
Fine-Grained Access Control for Hybrid Mobile

Applications in Android Using Restricted Paths

Shahrooz Pooryousef

Department of Computer Engineering

Sharif University of Technology

Tehran, Iran

pooryousef@ce.sharif.edu

Morteza Amini

Department of Computer Engineering

Sharif University of Technology

Tehran, Iran

amini@sharif.edu

Abstract—Hybrid Mobile Applications are a new generation of
mobile applications that have recently introduced new security
challenges. In these applications, untrusted web content, such
as an advertisement inside an embedded browser, has the same
privileges as the entire application and can directly access the de-
vice resources. Unfortunately, existing access control mechanisms
are very coarse-grained and do not provide adequate facilities
for fine-grained access rule definition and enforcement in hybrid
mobile applications. In this paper, we propose a fine-grained
access control mechanism for privilege separation in hybrid
mobile applications. Our proposed access control mechanism,
called RestrictedPath, enables developers to define separate
paths inside the application in which each path has restricted
permissions. For preparing a fine-grained access control at the
Android framework layer, RestrictedPath enforces access control
at two different levels; browser level and Android access control
system level. We have developed a proof-of-concept prototype of
RestrictedPath for the Android open source project version 4.4.3
to illustrate its feasibility and to evaluate its overhead on the
system. Our experiments show that RestrictedPath is practical,
easy to use for developers, and has low performance overhead
(in average 10 percent) on the device.

I. INTRODUCTION

Hybrid Mobile Applications are a new generation of mobile

applications that integrate features of web and native mobile

applications [1]. In these applications, like web based ap-

plications, most of the content is loaded from web servers

at run time. An embedded browser, for example WebView

in Android, loads and executes web content like HTML,

CSS and JavaScript libraries [2]. With exposing interfaces on

embedded browser, web content can invoke native codes (for

example Java in Android), and reach device resources outside

the browser [3]. As the main part of these applications is

developed with web technologies, they can run on multiple

platforms such as Android, iOS, and Windows Phone [1].

Because of Android huge market share [4], in this paper, we

target Android as a reference platform and the WebView as

the hybrid mobile application’s embedded browser. As Gartner

report in 2016 [5], half of the mobile applications will be

hybrid mobile applications in near future.

Hybrid mobile applications have recently introduced new

security challenges. Exposing interface on embedded browser,

breaks browser sand box property [3]. Browser sand box

property contains the behaviors of web content and does not

allow JavaScript to access the system resources outside the

browser [3]. Hybrid mobile applications can load untrusted

web content such as advertisements and social web content

inside themselves. This untrusted web content has the same

privileges as the entire application and can invoke applica-

tion native APIs. However, when developers include some

untrusted web content in the application embedded browser,

it is treated as part of the host application web content. Same

Origin Policy [6] in an embedded browser, only protects web

content from different origins inside the browser, and does not

apply to resources outside the browser.

Access control in hybrid mobile applications has been

considered in several studies [2], [1], [7]. Some studies such

as [3], [8] and [2] have focused on breaking browser sandbox

property and proposed different mechanisms for privilege sep-

aration in these applications. Unfortunately, proposed privilege

separation solutions are not so useful in restricting untrusted

web content behaviors. Specifically, these approaches suffer

from two problems, which are elaborated in the following.

a) Coarse-Grained Access Control: Some of the pro-

posed access control systems such as NoFRAK [1], are very

coarse-grained and do not prepare any mechanism for develop-

ers to define separate permissions for web content of different

origins. In other words, if web content from an origin inside an

embedded browser be allowed to invoke native APIs, it would

be able to access all of the application native APIs. While in

hybrid mobile applications, web content from different origins

may need different permissions and invoke different APIs at

the native side.

b) Unprotected Native APIs: Some other access control

models which propose a fine-grained access control, cannot

restrict undesirable behaviors from untrusted web content

completely. For example, mechanisms such as definition of

Android permissions for web content origins [2], cannot

protect all native APIs from untrusted web content. Because

invoking application native APIs does not invoke Android

access control mechanism necessarily. For example, untrusted

web content can use native APIs for sending messages to

other applications, while we do not have any permission in

Android for restricting this action. Having access to device

public resources and APIs can be dangerous in some situations

[9], [10], and these APIs must be protected from untrusted web

13th International ISC Conference on Information Security and Cryptology (ISCISC2016)
September 7-8, 2016; Shahid Beheshti University – Tehran, Iran

978-1-5090-3949-4/16/$31.00 ©2016 IEEE 85

content in hybrid mobile applications.

In this paper, we propose a fine-grained access control

mechanism for hybrid mobile applications in Android. Using

our proposed access control, developers can define different

permissions for application’s different parts. For resolving the

above mentioned problems, our proposed access control, called

RestrictedPath, enforces access control at two different points.

For access control at first point, we have modified WebView

component so that this component controls all method invo-

cations between the application’s web and native side. This

can help us to control all native APIs invoking, even those

that do not invoke Android privileged APIs. Since we cannot

identify the Android APIs which are invoked on application’s

native APIs at this point, we need to control Android APIs

invoking at another point. We have added a new module, called

Path Manager, to Android framework layer to control Android

privilege services namely SMS and contact list. Path Manager

in framework layer, controls Android sensitive security APIs

and makes decisions based on the permissions that developers

have defined for the web and native side.

In this paper, we make the following contributions:

• We introduce a fine-grained access control mechanism at

Android framework level for hybrid mobile applications.

Our access control could restrict untrusted web content

behaviors in applications and can be used easily by

developers.

• To demonstrate the applicability of our approach, we

designed and implemented a prototype of RestrictedPath

in the Android open source project version 4.4.3.

In the rest of this paper, we first overview the structure of

hybrid mobile applications and Android access control model

in Section II. Our proposed access control mechanism is

discussed in Section III. In Section IV the overhead of Re-

strictedPath is analyzed. Related work is surveyed in Section

V, and the paper is concluded in Section VI.

II. BACKGROUND

A. Hybrid Mobile Applications Structure

The structure of hybrid mobile application is depicted in

Fig. 1, which consists two parts. In one side we have applica-

tion’s native APIs which is developed with native languages

such as Java in Android and Objective-C in iOS. In the other

side there is an embedded browser that loads and executes web

content. Usually developers use middleware frameworks such

as PhoneGap [11] for developing hybrid mobile applications.

These frameworks prepare diverse native plugins for mobile

device resources such as SMS, telephony, and contact list.

Hybrid mobile applications in Android, can register Java

objects to WebView through AddJavaScriptInterface method

[3]. Then, application web content can invoke all the public

methods of these Java objects. An example of using this

method is shown in Fig. 2. Web content such as JavaScript

functions within the WebView can use FUtil or CM to invoke

the methods in FileUtils and ContactManager Java classes.

Hybrid Mobile App

Native Classes

SMS

Contact

Camera

AddJavaScriptInterface

JavaScript APIs

HTML

CSS

Application Native PartEmbedded Browser(WebView)

R

E

S

O

U

R

C

E

S

Fig. 1. Hybrid mobile application architecture [12].

WebView WV = new WebView();

WV.addjavascriptinterface(new FileUtils(), Futil);

WV.addjavascriptinterface(new ContactManager(), CM);

Fig. 2. Registering Java objects into WebView [3].

B. Android Access Control Model

Android is the most popular operation system in mobile

platforms market share [4]. Android applications are usually

developed in Java language. Android applications are dis-

tributed as APK (Android Package) files, which consist of the

application’s Manifest, resources, and application bytecode.

Hybrid mobile applications are installed in Android such as

Android native applications and a unique user ID (UID) is

assigned to each of them at the installation time [13]. This

allows the OS to differentiate between installed applications.

In order to protect privileged resources, Android uses

the permission concept. For some resources such as SMS,

telephony, and contacts list, Android provides some services

which have been implemented at framework layer of Android

architecture [13]. Applications can interact with these services

using Binder [14] mechanism. Binder is Android’s lightweight

inter-process communication mechanism. Android access con-

trol module at framework level (Package Manager) checks

whether applications have sufficiently permissions for calling

these services or not. For some other permissions, such as

SD Card, Bluetooth, and Internet, access control is applied at

kernel level, which leverages application’s UID and resources

group ID (GID) for this purpose [15].

III. PROPOSED ACCESS CONTROL MECHANISM

Fig. 3 provides an overview of our proposed access control

mechanism called RestrictedPath. The highlighted modules

are new modules in Android structure which is required for

our proposed access control mechanism. In the following

we describe these modules and the proposed access control

procedure.

86

Android Services

(SMS,

Telephony,Contacts)

Binder

Hybrid Mobile App

Native

Codes

Package

Manager

Permission Check

Path

Manager
Path

Information

Binder

Access Control Access Control

Kernel Layer

Framework Layer

Equal

PathID?

1 2

WebView

JavaScript

New Components Existing Unchanged

Components
Modified Components

Local

SQL

Fig. 3. The Architecture of proposed access control mechanism.

A. Path Definition for Privilege Separation

In order to provide a fine-grained access control in hybrid

mobile applications, we need to define an entity or concept

for privilege separation inside the application. Using only

web content origin is not enough for privilege separation

in hybrid mobile applications; because this yields a coarse-

grained access control. In hybrid mobile applications, to allow

a JavaScript to access Android APIs, first a JavaScript from

a specific origin, invokes application’s native APIs, and then

these APIs interact with Android APIs. Hence we have a

specific path from the JavaScript to Android APIs for invoking

Android APIs. Our proposed access control helps developers

to define different paths in applications and access control goes

on the permissions of these paths. In other words, using this

approach, we will have separate paths which behaviors of each

path are restricted.

For path definition in applications, we have defined new tags

in Android system. These include <PathID>, <origin>, and

<PathPermission> tags. Developers can define their path in-

formation such as origin of web content and path permissions

at development time. An example of path definition has been

shown in Fig. 4. These tags are parsed by Package Manager

when an application is installed. In our design, we extended

Package Manager module to retrieve paths information by

parsing <PathID>, <origin>, and <PathPermission> tags in

the Manifest file. In attaching native objects to WebView com-

ponent with AddjavascriptInterface method, we have added

a new argument to AddJavaScriptInterface method. Thus,

developers can determine the path ID in interface definition

as depicted in Fig. 5. The path ID, native method name, and

the origin name of related path are saved in a local database in

the application. Our modified WebView uses these information

for checking the web and native interaction at run time.

<Path android:name = facebookPath
Android:id = 1000
 origin:value = facebook.com
PathPermission:name = android:permission:INTERNET />

<Path android:name = MyAppPath
Android:id = 2000
 origin:value = myapp.com
PathPermission:name = android:permission:INTERNET

PathPermission:name = android:permission:CONTACTS />

Fig. 4. Path definition in application Manifest file.

WebView WV = new WebView();

WV.addjavascriptinterface(new FileUtils(), Futil ,1000);

WV.addjavascriptinterface(new ContactManager(), CM ,2000);

Fig. 5. Interface definition in modified WebView.

B. Access Control Process in RestrictedPath

For each path, we must apply access control at two points.

In RestrictedPath, when web content invokes application native

APIs, our modified WebView checks the origin of web content

and identify its PathID. If web content’s PathID and native

method’s PathID be same, invocation is accepted. Note that,

we do not check the permission of paths at this point. Invoked

native APIs may not invoke Android privileged APIs neces-

sarily, but must be protected from untrusted web content. As

we mentioned in Section I-0b, some of interactions between

application’s two sides do not invoke Android privileged APIs

necessarily at the end but they could be dangerous [9], [10].

If we only enforce access control at this point, our access

87

control would be coarse-grained. Because at this point, we

cannot identify which Android privileged APIs the native API

is going to invoke. Thus, we need to control Android APIs

which are invoked from the application’s native part too. We

modified the Package Manager module, at the core of Android

access control, to redirect the permission checking control

flow to our Path Manager module whenever a permission

check event occurs. In particular, Path Manager identifies the

PathID from the native object name and then checks the path

permissions. If it has the requested permission for invoking

that API, Path Manager returns a true to Package Manager.

IV. EVALUATION

In order to evaluate the run time overhead and efficiency of

RestrictedPath approach, we implemented our access control

mechanism in Android open source project [16], version 4.4.3

(Jelly-Bean). For overhead evaluation, compiled source code

has been run in compiled source code default emulator in

Ubuntu 14.04 (64bit) with 8G RAM and dual core CPU.

Also we developed a sample hybrid application with compiled

source code. With this sample application we tested our access

control mechanism for preparing fine-grained access control at

path level.

A. RestrictedPath Overhead

For performance evaluation, we compared consumed time

for invoking Android privileged API in original and our

modified version of Android operating system. For evaluation

of consumed time, we employed the following pseudo-code in

our experiments:

• time_start := System.current Time

• for i:=1 to 8 do

– invoke read SMS API 8*i times

• time_end := System.current Time

• execute_time := time_end time_start

Permission checking overhead is shown in Fig. 6. The

maximum difference between the original and the modified

version using our proposed access control mechanism is 70 ms.

The experimental results show that the proposed access control

mechanism (RestrictedPath) imposes 8% runtime overhead.

This is due to the fact that permissions are checked at two

points in RestrictedPath access control process; first in Package

Manager and then in Path Manager.

We also used Antutu benchmark to check the RestrictedPath

overhead on system performance. This benchmark produces an

overall score for performance of a device using different mea-

sures such as memory and CPU performance. A higher number

for overall performance indicates the better performance. By

using RestrictedPath in different loads (Low, Medium, and

High), we have maximum 50 score difference in comparison

to the case of using the original access control mechanism in

the system (see Fig. 7). Low, Medium, and High load means

we ran 4, 8, and 12 hybrid mobile applications on the device

respectively.

0

100

200

300

400

500

600

700

5 10 15 20 25 30 35 40

Chart Title

Series2 Series3RestrictedPath
Default Access

Control

Number of API Invoking

Times(ms)

Fig. 6. Path permission checking overhead in RestrictedPath.

Fig. 7. System performance in case of using RestrictedPath.

B. Attack Scenarios and Defense in RestrictedPath

Here we use a sample application- which has been devel-

oped by our compiled source code- in order to show how

RestrictedPath can achieve privilege separation for different

paths. In our sample application, web content is loaded from

two different origins and there are two paths. In the first attack

scenario, the web content from one path invokes a native

method from another path. As shown in Fig. 8, this interaction

has been denied with modified WebView component. In the

second attack scenario, a method of a native object from one

path which does not have SEND_SMS permission, tries to read

and send the user’s SMSs. Fig. 9 illustrates that this action is

denied by our Path Manager component.

V. RELATED WORK

In [17], [8], [18] and [19] security concerns of Web-

View component in Android applications are analyzed. For

first time Lou et al. [3] described the problems of using

addJavascriptInterface method in WebView. After that, ac-

cess control in hybrid mobile applications was considered in

several studies. MobileIFC [20] controls information flows

inside hybrid mobile applications and prepares a mechanism

for developers to define new chunks to control information

flows. By modifying hybrid mobile framework, developers

can define policy for these chunks using XACML language

88

Fig. 8. Native method invocation control in RestrictedPath.

Fig. 9. The error message shown when the access to the Android SendSMS
API is denied.

[21]. Rastogi et al. [22] provide a general understanding of

attacks in mobile applications through the app-web interface

in which a user may go to a malicious Web destination via

advertisements inside the application. Georgiev et al. [1] have

analyzed hybrid mobile frameworks white list mechanism and

found that hybrid frameworks do not properly compose access

control policies governing web code. NoFRAK [1] is a coarse-

grained access control mechanism which enforces same origin

policy using a local DB (SQLite) to store whitelisted domains

with unique tokens. For enforcing access control in NoFRAK,

some JavaScript libraries have been added to hybrid mobile

frameworks. Jin et al. [2] changed Android access control

model and defined Android permissions for frames in the web

side.

In Table I, we briefly compare existing access control mech-

anisms with RestrictedPath. As Table I summarizes, none of

the surveyed mechanisms can restrict all undesirable behaviors

from untrusted web content. In comparison to the existing

approaches, RestrictedPath, by applying access control at two

different points, can prepare a fine-grained access control for

Android privileged services at framework level. The compari-

son has been categorized based on the four features that have

been introduced for this purpose in the literature.

Advertisements in native mobile applications have the same

privileges as their host applications. Several works have pro-

vided mechanisms for separating advertisements’ privileges

from the host applications’ privileges. AdSplit [23] runs

advertisements’ components in a separate process and sets

limited permissions for advertisements hosting process. In

AdDroid [24] a customized SDK (Software Development Kit)

has been proposed which supports specific permissions for

advertisements. Some studies such as [25], [26] and [27]

conduct an study on the hidden costs of ad rendering, including

network usage, and battery power. [28] suggests to track the

flow of information between users and ad networks to optimize

energy consumption in mobile advertisements. In practice,

employing privilege separation in native mobile applications

for access control in hybrid mobile applications is not a proper

solution; due to the fact that the structures of the hybrid

mobile applications is different from the native ones. In native

mobile applications, advertisements have separate components

and developers load these components in their applications.

In contrast, in hybrid mobile applications, advertisements and

untrusted web content are loaded in the embedded browser

and can invoke applications’ native APIs.

Using advertisements in pure web applications can endanger

the security of users and host applications. Many works have

been proposed to limit privileges of untrusted JavaScript inside

web applications. Adjail [29] loads advertisement content in a

separate sandbox with least privileges. ConScript [30] defines

policy in client side for untrusted web content. Some works

namely Adsafe [31] and Caja [32] use safe JavaScript subset

for developing web applications in which dangerous APIs have

been eliminated. Akhawe et al. [33] propose a mechanism

for separation of HTML5 based application parts using an

approach based on temporary origin.

VI. DISCUSSION AND CONCLUSION

Preparing the security of hybrid mobile applications is

essential for success in their vast popularity. In this paper,

we proposed a new access control mechanism, called Re-

strictedPath, which enforces access control on applications in

different points. In our proposed mechanism, developers can

define separate paths with restricted permissions and behaviors

in their applications. We have implemented RestrictedPath on

Android source code version 4.4.3 and evaluated its over-

head on system performance and Android APIs invoking. In

practice, our proposed access control has some limitations.

RestrictedPath can control access to privileged resources at

framework layer only. In other words, the proposed solution

can not prepare access control for resources that are controlled

by Android kernel. In future work, we will modify Android

kernel access control for restricting resources such as SD Card

and Bluetooth.

ACKNOWLEDGMENT

The authors would like to thank Yifei Wang and Xing Jin

for providing the source code of their implementation.

REFERENCES

[1] M. Georgiev, S. Jana, and V. Shmatikov, “Breaking and Fixing Origin-
based Access Control in Hybrid Web/Mobile Application Frameworks,”
in Proceedings of the Network and Distributed System Security Sympo-

sium (NDSS), 2014, pp. 1–15.
[2] X. Jin, L. Wang, T. Luo, and W. Du, “Fine-Grained Access Control

for HTML5-based Mobile Applications in Android,” in Information

Security, ser. Lecture Notes in Computer Science. Springer, 2015,
vol. 7807, pp. 309–318.

89

TABLE I
COMPARE RESTRICTEDPATH WITH PREVIOUS PROPOSED ACCESS CONTROL MECHANISMS.

Proposed Access Control Fine-grained Restricting Undesirable Behaviors Need to Change Application
Source Code

Need to Modify OS
Access Control

MobileIFC [20] X X × X

NoFRAK [1] × × X X

Jin et al. [2] X × X ×

RestrictedPath X X X ×

[3] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, “Attacks on WebView
in the Android System,” in Proceedings of the 27th Annual Computer

Security Applications Conference. ACM, 2011, pp. 343–352.

[4] I. D. Corporation. (2014) International Data Corporation Says Android
Dominated the Smartphone Market with a Share of 82.8% in 2015
Q2. [Online]. Available: http://www.idc.com/prodserv/smartphone-os-
market-share.jsp Access time:1 April. 2016

[5] Gartner. (2007) Gartner Recommends a Hybrid Approach
for Business-to-Employee Mobile Apps. [Online]. Available:
http://gartner.com/newsroom/id/2429815 Access time:13 April. 2015

[6] J. Ruderman. (2001) The Same Origin Policy. [Online].
Available: http://www.mozilla.org/projects/security/components/same-
origin.html5 Access time:1 July. 2015

[7] M. Shehab and A. AlJarrah, “Reducing Attack Surface on Cordova-
based Hybrid Mobile Apps,” in Proceedings of the 2nd International

Workshop on Mobile Development Lifecycle. ACM, 2014, pp. 1–8.

[8] E. Chin and D. Wagner, “Bifocals: Analyzing Webview Vulnerabilities
in Android Applications,” in Proceedings of the International Workshop

on Information Security Applications. Springer, 2013, pp. 138–159.

[9] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A.
Gunter, and K. Nahrstedt, “Identity, Location, Disease and More: Infer-
ring Your Secrets from Android Public Resources,” in Proceedings of

the ACM SIGSAC Conference on Computer & Communications Security.
ACM, 2013, pp. 1017–1028.

[10] R. Wang, L. Xing, X. Wang, and S. Chen, “Unauthorized Origin
Crossing on Mobile Platforms: Threats and Mitigation,” in Proceedings

of the ACM SIGSAC Conference on Computer & Communications

Security. ACM, 2013, pp. 635–646.

[11] J. M. Wargo, PhoneGap Essentials: Building Cross-Platform Mobile

Apps. Addison-Wesley, 2012.

[12] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code Injection
Attacks on HTML5-based Mobile Apps: Characterization, Detection
and Mitigation,” in Proceedings of the ACM SIGSAC Conference on

Computer and Communications Security. ACM, 2014, pp. 66–77.

[13] M. Backes, S. Bugiel, S. Gerling, and P. von Styp-Rekowsky, “An-
droid Security Framework: Extensible Multi-layered Access Control
on Android,” in Proceedings of the 30th Annual Computer Security

Applications Conference. ACM, 2014, pp. 46–55.

[14] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and
B. Shastry, “Towards Taming Privilege-Escalation Attacks on Android,”
in Proceedings of the Network & Distributed System Secuity Symposium

(NDSS), vol. 17, 2012, p. 19.

[15] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege
Escalation Attacks on Android,” in Proceedings of the International

Conference on Information Security. Springer, 2010, pp. 346–360.

[16] Google. (2007) Android Open Source Project. [Online]. Available:
https://source.android.com// Access time:1 April. 2016

[17] T. Luo, X. Jin, A. Ananthanarayanan, and W. Du, “Touchjacking Attacks
on Web in Android, iOS, and Windows Phone,” in Proceedings of

the International Symposium on Foundations and Practice of Security.
Springer, 2012, pp. 227–243.

[18] T. Sutcliffe and A. Taylor, “The Lifetime of Android API Vulnerabilities:
Case Study on the JavaScript-to-Java Interface,” in Proceedings of the

23rd International Workshop on Security Protocols, vol. 9379. Springer,
2015, pp. 126–138.

[19] B. Hassanshahi, Y. Jia, R. H. Yap, P. Saxena, and Z. Liang, “Web-
to-Application Injection Attacks on Android: Characterization and De-
tection,” in Proceedings of the European Symposium on Research in

Computer Security. Springer, 2015, pp. 577–598.

[20] K. Singh, “Practical Context-aware Permission Control for Hybrid
Mobile Applications,” in Proceedings of the International Workshop on

Recent Advances in Intrusion Detection (RAID). Springer, 2013, pp.
307–327.

[21] M. Verma. (2004) XML Security: Control In-
formation Access with XACML. [Online]. Avail-
able: http://www.ibm.com/developerworks/xml/library/x-xacml/ Access
time:12 June. 2016

[22] V. Rastogi, R. Shao, Y. Chen, X. Pan, S. Zou, and R. Riley, “Are
These Ads Safe: Detecting Hidden Attacks through the Mobile App-
Web Interfaces,” in Proceedings of the Network and Distributed System

Security Symposium (NDSS). Internet Society, 2016.
[23] S. Shekhar, M. Dietz, and D. S. Wallach, “Adsplit: Separating Smart-

phone Advertising from Applications,” in Proceedings of the 21st

USENIX Security Symposium, 2012, pp. 553–567.
[24] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “Addroid: Privilege

Separation for Applications and Advertisers in Android,” in Proceedings

of the 7th ACM Symposium on Information, Computer and Communi-

cations Security. ACM, 2012, pp. 71–72.
[25] J. Gui, S. Mcilroy, M. Nagappan, and W. G. Halfond, “Truth in

Advertising: The Hidden Cost of Mobile Ads for Software Develop-
ers,” in Proceedings of the 37th International Conference on Software

Engineering, vol. 1. IEEE Press, 2015, pp. 100–110.
[26] J. Crussell, R. Stevens, and H. Chen, “Madfraud: Investigating Ad

Fraud in Android Applications,” in Proceedings of the 12th Annual

International Conference on Mobile Systems, Applications, and Services.
ACM, 2014, pp. 123–134.

[27] A. Albasir, K. Naik, B. Plourde, and N. Goel, “Experimental Study of
Energy and Bandwidth Costs of Web Advertisements on Smartphones,”
in Proceedings of the 6th International Conference on Mobile Comput-

ing, Applications and Services (MobiCASE). IEEE, 2014, pp. 90–97.
[28] I. Leontiadis, C. Efstratiou, M. Picone, and C. Mascolo, “Don’t Kill

My Ads! Balancing Privacy in an Ad-Supported Mobile Application
Market,” in Proceedings of the 12th Workshop on Mobile Computing

Systems & Applications. ACM, 2012.
[29] M. Ter Louw, K. T. Ganesh, and V. Venkatakrishnan, “AdJail: Practical

Enforcement of Confidentiality and Integrity Policies on Web Advertise-
ments,” in Proceedings of the 19th USENIX Security Symposium, 2010,
pp. 371–388.

[30] L. A. Meyerovich and B. Livshits, “ConScript: Specifying and Enforc-
ing Fine-Grained Security Policies for Javascript in the Browser,” in
Proceedings of the IEEE Symposium on Security and Privacy. IEEE,
2010, pp. 481–496.

[31] D. Crockford. (2008) Adsafe. [Online]. Available:
http://www.adsafe.org// Access time:1 April. 2015

[32] Google. (2008) A Source-to-Source Translator for Se-
curing JavaScript-based Web Content. [Online]. Available:
http://code.google.com/p/google-caja/ Access time:1 April. 2016

[33] D. Akhawe, P. Saxena, and D. Song, “Privilege Separation in HTML5
Applications,” in Proceedings of the 21st USENIX Security Symposium,
2012, pp. 429–444.

90

