(X,X1).

negnormform(~forall(R,C),exist(R,C1)) :-

negnormform(~C,C1).

negnormform(forall(R,C),forall(R,C1)) :- negnormform(C,C1).

negnormform(~exist(R,C),forall(R,C1)) :- negnormform(~C,C1).

negnormform(exist(R,C),exist(R,C1)) :- negnormform(C,C1).

negnormform(~and(A,B),or(A1,B1)) :- negnormform(~A,A1),

negnormform(~B,B1).

negnormform(and(A,B),and(A1,B1)) :- negnormform(A,A1),

negnormform(B,B1).

negnormform(~or(A,B),and(A1,B1)) :- negnormform(~A,A1),

negnormform(~B,B1).

negnormform(or(A,B),or(A1,B1)) :- negnormform(A,A1),

negnormform(B,B1).

negnormform(~X,~X) :- atom(X).

negnormform(X,X) :- atom(X).

%expansion of definitions

APPENDIX B. MA(DL)2 REASONER IN PROLOG 172

expand_defs(forall(R,C),forall(R,C1)) :- expand_defs(C,C1).

expand_defs(exist(R,C),exist(R,C1)) :- expand_defs(C,C1).

expand_defs(and(A,B),and(A1,B1)) :- expand_defs(A,A1), expand_defs(B,B1).

expand_defs(or(A,B),or(A1,B1)) :- expand_defs(A,A1), expand_defs(B,B1).

expand_defs(~A,~A1) :- expand_defs(A,A1).

expand_defs(X,Y) :- atom(X), ont(equiv(X,X1)), expand_defs(X1,Y).

expand_defs(X,X) :- atom(X), \+ ont(equiv(X,_)).

% search(+Goal,+Style,-ResultList) -- agenda style search

% -- transforms Goal into a list of [clash]/[model] elements

search([],_,[]).

search(Reduced, _, Reduced) :- Reduced = [H|_],

H = [clash], % a clash leaf fails the proof

!, fail.

search([Node| T], Style, Reduced) :-

process_node(Node,NewNodes),

filter_nodes(NewNodes,NewNodes1),

merge_agendas(NewNodes1, T, Style, New),

search(New, Style, Reduced).

filter_nodes(NewNodes,NewNodes1) :-

(setof(X,(member(X,NewNodes),X\=[model]),NewNodes1);

NewNodes1 = []), !.

merge_agendas(A1, A2, df, New) :- append(A1, A2, New),!.

merge_agendas(A1, A2, bf, New) :- append(A2, A1, New),!.

% reduce a node of the proof tree

process_node([clash],[]) :- !.

process_node([model],[]) :- !.

process_node(ListOfDLExps,ResultListOfLists) :-

transform_connect(ListOfDLExps,_,LoL3),

expand_nodes(LoL3,ResultListOfLists).

expand_nodes([],[]).

expand_nodes([H|R],RLoL) :-

expand_node(H,RLoL1),

APPENDIX B. MA(DL)2 REASONER IN PROLOG 173

expand_nodes(R,RLoL2),

append(RLoL1,RLoL2,RLoL).

% process a single node

expand_node([],[]).

expand_node([model],[[model]]) :-!.

expand_node([clash],[[clash]]) :-!.

expand_node(Node,[N1]) :- check_clash(Node,N1),!. % clash closes this branch

expand_node(Node,N1) :- expand_exist(Node,[],LoE), % expand existential restrictions

LoE \= [], % only continue with non-empty edges

expand_forall(Node,LoE,LoE2), % try eliminate value

restrictions

extract_nodes(LoE2,N1). % get the list of new fringe nodes

expand_node(Node,[N1]) :- % model closes this branch

expand_exist(Node,[],LoE),

LoE = [],N1 = [model].

% extract list of nodes from list of edges

extract_nodes([],[]).

extract_nodes([edge(_,_,N)|R],[N|R1]) :- extract_nodes(R,R1).

% transform and/or connectives

transform_connect([],_,[[]]).

transform_connect([and(A,B)|R],N,R1) :-

(member(A,R) ->

(member(B,R) ->

transform_connect(R,N,R1);

transform_connect([B|R],N,R1));

(member(B,R) ->

transform_connect([A|R],N,R1);

transform_connect([A,B|R],N,R1))).

transform_connect([or(A,B)|R],N,LoL) :-

(\+ (member(A,R) ; member(B,R)) ->

(transform_connect([A|R],N,LoL);

APPENDIX B. MA(DL)2 REASONER IN PROLOG 174

transform_connect([B|R],N,LoL));

transform_connect(R,N,LoL)).

transform_connect([H|R],N,LoL) :-

H \= and(_,_),

H \= or(_,_),

transform_connect(R,N,LL1),

LL1 = [LL2],

LoL = [[H|LL2]].

% transform forall/exist quantifiers

expand_exist([],L,L).

expand_exist([exist(R,C)|T],T1,L) :-

((member(edge(R,_,X),T1), member(C,X)) -> % existing R edge

expand_exist(T,T1,L); getID(Id),

expand_exist(T,[edge(R,Id,[C])|T1],L)).

expand_exist([H|T],T1,L) :- H \= exist(_,_), expand_exist(T,T1,L).

expand_forall(_,[],[]).

% push concept into exist. node

expand_forall(Node,[edge(R,I,N)|RoE],[edge(R,I,N2)|R1]) :-

setof(X,member(forall(R,X), Node),C1),

append(C1,N,N1),

remove_duplicates(N1,N2),

expand_forall(Node,RoE,R1).

expand_forall(Node,[edge(R,I,N)|RoE],[edge(R,I,N)|LoE]) :-

\+ member(forall(R,_),Node),

expand_forall(Node,RoE,LoE).

check_clash(Exp,Exp1) :- member(A,Exp), member(~A,Exp), Exp1 = [clash].

remove_duplicates([],[]).

remove_duplicates([H|T],[H|R]) :- r_d(H,T,[],R1),

remove_duplicates(R1,R), !.

r_d(_,[],T,T).

r_d(E,[E|T],TT,T1) :- r_d(E,T,TT,T1).

r_d(E,[X|T],TT,T1) :- X \= E, r_d(E,T,[X|TT],T1).

APPENDIX B. MA(DL)2 REASONER IN PROLOG 175

getID(I):- id(I1), I is I1 + 1, retract(id(I1)), asserta(id(I)), !.

getID(I):- \+ id(_), I is 0, asserta(id(I)),!.

setID(X):- (id(Y) -> retract(id(Y)); true), asserta(id(X)).

Appendix C

Extended Mindswap Test Cases

The test cases generated based on the Extended Mindswap test cases are presented in this

appendix. In each test case, TBox T B is filled with assert(tbox([...])) and SBox SB
is filled with assert(sbox([...])). madl2_query() represents the query on the MA(DL)2

inference engine, and alc_query() represents the query on the ALC inference engine.

1- ex1_10

====================

assert(tbox([equiv(veggiepizza,and(pizza, forall(hastopping,(~meat)))), equiv(meatpizza,

and(pizza, forall(hastopping, (~veggie)))),equiv(veggie,or(mushroom, olive)),equiv

(meat,or(pepperoni ,sausage))])).

assert(sbox([ob(u@d,pred(p,[veggiepizza])), ob(u@d, pred(p,[meatpizza]))])).

madl2_query(pe(u@d, pred(p,[and(veggiepizza,meatpizza)]))).

alc_query(and(veggiepizza, meatpizza))).

2- ex1_11

====================

assert(tbox([equiv(a,and(h, and(i, (~d)))), equiv(j,(~k)), equiv(b,(~g)), equiv

(d,forall(q, j)), equiv(g,(~e))])).

assert(sbox([ob(u@d, pred(p,[exist(p,a)])), ob(u@d, pred(p,[exist(p,b)])), ob(u@d,

pred(p,[c])), ob(u@d, pred(p,[d])), ob(u@d, pred(p,[~exist(p,(~and((~e),f)))]))])).

madl2_query(pe(u@d,pred(p,[and(exist(p, a), and(exist(p, b), and(and(c, d),

(~exist(p, (~and((~e), f)))))))]))).

alc_query(and(exist(p, a), and(exist(p, b), and(and(c, d), (~exist(p, (~and((~e),

f))))))))).

176

APPENDIX C. EXTENDED MINDSWAP TEST CASES 177

3- ex1_1

====================

assert(tbox([equiv(beer,and(drink,and(exist(hasingr, water),and(exist(hasingr,hops),

and(exist(hasingr, malt), forall(hasingr, or(water, or(hops, malt)))))))), equiv(

grapes,and((~hops),and((~malt), (~water)))), equiv(wine,and(drink, exist(hasingr,

grapes)))])).

assert(sbox([ob(u@d,pred(p,[wine])), ob(u@d,pred(p,[beer]))])).

madl2_query(pe(u@d,pred(p,[and(wine, beer)]))).

alc_query(and(wine, beer)).

4- ex1_2_1

====================

assert(sbox([ob(u@d,pred(p,[exist(r, b)])), ob(u@d, pred(p,[forall(r, (~b))]))])).

madl2_query(pe(u@d,pred(p,[and(exist(r, b), forall(r, (~b)))]))).

alc_query(and(exist(r, b), forall(r, (~b)))).

5- ex1_2_2

====================

assert(sbox([ob(u@d,pred(p,[exist(r, b)])), ob(u@d,pred(p,[forall(r, or(a, (~b)))]))])).

madl2_query(pe(u@d,pred(p,[and(exist(r, b), forall(r, or(a, (~b))))]))).

alc_query(and(exist(r, b), forall(r, or(a, (~b))))).

6- ex1_2_3

====================

assert(tbox([equiv(aa,or(a, (~a))), equiv(a,exist(r, exist(r, exist(r, c)))),

equiv(b,and(a, and(exist(r, aa), or(aa, (~aa)))))])).

assert(sbox([ob(u@d,pred(p,[exist(r, b)])), ob(u@d, pred(p, [forall(r, (~b))]))])).

madl2_query(pe(u@d,pred(p,[and(exist(r, b), forall(r, (~b)))]))).

alc_query(and(exist(r, b), forall(r, (~b)))).

7- ex1_2_4

====================

assert(tbox([equiv(a,(~b))])).

assert(sbox([ob(u@d,pred(p,[exist(r, b)])), ob(u@d, pred(p, [forall(r, or(a, (~b)))]))])).

madl2_query(pe(u@d,pred(p,[and(exist(r, b), forall(r, or(a, (~b))))]))).

alc_query(and(exist(r, b), forall(r, or(a, (~b))))).

8- ex1_3

====================

APPENDIX C. EXTENDED MINDSWAP TEST CASES 178

assert(tbox([equiv(werewolf,and(animal, and(exist(haspower, magical),forall(speaks,

language)))),equiv(acramantula,and(beast,and(or(male,female),exist(haspower,magical

)))), equiv(wizard,and(male,and(human,exist(haspower, magical)))), equiv(centaur,and(

animal,and((~human), and(or(male,female),and(exist(haspower, magical),forall(speaks,

language)))))), equiv(vampire,and(beast,and(or(male, female),forall(haspower,

magical)))), equiv(beast,and(animal,(~human))),equiv(muggle,and(human,and(or(male,

female),forall(haspower,(~magical))))),equiv(witch,and(female,and(human, exist(haspower,

magical)))), equiv(human,and(animal,exist(speaks, language))),equiv(male,and(animal,

(~female))), equiv(merpeople,and(animal,and((~human),and(forall(haspower,magical),

forall(speaks, language)))))])).

assert(sbox([ob(u@d,pred(p,[werewolf])), ob(u@d, pred(p, [human]))])).

madl2_query(pe(u@d,pred(p,[and(werewolf, human)]))).

alc_query(and(werewolf, human)).

9- ex1_4

====================

assert(tbox([equiv(salto,and(cartwheel, and((~exist(hasposition, handsonfloor)),

exist(hasposition, twist)))), equiv(fronttuck,and((~cartwheel),forall(hasposition,

tuck))), equiv(roundoff,and(cartwheel,and(handstand ,forall(hasposition,pike)))),

equiv(backwalkover,and(exist(hasposition, bridge),exist(hasposition, handstand))),

equiv(forwardroll,or(exist(hasposition, pike),or(exist(hasposition,straddle), exist(

hasposition, tuck)))), equiv(backhandspring,exist(hasposition,bridge)), equiv(handstand,

(~forall(hasposition, pike)))])).

assert(sbox([ob(u@d,pred(p,[roundoff])), ob(u@d, pred(p,[~backhandspring]))])).

madl2_query(pe(u@d,pred(p,[and(roundoff, (~backhandspring))]))).

alc_query(and(roundoff, (~backhandspring))).

10- ex1_5

====================

assert(tbox([equiv(werewolf,and(beast,and(exist(haspower, magical), forall(speaks,

language)))), equiv(acramantula,and(beast ,and(or(male,female), exist(haspower,

agical)))),equiv(wizard,and(male, and(human, exist(haspower, magical)))), equiv(

centaur,and(animal,and((~human),and(or(male, female), and(exist(haspower, magical),

forall(speaks,language)))))), equiv(vampire,and(beast,and(or(male,female), forall(

haspower,magical)))),equiv(beast,and(animal, (~human))), equiv(muggle,and(human,and(

or(male, female), forall(haspower, (~magical))))), equiv(witch,and(female,and(human,

exist(haspower, magical)))),equiv(human,and(animal, exist(speaks, language))), equiv(

male,and(animal, (~female))),equiv(merpeople,and(animal,and((~human),and(forall(

haspower, magical), forall(speaks,language)))))])).

APPENDIX C. EXTENDED MINDSWAP TEST CASES 179

assert(sbox([ob(u@d,pred(p,[werewolf])), ob(u@d, pred(p,[human]))])).

madl2_query(pe(u@d,pred(p,[and(werewolf, human)]))).

alc_query(and(werewolf, human)).

11- ex1_6

====================

assert(tbox([equiv(academicfreelicense,and(freesoftwarelicense, exist(hasrestriction,

and(mustkeepdisclaimer, and((~mustdistributemods),and((~licenseisviral),

(~cannotredistribute))))))), equiv(commonpubliclicense,and(freesoftwarelicense,

exist(hasrestriction,and(mustkeepdisclaimer, and(mustdistributemods, and((~licenseisviral),

(~cannotredistribute))))))), equiv(publicdomainlicense,and(freesoftwarelicense ,exist(

hasrestriction,(~or(mustkeepdisclaimer, or(mustdistributemods, or(licenseisviral,

cannotredistribute))))))),equiv(lessergnupubliclicense,and(freesoftwarelicense, exist(

hasrestriction, and(mustkeepdisclaimer,and(mustdistributemods,and((~licenseisviral),

(~cannotredistribute))))))), equiv(commercialsoftwarelicense,exist(hasrestriction,

cannotredistribute)),equiv(softwarelicense,or(freesoftwarelicense,

commercialsoftwarelicense)),equiv(opensoftwarelicense,and(freesoftwarelicense, exist(

hasrestriction,and(mustkeepdisclaimer,and(mustdistributemods, and(licenseisviral,

(~cannotredistribute))))))),equiv(gnugeneralpubliclicense,and(freesoftwarelicense, exist(

hasrestriction, and(mustkeepdisclaimer, and(mustdistributemods,and(licenseisviral,

(~cannotredistribute)))))))])).

assert(sbox([ob(u@d,pred(p,[lessergnupubliclicense])), ob(u@d, pred(p,[forall(

hasrestriction,cannotredistribute)]))])).

madl2_query(pe(u@d,pred(p,[and(lessergnupubliclicense, forall(hasrestriction,

cannotredistribute))]))).

alc_query(and(lessergnupubliclicense, forall(hasrestriction,cannotredistribute))).

12- ex1_7

====================

assert(tbox([equiv(parentdog,or(papadog, mamadog)), equiv(husbanddog,and(maledog,

exist(haswife, femaledog))), equiv(maledog,and(dog, (~female))), equiv(papadog,

and(maledog ,exist(haschild, dog))), equiv(femaledog,and(dog, female)), equiv(wifedog,

and(femaledog, exist(hashusband, maledog))), equiv(puppy,and(or(maledog, femaledog),

and(exist(hasmother,mamadog),and(exist(hasfather, papadog) ,(~exist(haschild, dog)))))),

equiv(mamadog,and(femaledog, exist(haschild, dog)))])).

assert(sbox([ob(u@d,pred(p,[puppy])), ob(u@d, pred(p,[wifedog]))])).

madl2_query(pe(u@d,pred(p,[and(puppy, and(mamadog, wifedog))]))).

alc_query(and(puppy, and(mamadog, wifedog))).

APPENDIX C. EXTENDED MINDSWAP TEST CASES 180

13- ex1_8

====================

assert(sbox([ob(u@d,pred(p,[and(or(a, b), or(c, d))])), ob(u@d, pred(p, [and(

or(a, c), or(b, d))]))])).

madl2_query(pe(u@d,pred(p,[or(and(or(a, b), or(c, d)), and(or(a, c), or(b, d)))]))).

alc_query(or(and(or(a, b), or(c, d)), and(or(a, c), or(b, d)))).

14- ex1_9

====================

assert(tbox([equiv(slitheringdragon,and(dragon, forall(transportmode, (~or(flying,

walking))))), equiv(walkingdragon,and(dragon, exist(transportmode, walking))),

equiv(firedrake,and(drake, and(forall(elemental, fire), exist(disposition, foe)))),

equiv(icedrake,and(drake,and(forall(elemental, water), exist(disposition, foe)))),

equiv(orientaldragon,and(walkingdragon, and(exist(elemental, water),forall(disposition,

friend)))), equiv(drake,and(walkingdragon, and(exist(elemental, or(water, fire)),

forall(disposition, foe)))), equiv(hydra,and(or(slitheringdragon, flyingdragon),

exist(disposition,foe))), equiv(westerndragon,and(flyingdragon,and(forall(elemental,

or(earth,water)), exist(disposition, foe)))), equiv(wyrm,and(slitheringdragon,

exist(elemental, water))), equiv(flyingdragon,and(dragon, exist(transportmode,flying))),

equiv(dragonet,and(forall(disposition, foe),and(or(walkingdragon,flyingdragon), forall(

elemental, (~or(earth,water))))))])).

assert(sbox([ob(u@d,pred(p,[hydra])), ob(u@d, pred(p, [and(dragonet, exist(elemental,

fire))]))])).

madl2_query(pe(u@d,pred(p,[and(hydra, and(dragonet, exist(elemental, fire)))]))).

alc_query(and(hydra, and(dragonet, exist(elemental, fire)))).

15- ex2_1

====================

assert(tbox([equiv(a,or(b, c)), equiv(c,or(o, p)), equiv(b,or(m, n)), equiv(e,or(q, r)),

equiv(d,or(e ,f)), equiv(g,or(h ,i)), equiv(f,or(s ,t)), equiv(i,or(w ,x)), equiv(h,

or(u ,v1))])).

assert(sbox([ob(u@d,pred(p,[a])), ob(u@d,pred(p,[d])), ob(u@d,pred(p,[g])), ob(u@d,

pred(p,[~m])), ob(u@d,pred(p,[~n])), ob(u@d,pred(p,[~o])), ob(u@d,pred(p,[~p])), ob(u@d,

pred(p,[~q])), ob(u@d,pred(p,[~r])), ob(u@d,pred(p,[~s])), ob(u@d,pred(p,[~t])), ob(u@d,

pred(p,[~u])), ob(u@d,pred(p,[~v1])), ob(u@d,pred(p,[~w])), ob(u@d,pred(p,[~x]))])).

madl2_query(pe(u@d,pred(p,[and(a, and(d, and(g, and((~m), and((~n), and((~o), and((~p),

and((~q),and((~r), and((~s), and((~t),and((~u), and((~v1), and((~w),(~x)))))))))))))))]))).

alc_query(and(a, and(d, and(g, and((~m), and((~n), and((~o), and((~p), and((~q),and((~r),

and((~s), and((~t),and((~u), and((~v1), and((~w),(~x)))))))))))))))).

APPENDIX C. EXTENDED MINDSWAP TEST CASES 181

16- ex2_2

====================

assert(tbox([equiv(parentdog,or(papadog, mamadog)), equiv(husbanddog,and(maledog,

exist(haswife, femaledog))), equiv(maledog,and(dog,(~female))), equiv(papadog,and(

maledog, exist(haschild, dog))), equiv(femaledog,and(dog, female)), equiv(wifedog,

and(femaledog, exist(hashusband, maledog))), equiv(puppy,and(or(maledog, femaledog),

and(exist(hasmother, mamadog),and(exist(hasfather, papadog), (~exist(haschild, dog)

))))),equiv(mamadog,and(femaledog, exist(haschild, dog)))])).

assert(sbox([ob(u@d,pred(p,[wifedog])), ob(u@d, pred(p, [husbanddog]))])).

madl2_query(pe(u@d,pred(p,[and(wifedog, husbanddog)]))).

alc_query(and(wifedog, husbanddog)).

17- ex2_3

====================

assert(tbox([equiv(slitheringdragon,and(dragon, forall(transportmode, (~or(flying,

walking))))), equiv(walkingdragon,and(dragon, exist(transportmode, walking))),

equiv(firedrake,and(drake,and(forall(elemental, fire), exist(disposition, foe)))),

equiv(icedrake,and(drake,and(forall(elemental, water), exist(disposition, foe)))),

equiv(orientaldragon,and(walkingdragon, and(exist(elemental, water),forall(disposition,

friend)))), equiv(drake,and(walkingdragon, and(exist(elemental, or(water, fire)),

forall(disposition, foe)))), equiv(hydra,and(or(slitheringdragon, flyingdragon),

exist(disposition,foe))), equiv(westerndragon,and(flyingdragon,and(forall(elemental,

or(earth,water)), exist(disposition, foe)))), equiv(wyrm,and(slitheringdragon, exist(

elemental, water))), equiv(flyingdragon,and(dragon, exist(transportmode, flying))),

equiv(dragonet,and(forall(disposition, foe),and(or(walkingdragon,flyingdragon),

forall(elemental, (~or(earth,water))))))])).

assert(sbox([ob(u@d,pred(p,[dragonet])), ob(u@d,pred(p,[~and(forall(disposition, foe),

and(or(walkingdragon,flyingdragon), forall(elemental, (~or(earth, water)))))]))])).

madl2_query(pe(u@d,pred(p,[and(dragonet, (~and(forall(disposition, foe), and(or(

walkingdragon,flyingdragon), forall(elemental, (~or(earth, water)))))))]))).

alc_query(and(dragonet, (~and(forall(disposition, foe), and(or(walkingdragon,

flyingdragon), forall(elemental, (~or(earth, water)))))))).

18- ex2_4

====================

assert(tbox([equiv(b,and((~a), a)), equiv(f,exist(p, and(g, h)))])).

assert(sbox([ob(u@d,pred(p,[exist(p, or(a, or(b, c)))])), ob(u@d, pred(p, [exist(q,

or(d, or(e, f)))])), ob(u@d,pred(p, [forall(p, and(c, d))]))])).

APPENDIX C. EXTENDED MINDSWAP TEST CASES 182

madl2_query(pe(u@d,pred(p,[and(exist(p, or(a, or(b, c))), and(exist(q, or(d,

or(e, f))),forall(p, and(c, d))))]))).

alc_query(and(exist(p, or(a, or(b, c))), and(exist(q, or(d, or(e, f))),forall(p,

and(c, d))))).

19- ex2_5

====================

assert(tbox([equiv(map,and(exist(contains, words), (~or(pictures, chapters)))),

equiv(nonfiction,and((~fiction),and(exist(contains, chapters) ,forall(contains,

words)))), equiv(childrensbook,forall(contains, and(pictures, (~words)))), equiv(

fiction,or(map, and(chapters, words)))])).

assert(sbox([ob(u@d,pred(p,[nonfiction])), ob(u@d, pred(p,[childrensbook]))])).

madl2_query(pe(u@d,pred(p,[and(nonfiction, childrensbook)]))).

alc_query(and(nonfiction, childrensbook)).

20- ex2_7

====================

assert(sbox([ob(u@d,pred(p,[b])), ob(u@d, pred(p,[c])), ob(u@d, pred(p, [exist(p, and(

a, and(c, exist(r, (~d)))))])), ob(u@d, pred(p, [forall(r, d)]))])).

madl2_query(pe(u@d,pred(p,[and(b, and(c, and(exist(p, and(a, and(c, exist(r, (~d))))),

forall(r, d))))]))).

alc_query(and(b, and(c, and(exist(p, and(a, and(c, exist(r, (~d))))), forall(r, d))))).

21- ex2_8

====================

assert(tbox([equiv(b,(~a))])).

assert(sbox([ob(u@d,pred(p,[forall(r, and(a, b))])), ob(u@d, pred(p, [exist(r, a)])),

ob(u@d, pred(p, [exist(r, b)]))])).

madl2_query(pe(u@d,pred(p,[and(forall(r, and(a, b)), and(exist(r, a), exist(r, b)))]))).

alc_query(and(forall(r, and(a, b)), and(exist(r, a), exist(r, b)))).

22- ex2_9

====================

assert(tbox([equiv(veggiepizza,and(pizza, forall(hastopping, (~meat)))), equiv(meatpizza,

and(pizza, forall(hastopping, (~veggie)))), equiv(veggie,or(mushroom, olive)),

equiv(meat,or(pepperoni ,sausage))])).

assert(sbox([ob(u@d,pred(p,[veggiepizza])), ob(u@d, pred(p, [meatpizza]))])).

madl2_query(pe(u@d,pred(p,[and(veggiepizza, meatpizza)]))).

alc_query(and(veggiepizza, meatpizza)).

APPENDIX C. EXTENDED MINDSWAP TEST CASES 183

23- ex3_1

====================

assert(tbox([equiv(dalek,and(biological, and(mechanical, forall(hasweakness,

blindness)))), equiv(monster,and(biological,and((~humanoid), exist(hasweakness,

bullets)))), equiv(humanoid,and(biological,and((~mechanical), forall(hasweakness,

bullets)))), equiv(cyberman,and(cyborg, forall(hasweakness, gold))), equiv(timelord,

and(biological, humanoid)), equiv(silurian,and(biological, forall(hasweakness,

bullets))), equiv(robot,and(mechanical, and((~biological),and(forall(hasweakness,

logicalparadox), exist(hasweakness, sonicscrewdriver))))), equiv(quark,(robot)),

equiv(cyborg,and(mechanical,and(biological,and(exist(hasweakness,bullets),

exist(hasweakness, sonicscrewdriver)))))])).

assert(sbox([ob(u@d,pred(p,[dalek])), ob(u@d,pred(p,[cyborg])), ob(u@d,pred(p,

[cyberman])), ob(u@d,pred(p,[forall(hasweakness,sonicscrewdriver)])), ob(u@d,

pred(p,[silurian])), ob(u@d,pred(p,[monster])), ob(u@d,pred(p,[timelord])),

ob(u@d,pred(p,[forall(hasweakness, bullets)])), ob(u@d,pred(p,[quark])), ob(u@d,

pred(p,[exist(hasweakness, gold)])), ob(u@d,pred(p,[~and(and(timelord, monster),

and(and(timelord, dalek), and(quark, humanoid)))]))])).

madl2_query(pe(u@d,pred(p,[and(and(and(dalek, cyborg), and(and(cyberman, forall(

hasweakness,sonicscrewdriver)), and(and(silurian, monster), and(and(timelord,

forall(hasweakness, bullets)), and(quark, exist(hasweakness, gold)))))), (~and(

and(timelord, monster), and(and(timelord, dalek), and(quark, humanoid)))))]))).

alc_query(and(and(and(dalek, cyborg), and(and(cyberman, forall(hasweakness,

sonicscrewdriver)), and(and(silurian, monster), and(and(timelord, forall(hasweakness,

bullets)), and(quark, exist(hasweakness, gold)))))), (~and(and(timelord, monster),

and(and(timelord, dalek), and(quark, humanoid)))))).

24- ex3_2

====================

assert(tbox([equiv(slitheringdragon,and(dragon, forall(transportmode, (~or(flying,

walking))))), equiv(walkingdragon,and(dragon, exist(transportmode, walking))), equiv(

firedrake,and(drake,and(forall(elemental, fire), exist(disposition, foe)))), equiv(

icedrake,and(drake,and(forall(elemental, water), exist(disposition, foe)))),

equiv(orientaldragon,and(walkingdragon,and(exist(elemental, water),forall(disposition,

and(friend, exist(towards, or(people, animals))))))), equiv(drake,and(walkingdragon,

and(exist(elemental, or(water, fire)),forall(disposition, foe)))), equiv(hydra,and(or(

slitheringdragon, flyingdragon), exist(disposition,foe))), equiv(westerndragon,and(

flyingdragon,and(forall(elemental, or(earth,water)), exist(disposition, and(foe,

exist(towards, people)))))), equiv(wyrm,and(slitheringdragon, exist(elemental, water))),

APPENDIX C. EXTENDED MINDSWAP TEST CASES 184

equiv(flyingdragon,and(dragon, exist(transportmode, flying))), equiv(dragonet,and(

forall(disposition, foe),and(or(walkingdragon,flyingdragon), forall(elemental,

(~or(earth, water))))))])).

assert(sbox([ob(u@d,pred(p,[westerndragon])), ob(u@d, pred(p, [orientaldragon]))])).

madl2_query(pe(u@d,pred(p,[and(westerndragon, orientaldragon)]))).

alc_query(and(westerndragon, orientaldragon)).

25- ex3_3

====================

assert(tbox([equiv(parentdog,or(chepapadog,mamadog)), equiv(husbanddog,and(maledog,

exist(haswife, femaledog))), equiv(maledog,and(dog, (~female))), equiv(papadog,and(

maledog, exist(haschild, dog))), equiv(femaledog,and(dog, female)), equiv(wifedog,

and(femaledog, exist(hashusband, maledog))), equiv(puppy,and(or(maledog, femaledog),

and(exist(hasmother,mamadog),and(exist(hasfather, papadog), (~exist(haschild,

dog)))))), equiv(mamadog,and(femaledog, exist(haschild, dog)))])).

assert(sbox([ob(u@d,pred(p,[maledog])), ob(u@d,pred(p,[femaledog]))])).

madl2_query(pe(u@d,pred(p,[and(maledog, femaledog)]))).

alc_query(and(maledog, femaledog)).

26- ex3_4

====================

assert(tbox([equiv(a,(~and(b, and(c, d)))), equiv(c,(~or(f, (~f)))), equiv(b,(~or(

e, (~e)))), equiv(d,(~or(g, (~g))))])).

assert(sbox([ob(u@d,pred(p,[(~forall(p, a))])), ob(u@d, pred(p, [(~exist(p, (~a)))]))])).

madl2_query(pe(u@d,pred(p,[and((~forall(p, a)), (~exist(p, (~a))))]))).

alc_query(and((~forall(p, a)), (~exist(p, (~a))))).

27- ex3_5

====================

assert(tbox([equiv(g5,and(or(exist(uses, film), exist(has, zoom)), (~lcd))), equiv(

digslr,and(slr,and(digital, lcd))), equiv(slr,and(film ,zoom)), equiv(digital,and(

(~film) ,exist(has, zoom)))])).

assert(sbox([ob(u@d,pred(p,[g5])), ob(u@d, pred(p, [~digslr]))])).

madl2_query(pe(u@d,pred(p,[and(g5, (~digslr))]))).

alc_query(and(g5, (~digslr))).

28- ex3_7

====================

assert(sbox([ob(u@d,pred(p,[a])), ob(u@d, pred(p, [b])), ob(u@d, pred(p, [forall(p, c)])),

APPENDIX C. EXTENDED MINDSWAP TEST CASES 185

ob(u@d, pred(p, [forall(p, (~c))])), ob(u@d, pred(p, [exist(r,d)]))])).

madl2_query(pe(u@d,pred(p,[and(a, and(b, and(forall(p, c), and(forall(p, (~c)), exist

(r,d)))))]))).

alc_query(and(a, and(b, and(forall(p, c), and(forall(p, (~c)), exist(r,d)))))).

29- ex3_9

====================

assert(tbox([equiv(wierdopizza,and(pizza, exist(hastopping, alien))), equiv(meatpizza,

and(pizza, forall(hastopping, (~veggie)))), equiv(meat,or(pepperoni, sausage)),

equiv(veggie,or(mushroom, olive)), equiv(alien,(anchovy)), equiv(veggiepizza,and(

pizza, forall(hastopping, (~meat))))])).

assert(sbox([ob(u@d,pred(p,[~wierdopizza])), ob(u@d, pred(p,[veggiepizza]))])).

madl2_query(pe(u@d,pred(p,[or((~wierdopizza), veggiepizza)]))).

alc_query(or((~wierdopizza), veggiepizza)).

30- x_ex_aa

====================

assert(tbox([equiv(man,and(person,male)), equiv(woman,and(person,~man)),

equiv(mother,and(woman,exist(hasChild,person))), equiv(father,and(man,exist(hasChild,

person))), equiv(parent,exist(hasChild,person)), equiv(grandfather,and(man,exist(

hasChild,father))), equiv(brother,and(man,exist(hasSibling,person))), equiv(sister,and(

person,and(~brother,exist(hasSibling,person)))), equiv(luckyBrother,and(man,forall(

hasSibling,sister)))])).

assert(sbox([ob(u@d,pred(p,[brother]))])).

madl2_query(pe(u@d,pred(p,[sister]))).

alc_query(disjoint(brother,sister)).

31- x_ex_ab

====================

assert(tbox([equiv(man,and(person,male)), equiv(woman,and(person,~man)), equiv(mother,and(

woman,exist(hasChild,person))), equiv(father,and(man,exist(hasChild,person))), equiv(parent,

exist(hasChild,person)), equiv(grandfather,and(man,exist(hasChild,father))), equiv(brother,

and(man,exist(hasSibling,person))), equiv(sister,and(person,and(~brother,exist(hasSibling,

person)))), equiv(luckyBrother,and(man,forall(hasSibling,sister)))])).

assert(sbox([ob(u@d,pred(p,[man]))])).

madl2_query(pe(u@d,pred(p,[woman]))).

alc_query(disjoint(man,woman)).

32- x_ex_ac

APPENDIX C. EXTENDED MINDSWAP TEST CASES 186

====================

assert(tbox([equiv(man,and(person,male)), equiv(woman,and(person,~man)),

equiv(mother,and(woman,exist(hasChild,person))), equiv(father,and(man,exist(hasChild,

person))), equiv(parent,exist(hasChild,person)), equiv(grandfather,and(man,exist(hasChild,

father))), equiv(brother,and(man,exist(hasSibling,person))),

equiv(sister,and(person,and(~brother,exist(hasSibling,person)))), equiv(luckyBrother,

and(man, forall(hasSibling,sister)))])).

assert(sbox([ob(u@d,pred(p,[brother]))])).

madl2_query(pe(u@d,pred(p,[luckyBrother]))).

alc_query(subsum(luckyBrother,brother)).

33- x_ex_ad

====================

assert(tbox([equiv(man,and(person,male)), equiv(woman,and(person,~man)), equiv(mother,

and(woman,exist(hasChild,person))), equiv(father,and(man,exist(hasChild,person))),

equiv(parent,exist(hasChild,person)), equiv(grandfather,and(man,exist(hasChild,father))),

equiv(brother,and(man,exist(hasSibling,person))), equiv(sister,and(person,and(~brother,

exist(hasSibling,person)))), equiv(luckyBrother,and(man,forall(hasSibling,sister)))])).

assert(sbox([ob(u@d,pred(p,[parent]))])).

madl2_query(pe(u@d,pred(p,[father]))).

alc_query(subsum(father,parent)).

34- x_ex_ae

====================

assert(tbox([equiv(man,and(person,male)), equiv(woman,and(person,~man)),

equiv(mother,and(woman,exist(hasChild,person))), equiv(father,and(man,exist(hasChild,

person))), equiv(parent,exist(hasChild,person)), equiv(grandfather,and(man,exist(hasChild,

father))), equiv(brother,and(man,exist(hasSibling,person))), equiv(sister,and(person,

and(~brother,exist(hasSibling,person)))), equiv(luckyBrother,and(man,forall(hasSibling,

sister)))])).

assert(sbox([ob(u@d,pred(p,[father]))])).

madl2_query(pe(u@d,pred(p,[grandfather]))).

alc_query(subsum(grandfather,father)).

35- x_ex_af

====================

assert(tbox([equiv(man,and(person,male)), equiv(woman,and(person,~man)), equiv(mother,

and(woman,exist(hasChild,person))), equiv(father,and(man,exist(hasChild,person))),

equiv(parent,exist(hasChild,person)), equiv(grandfather,and(man,exist(hasChild,father))),

APPENDIX C. EXTENDED MINDSWAP TEST CASES 187

equiv(brother,and(man,exist(hasSibling,person))), equiv(sister,and(person,and(~brother,

exist(hasSibling,person)))), equiv(luckyBrother,and(man,forall(hasSibling,sister)))])).

assert(sbox([ob(u@d,pred(p,[father]))])).

madl2_query(pe(u@d,pred(p,[grandfather]))).

alc_query(disjoint(grandfather,father)).

36- x_ex_ag

====================

assert(tbox([equiv(man,and(person,male)), equiv(woman,and(person,~man)),equiv(mother,

and(woman,exist(hasChild,person))), equiv(father,and(man,exist(hasChild, person))),

equiv(parent,exist(hasChild,person)), equiv(grandfather,and(man,exist(hasChild,

father))), equiv(brother,and(man,exist(hasSibling,person))), equiv(sister,and(person,

and(~brother,exist(hasSibling,person)))), equiv(luckyBrother,and(man,forall(hasSibling,

sister)))])).

assert(sbox([ob(u@d,pred(p,[sister]))])).

madl2_query(pe(u@d,pred(p,[grandfather]))).

alc_query(disjoint(grandfather,sister)).

37- x_ex_ah

====================

assert(tbox([equiv(man,and(person,male)), equiv(woman,and(person,~man)), equiv(mother,

and(woman,exist(hasChild,person))), equiv(father,and(man,exist(hasChild,person))),

equiv(parent,exist(hasChild,person)), equiv(grandfather,and(man,exist(hasChild,father))),

equiv(brother,and(man,exist(hasSibling,person))), equiv(sister,and(person, and(~brother,

exist(hasSibling,person)))), equiv(luckyBrother,and(man,forall(hasSibling,sister)))])).

assert(sbox([ob(u@d,pred(p,[a])), ob(u@d,pred(p,[b]))])).

madl2_query(pe(u@d,pred(p,[and(a,b)]))).

alc_query(and(a,b)).

38- x_ex_ai

====================

assert(tbox([equiv(man,and(person,male)), equiv(woman,and(person,~man)),equiv(mother,

and(woman,exist(hasChild,person))), equiv(father,and(man,exist(hasChild,person))),

equiv(parent,exist(hasChild,person)), equiv(grandfather,and(man,exist(hasChild,father))),

equiv(brother,and(man,exist(hasSibling,person))), equiv(sister,and(person, and(~brother,

exist(hasSibling,person)))), equiv(luckyBrother,and(man,forall(hasSibling,sister)))])).

madl2_query(pe(u@d,pred(p,[and(a,~a)]))).

alc_query(and(a,~a)).

APPENDIX C. EXTENDED MINDSWAP TEST CASES 188

39- x_ex_aj

====================

assert(tbox([equiv(man,and(person,male)), equiv(woman,and(person,~man)), equiv(mother,

and(woman,exist(hasChild,person))), equiv(father,and(man,exist(hasChild,person))),

equiv(parent,exist(hasChild,person)), equiv(grandfather,and(man,exist(hasChild,father))),

equiv(brother,and(man,exist(hasSibling,person))), equiv(sister,and(person,and(~brother,

exist(hasSibling,person)))), equiv(luckyBrother,and(man,forall(hasSibling,sister)))])).

assert(sbox([ob(u@d,pred(p,[a])), ob(u@d,pred(p,[b]))])).

madl2_query(pe(u@d,pred(p,[or(a,b)]))).

alc_query(or(a,b)).

40- x_ex_ak

====================

assert(tbox([equiv(man,and(person,male)), equiv(woman,and(person,~man)), equiv(mother,

and(woman,exist(hasChild,person))), equiv(father,and(man,exist(hasChild,person))),

equiv(parent,exist(hasChild,person)), equiv(grandfather,and(man,exist(hasChild,father))),

equiv(brother,and(man,exist(hasSibling,person))), equiv(sister,and(person,and(~brother,

exist(hasSibling,person)))), equiv(luckyBrother,and(man,forall(hasSibling,sister)))])).

assert(sbox([ob(u@d,pred(p,[a])), ob(u@d,pred(p,[b]))])).

madl2_query(pe(u@d,pred(p,[and(a,and(b,or(a,b)))]))).

alc_query(and(a,and(b,or(a,b)))).

41- x_ex_al

====================

assert(tbox([equiv(man,and(person,male)), equiv(woman,and(person,~man)), equiv(mother,

and(woman,exist(hasChild,person))), equiv(father,and(man,exist(hasChild,person))),

equiv(parent,exist(hasChild,person)), equiv(grandfather,and(man,exist(hasChild,father))),

equiv(brother,and(man,exist(hasSibling,person))), equiv(sister,and(person,and(~brother,

exist(hasSibling,person)))), equiv(luckyBrother,and(man,forall(hasSibling,sister)))])).

assert(sbox([ob(u@d,pred(p,[a])), ob(u@d,pred(p,[b]))])).

madl2_query(pe(u@d,pred(p,[and(a,and(b,or(a,~b)))]))).

alc_query(and(a,and(b,or(a,~b)))).

42- x_ex_am

====================

assert(tbox([equiv(man,and(person,male)), equiv(woman,and(person,~man)), equiv(mother,

and(woman,exist(hasChild,person))), equiv(father,and(man,exist(hasChild,person))),

equiv(parent,exist(hasChild,person)), equiv(grandfather,and(man,exist(hasChild,father))),

equiv(brother,and(man,exist(hasSibling,person))), equiv(sister,and(person,and(~brother,

APPENDIX C. EXTENDED MINDSWAP TEST CASES 189

exist(hasSibling,person)))), equiv(luckyBrother,and(man,forall(hasSibling,sister)))])).

assert(sbox([ob(u@d,pred(p,[a]))])).

madl2_query(pe(u@d,pred(p,[exist(r,a)]))).

alc_query(exist(r,a)).

43- x_ex_an

====================

assert(tbox([equiv(man,and(person,male)), equiv(woman,and(person,~man)), equiv(mother,

and(woman,exist(hasChild,person))), equiv(father,and(man,exist (hasChild,person))),

equiv(parent,exist(hasChild,person)), equiv(grandfather,and(man,exist(hasChild,father))),

equiv(brother,and(man,exist(hasSibling,person))), equiv(sister,and(person,and(~brother,

exist(hasSibling,person)))), equiv(luckyBrother,and(man,forall(hasSibling,sister)))])).

assert(sbox([ob(u@d,pred(p,[exist(r,a)])), ob(u@d,pred(p,[exist(r,~a)]))])).

madl2_query(pe(u@d,pred(p,[and(exist(r,a),exist(r,~a))]))).

alc_query(and(exist(r,a),exist(r,~a))).

44- x_ex_ao

====================

assert(tbox([equiv(man,and(person,male)), equiv(woman,and(person,~man)),equiv(mother,

and(woman,exist(hasChild,person))), equiv(father,and(man,exist(hasChild,person))),

equiv(parent,exist(hasChild,person)), equiv(grandfather,and(man,exist(hasChild,father))),

equiv(brother,and(man,exist(hasSibling,person))), equiv(sister,and(person,and(~brother,

exist(hasSibling,person)))), equiv(luckyBrother,and(man,forall(hasSibling,sister)))])).

assert(sbox([ob(u@d,pred(p,[forall(r,a)])), ob(u@d,pred(p,[exist(r,a)])), ob(u@d,

pred(p,[exist(r,~a)]))])).

madl2_query(pe(u@d,pred(p,[and(forall(r,a),and(exist(r,a),exist(r,~a)))])).

alc_query(and(forall(r,a),and(exist(r,a),exist(r,~a)))).

Bibliography

[1]

[2]

[3] Martin Abadi. Logic in access control. In Proceedings of the 18th Annual Symposium

on Logic in Computer Science (LICS’03), pages 228–233, Ottawa, Canada, 2003. IEEE

Computer Society Press.

[4] Mart́ın Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A Calculus for

Access Control in Distributed Systems. ACM Transactions on Programming Languages

and Systems, 15(4):706–734, September 1993.

[5] Sudhir Agarwal and Barbara Sprick. Specification of Access Control and Certifica-

tion Policies for Semantic Web Services. In Proceedings of the 6th International Con-

ference on Electronic Commerce and Web Technologies (EC-Web 05), volume 3590

of Lecture Notes in Computer Science (LNCS), pages 348–357, Copenhagen, 2005.

Springer-Verlag.

[6] Sudhir Agarwal, Barbara Sprick, and Sandra Wortmann. Credential Based Access

Control for Semantic Web Services. In Proceedings of the 2004 American Association

for Artificial Intelligence (AAAI) Spring Symposium, volume 1, March 2004.

[7] Morteza Amini and Rasool Jalili. Multi-Level Authorization Model and Framework

for Distributed Semantic-Aware Environments. Accepted in IET Information Security,

2010.

[8] P. E. Ammann and Ravi S. Sandhu. The Extended Schematic Protection Model.

Journal of Computer Security, 1(3&4), 1992.

190

BIBLIOGRAPHY 191

[9] Hajnal Andrka, Johan van Benthem, and Istvn Nmeti. Modal Languages and Bounded

Fragments of Predicate Logic. Research Report ML-96-03, Institute of Mathematics,

Hungarian Academy of Sciences, Budapest and Institute for Logic, Language and

Computation, University of Amsterdam, 1996.

[10] ANSI. Information Technology - Role-Based Access Control. Technical report, Amer-

ican National Standards Institute, Inc., Febreuary 2004.

[11] L. Aqvist. Deontic Logic. In D. Gabbay and F. Guenthner, editors, Handbook of

Philosophical Logic: Volume II: Extensions of Classical Logic, pages 605–714. D. Reidel

Publishing Company, 1984.

[12] Alberto Artosi, Paola Cattabriga, and Guido Governatori. KED: A Deontic Theorem

Prover. In Proceedings of the Workshop on Legal Application of Logic Programming

(ICLP’94), pages 60–76, Firenze, Italy, 1994.

[13] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider. The Description Logic Handbook: Theory, Implementation, and Ap-

plications. Cambridge University Press, New York, NY, USA, 2003.

[14] Franz Baader and Philipp Hanschke. A Scheme for Integrating Concrete Domains

into Concept Languages. In Proceedings of the 12th International Joint Conference on

Artificial Intelligence (IJCAI’91), page 452457, Sydney, Australia, 1991.

[15] Franz Baader, Ralf Kusters, and Frank Wolter. Extensions to Description Logic. In The

Description Logic Handbook: Theory, Implementation, and Applications. Cambridge

University Press, 2003.

[16] Philippe Balbiani and Dimiter Vakarelov. PDL with intersection of programs: a com-

plete axiomatization. Journal of Applied Non-Classical Logics, 13(3-4):231–276, 2003.

[17] Peter Balsiger and Alain Heuerding. Comparison of Theorem Provers for Modal Logics

- Introduction and Summary. In Proceedings of the Conference on Automated Reason-

ing with Analytic Tableaux and Related Methods (TABLEAUX’98), volume 1397 of

Lecture Notes in Computer Science (LNCS), pages 25–26. Springer-Verlag, 1998.

BIBLIOGRAPHY 192

[18] Steve Barker, Michael Leuschel, and Mauricio Varea. Efficient and Flexible Access

Control via Logic Program Specialisation. In Proceedings of the ACM SIGPLAN sym-

posium on Partial evaluation and semantics-based program manipulation (PEPM’04),

pages 190–199, Verona, Italy, 2004. ACM Press.

[19] Steve Barker and Peter J. Stuckey. Flexible Access Control Policy Specification with

Constraint Logic Programming. ACM Transactions on Information and System Secu-

rity (TISSEC), 6(4):501–546, 2003.

[20] D. E. Bell and L. J. Lapadula. Secure Computer Systems: Unified Exposition and

Multics Interpretation. Technical Report ESD-TR-75-306, The Mitre Corporation,

March 1976.

[21] Fikret Berkes. New and Not-So-New Directions in the Use of the Commons: Co-

Management. The Common Property Resoruce Digest, 42:5–7, 1997.

[22] Elisa Bertino, Piero A. Bonatti, and Elena Ferrari. TRBAC: A Temporal Role-Based

Access Control Model. ACM Transaction on Information Systems Security, 4(3):191–

233, 2001.

[23] Elisa Bertino, Piero Andrea Bonatti, Elena Ferrari, and Maria Luisa Sapino. Temporal

Authorization Bases: From Specification to Integration. Journal of Computer Security,

8(4):309–353, 2000.

[24] Elisa Bertino, Silvana Castano, and Elena Ferrari. Securing XML Documents with

Author-X. IEEE Internet Computing, 5(3):21–31, 2001.

[25] Claudio Bettini, Sushil Jajodia, X. Sean Wang, and Duminda Wijesekera. Provisions

and Obligations in Policy Management and Security Applications. In Proceedings of

the 28th VLDB Conference, Hong Kong, China, 2002.

[26] Claudio Bettini, Sushil Jajodia, X. Sean Wang, and Duminda Wijesekera. Provisions

and Obligations in Policy Rule Management. Journal of Network and Systems Man-

agement, 11(3):351–372, 2003.

[27] K. J. Biba. Integrity Considerations for Secure Computer Systems. Technical Report

TR-3153, The Mitre Corporation, April 1977.

BIBLIOGRAPHY 193

[28] Matt Bishop. Computer Security: Art and Science. Addison Wesley, 1 edition, Nov

2002.

[29] Patrick Blackburn, J. F. A. K. van Benthem, and Frank Wolter. Handbook of Modal

Logic. Elsevier, 2007.

[30] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge

University Press, 2004.

[31] Piero A. Bonatti, Claudiu Duma, Norbert Fuchs, Wolfgang Nejdl, Daniel Olmedilla,

Joachim Peer, and Nahid Shahmehri. Semantic Web Policies - A Discussion of Re-

quirements and Research Issues. In Proceedings of the 3rd European Semantic Web

Conference (ESWC), volume 4011 of Lecture Notes in Computer Science (LNCS),

Budva, Montenegro, JUN 2006. Springer-Verlag.

[32] Piero A. Bonatti and Pierangela Samarati. Logics for Emerging Applications of

Databases, chapter Logics for Authorizations and Security. Lecture Notes in Com-

puter Science. Springer-Verlag, 2003.

[33] D. F. C. Brewer and M. J. Nash. The Chinese Wall Security Policy. In Proceedings

of the IEEE Symposium on Security and Privacy, pages 215–228, Oakland, CA, USA,

1989.

[34] Diego Calvanese and Maurizio Lenzerini. Conjunctive Query Containment in Descrip-

tion Logics with n-ary Relations. In Proceedings of the International Workshop on

Description Logic (DL’97), volume 410 of URA-CNRS, pages 5–9, Paris, France, 1997.

[35] Silvana Castano, Maria Grazia Fugini, Giancarlo Martella, and Pireangela Samarati.

Database Security. Addison-Wesley, 1996.

[36] L. Catach. Tableaux: A General Theorem Prover for Modal Logics. Journal of Auto-

mated Reasoning, 7(4):489–510, 1991.

[37] National Computer Security Center. Department of defense trusted computer system

evaluation criteria (the orange book), 1985.

BIBLIOGRAPHY 194

[38] Ming-Yen Chen, Ming-Fen Yang, Yuh-Ming Chen, and Hui-Chuan Chu. Development

of a Semantic Awareness Framework for Textual Content Management in e-Learning.

In Proceedings of the Sixth IEEE International Conference on Advanced Learning Tech-

nologies (ICALT’06), pages 429–430. IEEE Computer Society, 2006.

[39] D. D. Clark and D. R. Wilson. A Comparison of Commercial and Military Computer

Security Policies. In Proceedings of the IEEE Computer Society Symposium on Security

and Privacy, pages 184–194, Oakland, CA, 1987.

[40] Oscar Corcho, Pinar Alper, Ioannis Kotsiopoulos, Paolo Missier, Sean Bechhofer, and

Carole Goble. An overview of S-OGSA: A Reference Semantic Grid Architecture. Web

Semantics: Science, Services and Agents on the World Wide Web, 4(2):102–115, 2006.

[41] Michael J. Covington, Matthew James Moyer, and Mustaque Ahamad. Generalized

role-based access control for securing future applications. Technical report, College of

Computing, Georgia Institute of Technology, 2000.

[42] Frdric Cuppens. An Epistemic and Deontic Logic for Reasoning about Computer

Security. In Proceedings of the European Symposium on Research in Computer Security,

pages 135–145, Toulouse, France, 1990.

[43] Frdric Cuppens. Roles and Deontic Logic. In Proceedings of the Second International

Workshop on Deontic Logic in Computer Science, pages 86–106, Oslo, Norway, 1994.

[44] Frdric Cuppens and Robert Demolombe. A Deontic Logic for Reasoning about Con-

fidentiality. In Proceedings of the 3rd International Workshop on Deontic Logic in

Computer Science, pages 66–79, Sesimbra, Portugal, 1996.

[45] Mark Curphey, David Endler, William Hau, Steve Taylor, Tim Smith, Alex Russell,

Gene McKenna, Richard Parke, Kevin McLaughlin, Nigel Tranter, Amit Klien, Dennis

Groves, Izhar By-Gad, Sverre Huseby, Martin Eizner, Martin Eizner, and Roy McNa-

mara. A Guide to Building Secure Web Applications: The Open Web Application

Security Project. Technical report, 2002.

[46] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi, and

Pierangela Samarati. A Fine-Grained Access Control System for XML Documents.

BIBLIOGRAPHY 195

ACM Transactions on Information and System Security (TISSEC), 5(2):169–202,

2002.

[47] Nicodemos Damianou, Arosha K. Bandara, Morris Sloman, and Emil C Lupu. A survey

of policy specification approaches. In Handbook of Network and System Administration.

Elsevier, London, 2007.

[48] Mills Davis. Semantic Wave - Part 1. Technical Report A Project10X Special Report,

Wilshire Conferences, Inc., 2006.

[49] Frank van Harmelen Deborah L. McGuinness. OWL Web Ontology Language

Overview. Online, 2004. available at http://www.w3.org/TR/owl-features/.

[50] G. Denker, S. Nguyen, and A. Ton. OWL-S Semantics of Security Web Services: a Case

Study. In Proceedings of the 1st European Semantic Web Symposium, pages 240–253,

Heraklion, Greece, 2004.

[51] D. E. Denning. Secure Information Flow in Computer Systems. PhD thesis, Purdue

Univeristy, 1975.

[52] D. E. Denning. Secure Distributed Data Views: The Sea-View Formal Security Model.

Technical Report A003, SRI International, 1987.

[53] L.C. Dion. A Complete Protection Model. In Proceedings of the IEEE Symposium on

Security and Privacy, pages 49–55, Oakland, CA, 1981.

[54] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. AL-

log: Integrating Datalog and Description Logics. Intelligent Information Systems,

10(3):227–252, 1998.

[55] Moussa A. Ehsan, Morteza Amini, and Rasool Jalili. A Semantic-based Access Con-

trol Mechanism Using Semantic Technologies. In Proceedings of the 2nd International

Conference on Security of Information and Networks (SIN 2009), Gazimagusa, North

Cyprus, 2009.

[56] Sareh Sadat Emami, Morteza Amini, and Saadan Zokaei. A Context-Aware Access

Control Model for Pervasive Computing Environments. In Proceedings of the IEEE

BIBLIOGRAPHY 196

International Conference on Intelligent Pervasive Computing (IPC 2007), pages 51–56,

Jeju Island, Korea, 2007.

[57] David Ferraiolo and Richard Kuhn. Role-Based Access Control. In Proceedings of the

15th NIST-NCSC National Computer Security Conference, pages 554–563, Baltimore,

MD, 1992.

[58] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ramaswamy

Chandramouli. Proposed NIST Standard for Role Based Access Control. ACM Trans-

actions on Information and System Securiy, 4(3):224–274, 2001.

[59] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. International Journal of High Performance Computing

Applications, 15(3):200–222, 2001.

[60] Ian T. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. In

Proceeding of the IFIP International Conference on Network and Parallel Computing,

volume 3779 of Lecture Notes in Computer Science (LNCS), pages 2–13. Springer-

Verlag, 2005.

[61] Maria Grazia Fugini and Giancarlo Martella. ACTEN: A Conceptual Model for Secu-

rity System Design. Computers & Secuirty, 3(3), 1984.

[62] Pedro Gama and Paulo Ferreira. Obligation Policies: An Enforcement Platform. In

Proceedings of the 6th IEEE International Workshop on Policies for Distributed Sys-

tems and Networks (POLICY’05), pages 203–212, Stockholm, Sweden, 2005.

[63] Olivier Gasquet and Bilal Said. Tableaux with Dynamic Filtration for Layered Modal

Logics . In Proceedings of the Conference on Automated Reasoning with Analytic

Tableaux and Related Methods (TABLEAUX’07), volume 4548 of Lecture Notes in

Computer Science (LNCS), pages 107–118. Springer-Verlag, 2007.

[64] Rod Girle. Modal Logics and Philosophy. Acumen, 2000.

[65] Janice I. Glasgow, Glenn H. MacEwen, and Prakash Panangaden. Reasoning about

Knowledge and Permission in Secure Distributed Systems. In Proceedings of the First

BIBLIOGRAPHY 197

IEEE Computer Security Foundations Workshop (CSFW’88), pages 139–146, Franco-

nia, New Hampshire, USA, 1988. MITRE Corporation Press.

[66] Randy Goebel, Sandra Zilles, Christoph Ringlstetter, Andreas Dengel, and Gunnar

Grimnes. What Is the Role of the Semantic Layer Cake for Guiding the Use of Knowl-

edge Representation and Machine Learning in the Development of the Semantic Web?

In Proceedings of the the 2008 AAAI Spring Symposium on Symbiotic Relationships

between Semantic Web and Knowledge Engineering, pages 45–50, Menlo Park, Cali-

fornia, 2008. The AAAI Press.

[67] Robert Goldblatt. Mathematical Modal Logic: A View of its Evolution. Journal of

Applied Logic, 1(5):309–392, 2003.

[68] Guido Governatori and Alessandro Luppi. Labelled Tableaux For Non-Normal Modal

Logics. In Proceedings of the 6th Congress of the Italian Association for Artificial

Intelligence, pages 119–130, Bologna, Italy, 2000.

[69] Erich Grädel. Decidable Fragments of First-Order and Fixed-Point Logic, From Prefix

Vocabulary Classes to Guarded Logics. In Proceedings of the Kalmr Workshop on

Logic and Computer Science, Szeged, Hungary, 2003.

[70] Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the Decision Problem for

Two-Variable First-Order Logic. The Bulletin of Symbolic Logic, 3(1):53–69, 1997.

[71] Erich Grädel and Martin Otto. On Logics with Two Variables. Theoretical Computer

Science, 224(1-2):73–113, 1999.

[72] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description Logic

Programs: Combining Logic Programs with Description Logic. In Proceedings of the

12th ACM international Conference on World Wide Web (WWW’03), pages 48–57,

Budapest, Hungary, 2003. ACM.

[73] T.R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge

Acquisition, 5(2):199–220, 1993.

BIBLIOGRAPHY 198

[74] Rajeev Gupta, Shourya Roy, and Manish Bhide. Identity Delegation in Policy Based

Systems. In Proceedings of the 8th IEEE International Workshop on Policies for Dis-

tributed Systems and Networks (POLICY ’07), pages 229–240, Bologna, Italy, 2007.

IEEE Computer Society.

[75] V. Haarslev and R. Moller. RACER System Description. In Proceedings of the 1st

International Joint Conference on Automated Reasoning (IJCAR’01), volume 2083

of Lecture Notes in Computer Science (LNCS), pages 701–705, Siena, Italy, 2001.

Springer-Verlag.

[76] Reiner Hähnle. Tableaux And Related Methods. In John Alan Robinson and Andrei

Voronkov, editors, Handbook Of Automated Reasoning, pages 100–178. Elsevier and

MIT Press, 2001.

[77] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in Operating Systems.

Communications of ACM, 19(8):461–471, 1976.

[78] Urs Hengartner and Peter Steenkiste. Exploiting Information Relationships for Access

Control. In Proceedings of the Third IEEE International Conference on Pervasive

Computing and Communications (PERCOM’05), pages 269–278, Washington, DC,

USA, 2005. IEEE Computer Society.

[79] Leon Henkin. The Completeness of the First-Order Functional Calculus. Symbolic

Logic, 14(3):159–166, 1949.

[80] Thomas Herchenroder. Lightweight Semantic Web Oriented Reasoning in Prolog:

Tableaux Inference for Description Logics. PhD thesis, University of Edinburgh, 2006.

[81] G. E. Hughes and M. J. Cresswell. A New Introduction to Modal Logic. Routledge,

1996.

[82] ISO/IEC:. Information Technology - Open Systems Interconnection - Security Frame-

works for Open Systems: Access Control Framework. ISO/IEC 10181-3, Nov 1995.

[83] ISO/IEC:9594-8. ITU-T Recommendation X.509: Infomation Technology - Open Sys-

tems Interconnection - The Directory : Public-Key and Attribute Certificate Frame-

works. Technical report, ITU-T, 2001.

BIBLIOGRAPHY 199

[84] Jafar Haadi Jafarian and Morteza Amini. CAMAC: A Context-Aware Mandatory Ac-

cess Control Model. ISeCure- The ISC International Journal of Information Security,

1(1):35–54, 2009.

[85] Jafar Haadi Jafarian, Morteza Amini, and Rasool Jalili. A Context-Aware Mandatory

Access Control Model for Multilevel Security Environments. In Proceedings of the

27th International Conference on Computer Safety, Reliability and Security (SafeComp

2008), volume 5219 of Lecture Notes in Computer Science (LNCS), pages 401–414,

Newcastle, UK, 2008. Springer.

[86] S. Jajodia and Ravi S. Sandhu. Toward a Multilevel Relational Data Model. In

Proceedings of the ACM SIGMOD Conference on Management of Data, pages 50–59,

Denver, Colorado, 1991.

[87] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Subrahmanian.

Flexible Support for Multiple Access Control Policies. ACM Transactions on Database

Systems, 26(2):214–260, 2001.

[88] Sushil Jajodia, Pierangela Samarati, and V. S. Subrahmanian. A Logical Language for

Expressing Authorizations. In Proceedings of the IEEE Symposium on Security and

Privacy, pages 31–42, Oakland, CA, USA, 1997.

[89] Sushil Jajodia, Pierangela Samarati, V. S. Subrahmanian, and Elisa Bertino. A Unified

Framework for Enforcing Multiple Access Control Policies. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, pages 474–485, Tucson,

AZ, USA, 1997. ACM Press.

[90] Sara Javanmardi, Morteza Amini, and Rasool Jalili. An Access Control Model for

Protecting Semantic Web Resources. In Proceedings of the 2nd International Semantic

Web Policy Workshop (SWPW’06) 2006, pages 32–46, Athens, GA, USA, 2006.

[91] Sara Javanmardi, Morteza Amini, Rasool Jalili, and Yaser GanjiSaffar. SBAC: A

Semantic Based Access Control Model. In Proceedings of the 11th Nordic Workshop

on Secure IT-systems (NordSec2006), pages 157–168, Linkping, Sweden, 2006.

[92] Robert Johnson. Parallel Analytic Tableaux Systems. PhD thesis, Queen Mary and

Westfield College, University of London, 1996.

BIBLIOGRAPHY 200

[93] Audun Josang, Dieter Gollmann, and Richard Au. A Method for Access Authorisation

Through Delegation Networks. In Proceedings of the Australasian Workshops on Grid

Computing and E-Research (ACSW Frontiers ’06), pages 165–174, Hobart, Tasmania,

Australia, 2006. Australian Computer Society, Inc.

[94] James B. D. Joshi, Elisa Bertino, Usman Latif, and Arif Ghafoor. A Generalized

Temporal Role-Based Access Control Model. IEEE Transactions on Knowledge and

Data Engineering, 17(1):4–23, 2005.

[95] Audun Jsang, Roslan Ismailb, and Colin Boydb. A Survey of Trust and Reputation

Systems for Online Service Provision. Decision Support Systems, 43(2):618–644, 2007.

[96] Lalana Kagal, Tim Finin, and A. Joshi. A Policy-Based Approach to Security for

the Semantic Web. In Proceedings of the 2nd International Semantic Web Conference

(ISWC03), Sanibel Island, Florida, USA, Oct 2003.

[97] Alan H. Karp. Authorization-Based Access Control for the Services Oriented Archi-

tecture. In Proceedings of the 4th International Conference on Creating, Connecting,

and Collaborating through Computing (C5), Berkeley, CA, USA, 2006.

[98] Saket Kaushik, Duminda Wijesekera, and Paul Ammann. Policy-Based Dissemina-

tion of Partial Web-Ontologies. In Proceedings of the 2005 Workshop on Secure Web

Services (SWS ’05), pages 43–52, Fairfax, VA, USA, 2005. ACM Press.

[99] M. Kudo. PBAC: Provision-based Access Control Model. International Journal of

Information Security, 1(2):116–130, Feb 2002.

[100] Butler Lampson. Protection. In Proceedings of the 5th Annual Princeton Conference

on Information Sciences and Systems, pages 437–443, Princeton University, 1971.

[101] Alon Y. Levy and Marie-Christine Rousset. Combining Horn Rules and Description

Logics in CARIN. Artificial Intelligence, 104(1-2):165–209, 1998.

[102] Juan Li. Semantics-Based Resource Discovery in Global-Scale Grids. PhD thesis, The

University of British Columbia, 2008.

[103] Ninghui Li. Delegation Logic: A Logic-based Approach to Distributed Authorization.

PhD thesis, New York University, 2000.

BIBLIOGRAPHY 201

[104] Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation Logic: A Logic-

based Approach to Distributed Authorization. ACM Transactions on Information

Systems Security, 6(1):128–171, 2003.

[105] Zhen Li. An Implementation of a Tableau Theorem Prover for Modal Logics. In

Proceedings of the Second International Joint Conference on Automated Reasoning

(IJCAR’04), Cork, County Cork, Ireland, 2004.

[106] Thorsten Liebig and Felix Müller. Parallelizing Tableaux-Based Description Logic

Reasoning. In Proceedings of the International Workshops on the Move to Meaning-

ful Internet Systems (OTM’07), volume 4806 of Lecture Notes in Computer Science

(LNCS), pages 1135–1144, Vilamoura, Portugal, 2007. Springer-Verlag.

[107] R. J. Lipton and L. Snyder. A Time Linear Algorithm for Deciding Security. Journal

of the ACM, 24(3):455 – 464, 1977.

[108] Zhen Liu, Anand Ranganathan, and Anton Riabov. Specifying and Enforcing High-

Level Semantic Obligation Policies. In Proceedings of the 8th IEEE International Work-

shop on Policies for Distributed Systems and Networks (POLICY’07), pages 119–128,

Bologna, Italy, 2007.

[109] Zhen Liu, Anand Ranganathan, and Anton Riabov. Specifying and Enforcing High-

Level Semantic Obligation Policies. In Proceedings of the 8th IEEE International Work-

shop on Policies for Distributed Systems and Networks (POLICY’07), pages 119–128,

Bologna, Italy, 2007.

[110] Emil C. Lupu and Morris Sloman. Conflicts in Policy-Based Distributed Systems

Management. IEEE Transactions on Software Engineering, 25(6):852–869, Nov/Dec

1999.

[111] Carsten Lutz. NEXPTIME-Complete Description Logics With Concrete Domains.

ACM Transactions on Computational Logic, 5(4):669–705, 2004.

[112] Carsten Lutz, Holger Sturm, Frank Wolter, and Michael Zakharyaschev. A Tableau De-

cision Algorithm for Modalized ALC with Constant Domains. Studia Logica, 72(2):199

– 232, 2002.

BIBLIOGRAPHY 202

[113] AmirReza Masoumzadeh, Morteza Amini, and Rasool Jalili. Context-Aware Provi-

sional Access Control. In Proceedings of the 2nd International Conference on Informa-

tion Systems Security (ICISS’06), volume 4332 of Lecture Notes in Computer Science

(LNCS), pages 132–146, Kolkata, India, 2006. Springer-Verlag.

[114] AmirReza Masoumzadeh, Morteza Amini, and Rasool Jalili. Conflict Detection and

Resolution in a Context-Aware Authorization System. In Proceedings of the 3rd IEEE

Symposium on Security in Networks and Distributed Systems (SSNDS’07), pages 505–

511, Niagara Falls, Canada, 2007.

[115] D. Harrison McKnight and Norman L. Chervany. The Meanings of Trust. Techni-

cal report misrc, University of Minnesota, Management Information Systems Reseach

Center, 1996.

[116] Paul McNamara. Deontic Logic. In Edward N. Zalta, editor, The Stanford Encyclopedia

of Philosophy. Spring 2006.

[117] Jing Mei, Zuoquan Lin, and Harold Boley. ALCuP : An Integration of Description

Logic and General Rules. In Proceedings of the First International Conference on

Web Reasoning and Rule Systems, volume 4524 of Lecture Notes in Computer Science

(LNCS), pages 163–177, Innsbruck , Austria, 2007.

[118] Marco Casassa Mont and Robert Thyne. A Systemic Approach to Automate Privacy

Policy Enforcement in Enterprises. In Proceedings of the 6th Workshop on Privacy

Enhancing Technologies, volume 4258 of Lecture Notes in Computer Science (LNCS),

pages 118–134, Cambridge, UK, 2006. Springer.

[119] M. Mortimer. On Language with Two Variables. Zeit. für Math. Logik und Grund.

der Math, 21:135–140, 1975.

[120] Tim Moses. eXtensible Access Control Markup Language, Version 2.0. Technical

report, OASIS Standard, 2005.

[121] Tim Moses. eXtensible Access Control Markup Language, Version 2.0. OASIS Stan-

dard, Feb 2005.

BIBLIOGRAPHY 203

[122] Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for OWL-DL with

Rules. Journal of Web Semantics: Science, Services and Agents on the World Wide

Web, 3(1):4160, 2005.

[123] Michael J. Murphy, Michael Dick, and Thomas Fischer. Towards the Semantic Grid:

A State of the Art Survey of Semantic Web Services and their Applicability to Col-

laborative Design, Engineering, and Procurement. Journal of Communications of the

IIMA, 8(3):11–24, 2008.

[124] Anton Naumenko. Semantics-Based Access Control in Business Networks. PhD thesis,

University of Jyvasky, 2007.

[125] Linh Anh Nguyen. Analytic Tableau Systems for Propositional Bimodal Logics of

Knowledge and Belief. In Proceedings of the International Conference on Automated

Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’02), volume 2381

of Lecture Notes In Computer Science (LNCS), pages 206–220, Copenhagen, Denmark,

2002. Springer-Verlag.

[126] Matunda Nyanchama and Sylvia L. Osborn. The Role Graph Model and Conflict of

Interest. ACM Transaction on Information Systems Security, 2(1):3–33, 1999.

[127] Vineet Padmanabhan and Guido Governatori. On Constructing Fibred Tableaux for

BDI Logics. In Proceedings of the Pacific Rim International Conference on Artificial

Intelligence (PRICAI’06), pages 150–160, Guilin, Guanxi, China, 2006.

[128] J. Park and R.S. Sandhu. The uconabc usage control model. ACM Transactions on

Information and System Security, 7(1):128–174, 2004.

[129] Laura Pearlman, Von Welch, Ian Foster, Carl Kesselman, and Steven Tuecke. A

Community Authorization Service for Group Collaboration. In Proceedings of the

3rd IEEE International Workshop on Policies for Distributed Systems and Networks

(Policy’02), pages 50–59, Monterey, CA, USA, 2002. IEEE Computer Society.

[130] Torsten Priebe, Wolfgang Dobmeier, Christian Schlager, and Nora Kamprath. Sup-

porting Attribute-based Access Control in Authorization and Authentication Infras-

tructures with Ontologies. Journal of Software, 2(1):27–38, 2007.

BIBLIOGRAPHY 204

[131] Eric Prud’hommeaux. W3C ACL System. Technical report, The World Wide Web

Consortium (W3C), 2004.

[132] Li Qin and Vijayalakshmi Atluri. Concept-Level Access Control for The Semantic

Web. In Proceedings of the 2003 ACM Workshop on XML Security (XMLSEC’03),

pages 94–103, New York, NY, USA, 2003. ACM Press.

[133] Fausto Rabitti, Elisa Bertino, Won Kim, and Darrell Woelk. A Model of Authoriza-

tion for Next-Generation Database Systems. ACM Transactions on Database Systems

(TODS), 16(1):88–131, 1991.

[134] Pavan Reddivari, Tim Finin, and Anupam Joshi. Policy-Based Access Control for an

RDF Store. In Proceedings of the IJCAI-07 Workshop on Semantic Web for Collabo-

rative Knowledge Acquisition, 2007.

[135] D. De Roure. Future for European Grids: GRIDs and Service Oriented Knowledge

Utilities. 2009. http://www.semanticgrid.org/documents/ngg3/ngg3.html.

[136] Véronique Royer and J. Joachim Quantz. Deriving Inference Rules for Terminological

Logics. In Proceedings of the European Workshop on Logics in Artificial Intelligence

(JELIA’92), volume 633 of Lecture Notes in Computer Science (LNCS), pages 84–105,

Berlin, Germany, 1992. Springer Verlag.

[137] John M. Rushby, Sam Owre, and Natarajan Shankar. Subtypes for Specifications:

Predicate Subtyping in PVS. IEEE Transactions on Software Engineering, 24(9):709–

720, 1998.

[138] Pierangela Samarati and Sushil Jajodia. Data Security. Technical report, Supported

by DARPA/Rome Laboratory under contract F30602-96-C-0337, 1998.

[139] Ravi S. Sandhu. A Schematic Protection Model: Its Definition and Analysis for Acyclic

Attenuating Scheme. Journal of ACM, 35(2), 1988.

[140] Ravi S. Sandhu. The Typed Access Matrix Model. In Proceedings of the 1992 IEEE

Symposium on Security and Privacy (SP’92), pages 122–136, Oakland, CA , USA,

1992.

BIBLIOGRAPHY 205

[141] Ravi S. Sandhu, Venkata Bhamidipati, Edward J. Coyne, Srinivas Ganta, and

Charles E. Youman. The ARBAC97 Model for Role-Based Administration of Roles:

Preliminary Description and Outline. In Proceedings of the ACM Workshop on Role-

Based Access Control, pages 41–50, 1997.

[142] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-

Based Access Control Models. IEEE Computer, 29(2):38–47, 1996.

[143] Ravi S. Sandhu and Pierrangela Samarati. Access Control: Principles and Practice.

IEEE Communications Magazine, 32(9):40–48, 1994.

[144] D. Scott. A decision method for validity of sentences in two variables. Journal of

Symbolic Logic, 27:477, 1962.

[145] Haibo Shen and Fan Hong. A Context-Aware Role-Based Access Control Model for

Web Services. In Proceedings of the IEEE International Conference on e-Business

Engineering (ICEBE 2005), pages 220– 223, 2005.

[146] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden

Katz. Pellet: A Practical OWL-DL Reasoner. Journal of Web Semantics, 5(2):51–53,

2007.

[147] Ken P. Smith and Marianne S. Winslett. Entity Modeling in the MLS Relational

Model. In Proceedings of the 18th Conference on Very Large Databases, pages 199–

210, Vancouver, Canada, 1992. Morgan-Kaufmann.

[148] Masakazu Soshi. Safety Analysis of the Dynamic-Typed Access Matrix Model. In

Proceedings of the 6th European Symposium on Research in Computer Security, volume

1895 of Lecture Notes In Computer Science (LNCS), pages 106–121. Springer-Verlag,

2000.

[149] William Stallings. Cryptography and Network Security Principles and Practice. Pren-

tice Hall, 2003.

BIBLIOGRAPHY 206

[150] Gerald Stermsek, Mark Strembeck, and Gustaf Neumann. Using Subject- and Object-

Specific Attributes for Access Control in Web-based Knowledge Management Sys-

tems. In Proceedings of the Workshop on Secure Knowledge Management (SKM’04),

Amherst, NY, USA, 2004.

[151] Virginie Thion, Serenella Cerrito, and Marta Cialdea Mayer. A General Theorem

Prover for Quantified Modal Logics. In Proceedings of the International Conference on

Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’02),

volume 2381 of Lecture Notes In Computer Science (LNCS), pages 266 – 280, Copen-

hagen, Denmark, 2002. Springer-Verlag.

[152] Alessandra Toninelli, Rebecca Montanari, Lalana Kagal, and Ora Lassila. A Seman-

tic Context-Aware Access Control Framework for Secure Collaborations in Pervasive

Computing Environments. In Proceedings of the 5th International Semantic Web Con-

ference (ISWC’06), volume 4273 of Lecture Notes in Computer Science (LNCS), pages

473–486, Athens, GA, USA, 2006. Springer-Verlag.

[153] Dmitry Tsarkov and Ian Horrocks. FaCT++ Description Logic Reasoner: System

Description. In Proceedings of the International Joint Conference on Automated Rea-

soning (IJCAR’06), volume 4130 of Lecture Notes in Computer Science (LNCS), pages

292–297, Seattle, Washington, USA, 2006. Springer-Verlag.

[154] A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. Breedy, L. Bunch, M. Johnson,

S. Kulkarni, and J. Lott. KAoS Policy and Domain Services: Toward a Description-

Logic Approach to Policy Representation, Deconfliction, and Enforcement. In Pro-

ceedings of the 4th IEEE International Workshop on Policies for Distributed Systems

and Networks (POLICY’03), page 93, Washington, DC, USA, 2003. IEEE Computer

Society.

[155] A. Uszok, J. M. Bradshaw, J. Lott, M. Breedy, L. Bunch, P. Feltovich, M. Johnson, and

H. Jung. New Developments in Ontology-Based Policy Management: Increasing the

Practicality and Comprehensiveness of KAoS. In Proceedings of the IEEE Workshop on

Policies for Distributed Systems and Networks (Policy’08), pages 145–152, Palisades,

NY, USA, 2008. IEEE Press.

BIBLIOGRAPHY 207

[156] Andrzej Uszok, Jeffrey M. Bradshaw, Matthew Johnson, Renia Jeffers, Austin Tate,

Jeff Dalton, and Stuart Aitken. KAoS Policy Management for Semantic Web Services.

IEEE Intelligent Systems, 19(4):32–41, 2004.

[157] Daniel J. Weitzner, Jim Hendler, Tim Berners-Lee, and Dan Connolly. Creating a

Policy-Aware Web: Discretionary, Rule-based Access for the World Wide Web. In

lena Ferrari and Bhavani Thuraisingham, editors, Web and Information Security. IOS

Press, Hershey, PA, USA, 2004.

[158] Duminda Wijesekera and Sushil Jajodia. A Propositional Policy Algebra for Access

Control. ACM Transactions on Information and System Security, 6(2):286–325, 2003.

[159] Thomas Y. C. Woo and Simon S. Lam. Authorizations in Distributed Systems: A New

Approach. Journal of Computer Security, 2(2-3):107–136, 1993.

[160] Zhaohui Wu and Huajun Chen. Semantic Grid: Model, Methodology, and Applications.

Advanced Topics in Science and Technology in China. Springer-Verlag, 2008.

[161] Mariemma Yague, Maria del Mar Gallardo, and Antonio Mana. Semantic Access Con-

trol Model: A Formal Specification. In Proceedings of the 10th European Symposium

on Research in Computer Security (ESORICS’05), volume 3679 of Lecture Notes on

Computer Science (LNCS), pages 24–43, Milan, Italy, 2005. Springer-Verlag.

[162] Mariemma I. Yague, Antonio Mana, Javier Lopez, and Jose M. Troya. Applying the

Semantic Web Layers to Access Control. In Proceedings of the 14th International

Workshop on Database and Expert Systems Applications (DEXA ’03), pages 622–626,

Prague, Czech Republic, 2003. IEEE Computer Society.

[163] Anis Yousefi, Rasool Jalili, and Mahdi Niamanesh. Multi-Determiner Protection of

Private Data in Pervasive Computing Environments. IJCSNS International Journal

of Computer Science and Netwrok Security, 6(12):239–248, 2006.

[164] Guangsen Zhang and Manish Parashar. Context-Aware Dynamic Access Control for

Pervasive Applications. In Proceedings of the Communication Networks and Distributed

Systems Modeling and Simulation Conference, San Diego, USA, 2004.

BIBLIOGRAPHY 208

[165] Xiao Ming Zhang. A Semantic Grid Oriented to E-Tourism. In Proceedings of the

First International Conference on Cloud Computing, volume 5931 of Lecture Notes in

Computer Science (LNCS), pages 485–496, Beijing, China, 2009. Springer-Verlag.

BIBLIOGRAPHY 209

I certify that I have read this thesis and that, in my opinion, it is fully

adequate in scope and quality as a thesis for the degree of Doctor of

Philosophy.

(Dr Rasool Jalili) Principal Adviser

I certify that I have read this thesis and that, in my opinion, it is fully

adequate in scope and quality as a thesis for the degree of Doctor of

Philosophy.

(Dr Ali Movaghar)

I certify that I have read this thesis and that, in my opinion, it is fully

adequate in scope and quality as a thesis for the degree of Doctor of

Philosophy.

(Dr Hassan Mirian)

I certify that I have read this thesis and that, in my opinion, it is fully

adequate in scope and quality as a thesis for the degree of Doctor of

Philosophy.

(Dr Mohammad Ardeshir)

I certify that I have read this thesis and that, in my opinion, it is fully

adequate in scope and quality as a thesis for the degree of Doctor of

Philosophy.

(Dr Saeed Jalili)

I certify that I have read this thesis and that, in my opinion, it is fully

adequate in scope and quality as a thesis for the degree of Doctor of

Philosophy.

(Dr Mehran Soleiman Fallah)

Approved for the University Committee on Graduate Studies

210

