
Non-monotonocity in OrBAC through Default and 
Exception Policy Rules 

 
Seyyed Ahmad Javadi, Morteza Amini, Rasool Jalili 

Data and Network Security Lab (DNSL) 
Department of Computer Engineering 

Sharif University of Technology 
Tehran, IRAN 

{ajavadi@ce., amini@, jalili@}sharif.ir 
 

Abstract—Context-awareness is an essential requirement of 
modern access control models. Organization-Based Access 
Control (OrBAC) model is a powerful context-aware access 
control model defined by first-order logic. However, due to the 
monotonicity nature of the first-order logic, OrBAC suffers from 
the incapability of making decision based on incomplete context 
information as well as the definition of default and exception 
policy rules. This paper proposes augmenting non-monotonicity 
features to OrBAC using MKNF+ logic, which is a combination of 
Description Logic (DL) and Answer Set Programming (ASP). 
Along with the use of DL to define ontology for main entities and 
context information in OrBAC; MKNF+ rules are used to define 
access control, default, and exception policy rules. The proposed 
model inherits the advantages of ontological representation of 
OrBAC entities and context information (such as interoperability 
among systems) as well as the ASP advantages in non-monotonic 
reasoning through closed-world principle and negation as failure. 
The expressive power of the model is also demonstrated through 
a case study. 

Keywords: Role-Based Access Control, Non-monotonic Logic, 
Default Policy Rule, Exception Policy Rule 

I. INTRODUCTION 
Access control policy determines what, where, when, and 

how subjects can access databases, web services, electronic 
devices, and any other resources. Context-awareness is an 
essential requirement of recent access control models. 
Organization-Based Access Control (OrBAC) [1] is one of 
such models, which attempts to overcome the limitations of 
previous access control models through the consideration of 
organization and context concepts. 

The use of logics in access control models has advantages 
including clean foundations, flexibility, expressiveness, 
declarativeness, and inference capability [2]. Two overall 
classes of logics are: 

• Monotonic logics, where inference of a sentence A 
from a set T of sentences, implies its inference from 
any arbitrary superset of T. In other words, current 
conclusions are not invalidated by adding new 
information and premises. Classical logics such as 
propositional and first-order logic are monotonic. 

• Non-monotonic logics, where some of the current 
conclusions may be retracted by adding new 
information and premises. 

Based on the definition, in a non-monotonic access control 
system, adding new information or access control rules may 
invalidate some of the previous conclusions (permissions/ 
prohibitions). The following four requirements are introduced 
as the motivation of introducing non-monotonic access control 
systems [2], [3]: 

1. Context information may be imperfect as it is 
impossible to gather all context information 
completely and accurately all the time. For example, a 
user location might be unknown due to the 
communication failure, the sensor failure, or any other 
types of failures. Incomplete context information 
cannot be modeled by monotonic logics such as 
propositional and first order logic. Answer Set 
Programming (ASP) [4] is an appropriate decidable 
logic for handling incomplete context information. 
ASP supports negation as failure (in addition to 
classical negation), using which, the default context 
information can be defined. 

2. In some conditions, permissions (prohibitions) should 
be granted (revoked) exceptionally. In addition, ability 
to define exceptions to access control rules increases 
the expressiveness of the policy specification 
language. If exception is supported by policy 
specification language, general access control rules 
can be defined initially and the specific authorizations 
can be defined subsequently using exceptions [2].  

3. When an access control model supports defining both 
permission and prohibition on the same target, some 
strategies are required to resolve the possible conflicts 
in access decision process. 

4. A default policy is required when neither permission 
nor prohibition about a request is inferred.  

Several approaches have been proposed for modeling 
context information so far [5]. Among these approaches, using 
ontology has some more advantages such as interoperability 
among systems (easier knowledge sharing), and deducing the 
high level conceptual context from the low level context [6]. 
Additionally, context reasoning based on ontology is 
supported by optimized automatic tools [5]. However, DL, 
which is normally used to specify ontologies, has some 
shortcomings as represented in TABLE I. Accordingly, while 
DL is appropriate for context modeling, it is not strong enough 
for access control policy specification. The shortcomings of 
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DL can be compensated by ASP [7]. A hybrid logic, 
combining DL and ASP together, would be a good solution to 
use the features found in the both. 

In this paper, MKNF+ [7], as a combination of ASP and 
DL, is used to handle non-monotonicity in OrBAC. Main 
entities of OrBAC and context information are modeled as an 
ontology using DL, part of MKNF+, while various contextual 
conditions (e.g. default context) and access control rules are 
specified using rule specification capability of MKNF+. In 
addition, exception and default policy rules are added to 
OrBAC using negation as failure.  

In summary, our proposed model uses the DL’s strengths 
in semantic technology alongside the ASP’s strengths in non-
monotonic reasoning. In addition, the principle which is 
considered in this paper is that exception policy rules can be 
considered as exception to regular access control rules and 
regular access control rules can be considered as exception to 
default policy rules. In both cases, the exceptions can be 
defined in MKNF+ using negation as failure. Thus, all the non-
monotonic features that we like to have in OrBAC can be 
augmented to it using negation as failure feature of MKNF+.  

The rest of this paper is organized as follows. Section  II 
briefly overviews some preliminaries including imperfect 
context information, OrBAC, and MKNF+. Section  III surveys 
related work. The ontologies of main entities of OrBAC and 
context information are represented in Section  IV. In 
Section  V, our proposed approach to meet the non-monotonic 
access control requirements are described. A case study for 
clarifying the applicability of the approach is mentioned in 
Section  VI. Finally, Section  VII concludes the paper and 
draws some future directions. 

II. PRELIMINARIES 
Various types of imperfect context information, OrBAC, 

and MKNF+ are discussed in the following as preliminaries. 

A. Imperfect Context information 
The following four categories of imperfect context 

information have been characterized by Henricksen et al.[8]: 
1. Unknown: when no information about a contextual 

property is available or cannot be incorporated into the 
access control system. This type of imperfection is 
also known as incomplete information [3]. 

2. Ambiguous: when several different values are reported 
about the property; e.g. two or more distinct locations 
are reported by separate positioning devices for a 
given person.  

3. Imprecise: when the reported values of the property 
are approximately correct; e.g. the imprecise 
geographical position of a person. 

4. Erroneous: when reported values of the property do 
not match the actual values. Erroneous context 
information can be arisen as a result of human error. 

In this paper, we consider incomplete information and use 
negation as failure to deal with such kind of imperfect context 
(see Section  IV.B). Handling the other three categories is 
leaved for our future research.  

TABLE I. The shortcomings and strengths of DL and ASP [7] 

Logic 
Name Shortcomings Strengths 

DL • No support for logical rules 
• Unfeasibility to express non-

tree-like relationships 
• Impossibility to express 

integrity constraints 
• Lack of support for non-

monotonic reasoning (i.e. 
closed-world reasoning) 

• Support for reasoning 
with unbounded or 
infinite domain 

• Powerful description of 
structured knowledge 

ASP • Lack of support for reasoning 
with unbounded or infinite 
domain 

• Support for negation as 
failure and closed-world 
reasoning 

B. Introduction to OrBAC 
OrBAC is a context-aware access control model with the 

aim of overcoming the previous access control models’ 
limitations. Main entities of OrBAC and their definitions are 
represented in TABLE II. There are eight basic sets of entities 
in OrBAC: ORG (set of organizations), SU (set of subjects), 
RO (set of roles), OB (set of objects), V (set of views), AC 
(set of actions), AV (set of activities), and C (set of context). 
The main predicates and their descriptions in OrBAC are 
represented in TABLE III. Predicates Prohibition and Is-
prohibited are defined similar to Permission and Is-permitted 
respectively. Axiom (1) describes how abstract permissions 
among roles, views, and activities can be transformed into 
concrete permissions among subjects, objects, and actions. 
The axiom for prohibition is defined similarly. 

su SU ob OB ac AC ro RO av AV v V c C
Permission(Org, ro,av, v,c) Employ(Org,su, ro)
Use(Org,ob, v) Consider(Org,ac,av)
Define(Org,su,ac,ob,c) Is-permitted(su,ac,ob)

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈
∧ ∧

∧ ∧
→

 (1) 

Different types of context information have been modeled 
by Cuppens et al. [9] in OrBAC using first-order logic. As an 
example, suppose the following rule used by hospital H1 to 
define the context location(so): 

1

1

su SU, ac AC, ob OB,(Is _ located(H ,su,so)
Define(H ,su,ac,ob, location(so)).

∀ ∈ ∀ ∈ ∀ ∈
→

 

Where, the function location maps each spatial object in set 
SO to a physical spatial context (e.g. Office_32). This rule 
means that the context location(so) is true among subject su, 
action ac, and object ob; if su is located in the area of spatial 
object so. 

TABLE II.  Main entities of OrBAC [1] 

Entity Definition 

Organization An organized group of active entities (i.e. subjects) 
playing some role for specific goals. 

Subject An active entity (i.e. user) or an organization. 

Role The entity used to structure the link among subjects and 
organizations. 

Object An inactive (passive) entity such as a data file, an email. 
View A group of objects on which the same security rules apply. 
Action Computer actions such as “read” and “write”. 
Activity A group of actions that partake of the same principles. 

Context 
Used to specify the concrete circumstances where 
organizations grant permissions to roles for performing 
activities on views. 
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TABLE III. Main predicates and their description in OrBAC [1] 

Predicate 
Name Domain (Dom.), Description(Des.) and Example (e.g.) 

Employ 

Dom: ORG SU RO× ×  
Des: Employ(org, su, ro) means that org employs subject su 
in the role ro. 
e.g.: Employ(H1, Bob, Physician) 

Use  

Dom: ORG OB V× ×  
Des: Use(org, ob, v) means that org uses object ob in the 
view v. 
e.g.: Use(H1, F1.doc, Medical_Record) 

Consider 

Dom: ORG AC AV× ×  
Des: Consider(org, ac, av) means that org considers that 
action ac falls within the activity av. 
e.g.: Consider(H1, Read, Consult) 

Define 

Dom: ORG SU AC OB C× × × ×  
Des: Define(org, su, ac, ob, c) means that within org, 
context c is true among subject su, object ob and action ac. 
The required conditions for a specific context are described 
by logical rules. 

e.g.: 
su SU, ac AC, ob ob(Name _ Patient(ob,p)

Patient(su,p)) Define(H ,su,ac,ob,Attending _ Physician)1

∀ ∈ ∀ ∈ ∀ ∈ ∧
→

 

Permission 

Dom: O RG RO AV V C× × × ×  
Des: Permission(org, ro, av, v, c) means that org grants role 
ro permission to perform activity av on view v within 
context c. 
e.g.: Permission(H1, Physician, Consult, Medical_Record, 
Attending_Physician) 

Is-
permitted 

Dom: SU AC OB× ×  
Des: Is-permitted(su, ac, ob) means that subject su, is 
concretely permitted to perform action ac on object ob. 
e.g.: Is-permitted(Bob, Read, F1.doc) 

Sub-role 

Dom: ORG RO RO× ×  
Des: Sub-role(org, ro1, ro2) means that in org, role ro1 is sub 
role of role ro2. 
e.g.: Sub-role (H1, Administrator, Physician) 

C. Introduction to MKNF+ 

MKNF+ [7] is a formalism for the combination of DL and 
ASP. Each MKNF+ knowledge base is a pair K= (O, P), 
where O is a DL knowledge base and P is a program. 
Predicates defined in O are called DL-predicates and other 
predicates are called non-DL-predicates. DL-predicates are 
unary or binary predicates but non-DL-predicates are not 
bounded. Moreover, two types of modal atoms namely K-atom 
and not-atom are defined in this formalism. K-atom is denoted 
by K A (read “A is known to hold”) and not-atom is denoted 
by not A (read “A can be false”) [7]. The structure of an 
MKNF+ rule is as follows: 

1 n 1 mB ,..., B   H H... .→ ∨ ∨  
Where, Bi can be a non-modal predicate, a K-atom, or a not-
atom, whereas, Hi would be either a non-modal predicate or a 
K-atom. To preserve decidability of MKNF+, the DL-safety 
restriction must be applied; each variable in a rule should 
appear in the body of the rule in some non-DL-K-atom. The 
main idea of this restriction is to restrict the applicability of 
rules only to individuals that are explicitly mentioned by name 
in the knowledge base. In the rest of this paper, names of DL-
atoms are indicated by initial cap words and names of non-
DL-atoms are demonstrated by lowercase words. In addition, 
names of variables begin with lowercase letters while names 
of constants begin with uppercase letters. 

III. RELATED WORK 
For the first time, default logic as a powerful (but not 

decidable) non-monotonic logic has been used in access 
control policy specification by Woo and Lam [10]. To address 
the complexity issues of default logic, using the fragment of 
default logic corresponding to stratified, extended logic 
program was proposed by them. Although the proposed access 
control model is a powerful model, context information 
modeling is not considered in it. Ordered logic programs 
which supports negation by failure has been proposed as 
policy specification language by Bertino et al. [11]. This 
model supports exception but it does not pay attention to the 
context information.  

Lk as a knowledge base formal language has been proposed 
to specify authorization domains with incomplete information 
by Bai [12]. Three types of propositions namely initial, 
objective, and subjective are defined for this purpose. The 
semantics of Lk is defined based on the world view semantic of 
epistemic logic programs. TABLE IV shows the propositions 
and their translation to epistemic logic program, whereφ is a 
conjunctive or disjunctive fact expression, andψ , β , and γ are 
conjunctive fact expressions. Note that β¬K can be used in 
this logic; but, it is not supported in MKNF+

. 
 OrBAC is defined by first-order logic, which is monotonic 

and dose not satisfy non-monotonic requirements. Boustia et 
al. [13] proposed a new extension that handles non-
monotonicity in OrBAC using their proposed logic named 
JClassic−

δε . JClassic−
δε is a DL based system augmented with 

two operators δ (for default) and ε (for exception). 
JClassic−

δε  inherits some shortcomings from DL including 
lack of support for logical rules, arity restriction, inability to 
axiomatize integrity constraints, and lack of support for 
closed-world reasoning and negation as failure. 

Several frameworks have been proposed for combining 
DLs and rules. Description logic ALC and positive Datalog 
programs are combined in AL-log [14]. Rosatiet al. extended 
AL-log and proposed DL-log [15]. In comparison with AL-
log, disjunctive Datalog with negation and binary predicates 
are supported in DL-log. To preserve decidability, the weak 
DL-safety condition has been employed. According to this 
restriction, each variable in a DL-atom of the head must occur 
in a non-DL-atom of the body. Motik et al. [7] showed that 
each DL-log knowledge base can be encoded to a MKNF+ 
knowledge base. However, MKNF+ is more flexible than DL-
log.  

TABLE IV. Three propositions in Lk and their translation to epistemic logic 
program [12] 

Proposition Name (PN), Proposition Form (PF) Translation 
PN: initial 
PF: φinitially  φ→  

PN: objective 
PF: φ ψ γif withabsence  ,ψ γ φ→not  

PN: subjective 
PF: φ ψ γ βif withabsence knowing  or 
φ ψ γ βif withabsence not knowing  

, ,ψ γ β φ→not K  
or 

, ,ψ γ β φ¬ →not K  
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In DL-log, DL-predicates and non-DL-predicates are 
interpreted under open-world and closed-word assumption 
respectively, which makes DL-log knowledge base inflexible. 
In contrast to DL-log, in MKNF+, an open-world or closed-
world interpretation of a predicate can be chosen freely 
through its usage in either a non-modal or a modal atom [7].  

In this paper, we propose an extension to OrBAC in which 
MKNF+ used to representing context information and defining 
access policy rules. In MKNF+, predicates can be defined with 
arbitrary arities. Furthermore, MKNF+ supports non-
monotonic inference rule such as negation as failure which 
can be used to handle incomplete context information and 
default policy rules specification. To the best of our 
knowledge, MKNF+ is the most powerful decidable formalism 
proposed for combination of DL and rules, and thus, it is used 
in this paper. 

IV. ORBAC AND CONTEXT INFORMATION ONTOLOGY 
Since, ontology is chosen as data model in our proposed 

access control model, the details of modeling of main entities 
of OrBAC as well as context information (especially the 
incomplete one) are discussed in the following. 

A. Ontological Representation of Main Entities of OrBAC 
and Context Information 
Context information may be provided by different service 

providers with different data models. However, a common 
understanding between client and service provider is needed 
for interoperability among systems. Semantic technology and 
especially OWL language are widely used to data modeling 
independent of the underlying models. As Figure 1 shows, in 
our proposed model main entities of OrBAC and context 
information are modeled in an ontology. However, it is not 
applicable to cover all entities’ and context information in 
different domains in a predefined ontology. Context model is 
divided into upper level ontology and specific ontology in 
CONON ontology [16] for resolving the issue. We use the 
same idea, so our proposed ontology consists of two layers: 

1. Upper Level Ontology is a high-level ontology which 
represents the main general entities and their 
attributes. Such entities can be used in different 
domains.  

2. Domain Specific Ontology is a detailed ontology 
which describes domain specific concepts and their 
relationship, in addition to the main concepts.  

 
Figure 1. Proposed model security knowledge base structure 

Figure 2 depicts the upper level ontology’s entities 
consisting of main concepts in OrBAC, i.e., organization, 
context, role, activity, view, subject, action, and object and 
their properties. Additionally, the two important context 
information including time and location are considered in the 
upper level ontology. 

In the rest of this paper, non-DL-predicates 
cie(ContextInformationEntity) and ape(AccessPolicyEntity) 
are used to apply DL-safety restriction. All the access policy 
entities and context information entities (sub-classes or 
individuals) are defined as members of predicates “ape” and 
“cie” respectively. For example, if hospital H1 defines a new 
role called Surgeon, Role(Surgeon) and ape(Surgeon) are 
added to the security knowledge base. As another example, if 
H1 defines a new location called Surgery_Room2, 
Location(Surgery_Room2) and cie(Surgery_Room2) are 
added to the security knowledge base. By doing so, the DL-
safety restriction is satisfied in the MKNF+ rules, which are 
used in our proposed access control model. 

B. Dealing with Incomplete Context Information 
Some aspects of environment may be unknown to the 

access control system. MKNF+ rules support negation as 
failure, to cope with deduction in presence of incomplete 
information. Generally, the following two states are possible 
for each predicate [4]: 

1. Information about the predicate is complete and the 
closed-world assumption is applicable. The following 
rule can be used to define closed-world assumption for 
the predicate p(x): 

p(x) p(x).→¬not  
For example, hospital H1 can assume that information 
about the attending physician is complete, so it can 
use Rule (2) to apply the closed-world assumption to 
the predicate define for context Attending_Physician. 

2. Information about the predicate is incomplete. The 
rule “the predicate can be assumed true if some 
prerequisite conditions be true and there exists no 
clear negative information about the predicate” can be 
used as a general rule to deal with incompleteness. 
Rule (3) expresses this general rule for predicate p(x). 
As an example, IsLocatedIn(Subject, Location) is a 
useful predicate which may be unknown for some 
subjects. For default context information, H1 can 
define the following rule: “at the working hours, a 
hospital nurse is in hospital if he is not on vacation 
and there is no contrary information”. Rule (4) defines 
the predicate workingHours. Rule (5) is the default 
context rule for the previous general rule. 

1

1

define(H ,su,ac,ob,Attending _ Physicion)
define(H ,su,ac,ob, Attending _ Physicion)→ ¬

not
 (2) 

Pr erequisite _ Conditions, p(x) p(x)¬ →not  (3)
After(08 :00), Before(19 :00), OnDay(Saturday),

OnDay(Sunday) workingHours()
¬

¬ →
K K K
K K

 (4) 

1

1

ape(su), IsEmployedIn(su, Nurse), workingHours(),
IsInVacation(su,True), IsLocatedIn(su,H )

IsLocatedIn(su,H )
¬

→

K K K
not not

K
 (5) 
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Figure 2. Partial definition of upper level ontology 

V. NON-MONOTONICITY IN ORBAC 
In order to augment non-monotonicity features to OrBAC, 

using MKNF+ logic, we first stratify the security policy to 
three layers. Then it is described that how policy rules in each 
layer are specified considering their non-monotonic nature. 

A. Security Policy  
Generally, security policy rules can be categorized as: 
1. Regular Access policy rules, which are defined using 

the predicates permission and prohibition. 
2. Exception policy rules, which are defined using the 

predicate exception. Different types of exceptions as 
well as our approach for exception policy rule 
definition are discussed in the next section. 

3. Default policy rules, which are defined using the 
predicate default. More discussion on default policy 
rules is represented in Section  V.C.  

Following the above categorization, the security policy can 
be stratified to three layers, as depicted in Figure 3. Exception 
policy rules have more priority than regular access policy rules 
and they have higher priority than default policy rules. In fact, 
each regular access control rule can be considered as an 
exception to default rules because adding them may decrease 
the applicable domain (subject/ object/ action) of the default 
rules. Correspondingly, each exception policy rule can be 
considered as an exception to regular access policy rules. 
Since existing exception and default rules makes the system 
non-monotonic, such unification of interpretation of different 
rules clarifies the specification of them using the only non-
monotonic feature of MKNF+, i.e., negation as failure. More 
details on this issue would be found in the next section.  

As our proposed model supports both permission and 
prohibition in both access policy rules and exception policy 
rules, a conflict resolution strategy is also required. The 
following conflict resolution strategies are mentioned in the 
literature:  

• Denial-takes-precedence 
• Permission-takes-precedence 

• Least specific-takes-precedence 
• Most specific-takes-precedence 
• More prioritized-takes-precedence 
Each of the above conflict resolution strategies can be 

employed in our proposed model. Due to lack of space, we do 
not further discuss this requirement. It is important to note 
that, our proposed model allows conflict among regular access 
policy rules but it does not allow conflict among exception 
policy rules. In other words, we cannot define a new exception 
rule over the existing exception rules. 

B. Inheritance and Exception Policy Rules 
Authorization inheritance is an important concept which 

should be considered in specification and inference of access 
control policies. In our proposed model, Rules (6) and (7) in 
the following are provided to enforce inheritance over role 
hierarchy. Enforcing inheritance over view and activity 
hierarchies are as the same. Using the aforementioned rules, 
each child role inherits the permissions of its parent nodes and 
each parent role inherits the prohibitions of its child roles. For 
example, if the role Administrator is considered as a sub-role 
of role Physician, all permissions granted to Physician are 
inherited by Administrator. The predicate IsSubRoleOf(ro1, 
ro2) means that the role ro1 is the child node of role ro2.  

In presence of role (activity, or view) hierarchy, two 
general types of exceptions worth to be discussed: 

1. Local exceptions: kind of exceptions that when 
defined locally on a role (activity, or view), they are 
not inherited over the role (activity, or view) 
hierarchy. The definition of local exception needs that 
user having sub-roles are not permitted to login as 
parent roles. Such a limitation contradicts the 
existence of role hierarchy. 

2. General exceptions: kind of exceptions which are 
inherited over the role (activity, or view) hierarchy.  

Due to the limitations of local exceptions, we take general 
exceptions into account in this paper. 
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ACR2
domain

(prohibition)

Default rules domain

EPR1
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(permission)

Conflict Resolution Strategy (CRS) is needed

Default Policy Rules (DPR)

Exception Policy Rules (EPR)

Access Control Rules (ACR)

ACR1
domain

(permission)
As exception on

As exception on

 
Figure 3. Different types of security policy rules 

Each access control rule adds a set of permissions or 
prohibitions to the security knowledge base. So, an exception 
can be defined in either of two ways: 

1. Rule-specific exception; which is defined on a role, 
view, or activity of a specific access control rule. For 
example, permission(org,ro1,av1,v1,c) grants 
permission to role ro1 to do activity av1 on view v1 
within context c. According to the role hierarchy 
shown in Figure 4, the roles ro2, ro3, ..., ro10 inherit 
this permission. Now if we need to prohibit ro2 from 
doing activity av1 on view v1, we should define it as an 
exception on permission(org,ro1,av1,v1,c). In this 
situation, if ro2 inherits this permission due to the 
existence of another rule, a conflict happens. Note that 
exceptional permissions (prohibitions) should 
overwrite other prohibitions (permissions). Giving 
higher priority to exceptional permissions/prohibitions 
would be a logical strategy for resolving such 
conflicts. 

2. Rule-independent exception; which is defined 
independently from the defined access control rules. 
So, an exceptional permission (prohibition) overwrites 
all other conflicting prohibitions (permissions). 

In this paper, we take rule-independent exceptions into 
account. In our proposed model, global and rule-independent 
exceptions are defined using negation as failure. Predicate 
exception(Organization, Role, Activity, View, Context, Type) is 
provided as exception policy rule definition. exception(org, ro, 
av, v, c, Per) defines an exception to role ro to do activity av 
on view v within context c in organization org, and likewise, 
the exception(org, ro, av, v, c, Pro) defines an exception to 
prohibits ro to do av on v within context c. Rule (8) translates 
abstract level exceptions to the concrete level ones. The 
predicate is_excepted is defined to show the concrete level 
exceptions. Rules (9) and (10) refine OrBAC axioms 
translating the abstract level permissions and prohibitions to 
the concrete level ones. In comparison to the OrBAC axiom, 
the condition not is_excepted is added to the axiom body. In 
fact, this condition means that a subject su has not permitted 
(prohibited) exceptionally to do action ac on object ob, unless 
it is explicitly defined. In addition, Rules (11) and (12) are 
defined for inheritance of exceptional permissions and 
prohibitions over role hierarchy. Inheritance rules for view and 
activity hierarchy are defined similarly. Finally, Rules (13) 

and (14) infer concrete level permissions and prohibitions 
from the concrete level exceptions.  

1 2

1 2 1

ape(ro ), permission(org, ro ,av, v,c),
IsSubRoleOf (ro , ro ) permission(org, ro ,av, v,c)→

K K
K K

 (6) 

2 1

1 2 2

ape(ro ), p r ohibition(org, ro ,av, v,c),
IsSubRoleOf (ro , ro ) p r ohibition(org, ro ,av, v,c)→

K K
K K

 (7) 

exception(org, ro,av, v,c, t), IsEmployedIn(su, ro) ,
IsUsedIn(ob, v) , IsConsideredAs(ac,av) ,
define(org,su,ac,ob,c) is _ excepted(su,ac,ob, t)→

K K
K
K K

 (8) 

permission(org, ro,av, v,c) ,
IsEmployedIn(su, ro) , IsUsedIn(ob, v) ,
IsConsideredAs(ac,av) , define(org,su,ac,ob,c),

is _ excepted(su,ac,ob,Pr o) permitted(su,ac,s _ obi )→

K
K K
K K
not K

 (9) 

prohibition(org, ro,av, v,c) ,
IsEmployedIn(su, ro) , IsUsedIn(ob, v) ,
IsConsideredAs(ac,av) , define(org,su,ob,ac,c),

is _ excepted(su,ac,ob, prohibited(sP e u,r) is _ )ac,ob→

K
K K
K K
not K

 (10) 

1 2

1 2 1

ape(ro ), exception(org, ro ,av, v,Per) ,
IsSubRole(ro , ro ) exception(org, ro ,av, v,Per)→

K K
K K

 (11) 

2 1

1 2 2

ape(ro ), exception(org, ro ,av, v,Pr o) ,
IsSubRole(ro , ro ) exception(org, ro ,av, v,Pr o)→

K K
K K

 (12) 

is _ excepted(su,ac,ob,P er) is _ permitted(su,ac,ob)→K K (13) 
is _ excepted(su,ac,ob,Pr o) is _ prohibitted(su,ac,ob)→K K (14) 

C. Default Policy Rules 
In some conditions, it is impossible to infer either Is-

permitted or Is-prohibited for a request from the authorization 
knowledge base. However, the access control system finally 
should decide to accept or reject the request. Default policy is 
a solution proposed to resolve this problem.  

In almost all the previous access control models Open and 
Close policy used as the default policy. However, default 
policy can be determined based on context. For example, a 
hospital may prefer to define Open policy for spatial objects at 
days and Close policy for them at nights. The hospital may 
also choose to apply Open and Close policies based on the 
user’s roles. An organization may also desire to define Open 
policy for non-sensitive data and the Close policy for sensitive 
data.  

The predicate default(Organization, Role, Activity, View, 
Context, Type) is used to define default rules. default(org, ro, 
av, v, c, t) means that the organization org forces default 
policy t, which can be Open or Close, to role ro to perform 
activity av on view v within context c. Covering all entities in 
a domain is an important requirement of default policy. To 
meet this requirement, we define the Universal context, which 
is true for all roles, activities, and views. Each organization 
should choose Open or Close policy for all roles, activities, 
and views in the Universal context. Additionally, all contexts 
are sub-context of Universal context. Rules (15) and (16) 
enforce these propositions. Default rules can be inherited over 
the role, activity, and view hierarchies. Each sub-role inherits 
Open policy from its parent nodes (Rule (17)) and each parent 
nodes inherits Close policy from its sub-roles (Rule (18)).  
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Figure 4. A sample role hierarchy 

Since default policy rules support definition of both Open 
and Close policy, a conflict may occur among the Open and 
Close policies. The predicate IsSubContextOf is used to 
prioritize default rules. In fact, we use the following conflict 
resolution rule: “if default rules DR1 and DR2 have the same 
value for Role, Activity, and View entities and the DR1 
context is sub-context of the DR2 context, DR1 have more 
priority than DR2”.When the Open and Close policies are 
inferred from two default rules with incomparable contexts, 
the Close policy takes higher priority than the Open policy. 
The predicate has_more_specific_default(Organization, Role, 
Activity, View, Context, Type) is used to determine the 
default rules that would be overridden by some existing more 
specific default rules (in comparison to themselves). Rule (19) 
is defined to enforce transitivity relations for predicate 
IsSubContextOf. Rule (20) drives predicate 
has_more_specific_default from the context hierarchy. Rule 
(21) translates abstract level default to the concrete level one. 
Default rule with lower priority prevented to be translated to 
the concrete level one by using predicate not 
has_more_specific_default in the rule body. Finally Rules (22) 
and (23) consider concrete level Open and Close default 
policies to decide to reject or accept a request. Condition not 
concrete_default(su,ob,ac,Close) in the body of Rule (22) 
gives more priority to the Close policy.  

define(org,su,ac,ob, Universal)→K  (15) 
ape(co), Context(co) IsSubContextOf (co, Universal)→K K K  (16) 

2 1

2 1 2

org, ro ,av, v,c,Open),
IsSubRoleOf (ro , ro )
ape(ro ), default(

defau org, ro ,al v, v,c,Open)t(→
K

KK
K  (17) 

2 1

1 2 2

org, ro ,av, v,c,Close, id),
IsSubRoleOf (ro , ro )
ape(ro ), default(

defau org, ro ,av, v,c,Closelt( )→
K
K

K
K

 (18) 

1 2 3 1 2

2 3 1 3

ape(c ), ape(c ), co(c ), IsSubContextOf (c ,c ),
IsSubContextOf (c ,c ) IsSubContextOf (c ,c )→

K K K K
K K

 (19) 

1 1

2 2 1 2

2 2

org, ro,av, v,c , t ),
org, ro,av, v,c , t ), IsSubC

default(
default(

has _ more _ specefic _ defaul
ontextOf (c ,c )

org, ro,av, v,c t( , )t→

K
K K

K
 (20) 

IsEmployedIn(su, ro),
IsUsedIn(ob, v) , IsConsideredAs(ac,av) ,
define

default(org, ro,av, v,c, t),

has _ more _ specefic _ default(org, ro,av, v,c, t)
(org,s

concrete _ default(su,ob,ac, t

u,ob,ac,

)

c),

→

K

not
K

K
K K
K  (21) 

is _ permitted(su,ob,ac), is _ prohibited(su,ob,ac),
concrete _ default(su ob,ac,Open),

concrete _ default(su,ob,ac,Close)
is _ permitted(su,ob,ac)→

not not
K
not

K

 (22) 

is _ permitted(su,ob,ac), is _ prohibited(su,ob,ac),
concrete _ default(su,ob,ac,Close)

is _ prohibited(su,ob,ac)→

not not
K

K
(23 

VI. CASE STUDY 
To demonstrate the applicability of the proposed model, a 

case study is discussed in this section. Figure 5 shows a partial 
definition of specific ontology for a healthcare domain. In 
addition to general classes defined in the proposed upper level 
ontology, a number of concrete sub-classes are defined to 
model specific context in a given environment (e.g., abstract 
class Location is classified into two sub-classes 
LogicalLocation and PhysicalLocation). Also some 
individuals for different entities of OrBAC are added to the 
upper level ontology. For example, individual Guest is a role 
such thath all subject are employed in it.  

Suppose that hospital H1 uses the aforementioned 
ontology. Table V shows some contexts defined by H1. 
Context Universal (Rule (24)), Attending_Physician (Rule 
(25)), Non_Attending_Physician (Rule (26)), and Emergency 
(Rule (27)) have been already discussed. Rule (28) defines 
Internal_IP context and Rule (29) applies closed-world 
assumption to it to define the context External_IP. According 
to Rule (28), the context Internal_IP is true for subject su if he 
uses a host located in H1’s internal network.  

Table VI represents the security policy for H1. H1 chooses 
Close policy as its default policy for Universal context using 
Rule (30). Also it enforces Open policy for subjects who have 
been employed in role Medical_Staff and uses internal IP  

Figure 5. Partial definition of a specific ontology for healthcare domain 
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address to access the hospital’s internal services (Rule (31)). 
Rule (32) grants permission to subjects employed in role 
Physician and are in the patient’s attending physician team to 
consult on medical records belonging to the patient. Rule (33) 
prohibits physicians whose context Non_Attending_Physician 
is true to access the medical records. Rule (34) grants access 
to see the public data to role Guest. Rule (35) defines an 
exception which allows the physicians not belonging to the 
patient’s attending team to access his medical record when he 
is in emergency condition. Suppose H1 wants to prohibit all 
accesses to some sensitive data such as the medical records 
from the external IP addresses (unsecure networks). It can use 
Rule (36) to prohibit all accesses to sensitive data from role 
Administrator. By prohibiting role Administrator and 
considering the inheritance over role hierarchy, all other roles 
are prohibited automatically. Finally, H1 can use Rule (37) to 
enforce denial-takes-precedence as its conflict resolution 
strategy. 

Table V. Some contexts definition 

define(H1,su,ac,ob, Universal)→K  (24) 
ape(p), ape(su), ape(ob), HasPhysician(p,su),
OwnsBy(ob,p) define(H ,su,ac,ob,Attending _ Physician)1

Κ
→

K K K
K K

 (25) 

1

1

define(H ,su,ac,ob, Attending _ Physician)
Define(H ,su,ac,ob, Non _ Attending _ Physician)→

not
 (26) 

ape(p), ape(hd), ape(mr),
Medical Record(mr), OwnsBy(mr, p),
OwnsBy(hd, p), HasEmergencyState(hd,True),

define(H1,su,ac, mr, Emergency)→

K K K
K K
K K

K

 (27) 

1

ape(su), cie(l loc), HasLogicalLocation(su, l loc),
HasLocationZone(l loc,H1_ Net)

define(H ,su,ac,ob, Internal _ IP)→

K K K
K

K
 (28) 

define(H1,su,ac,ob, Internal _ IP)
define(H1,su,ac,ob,External _ IP)→

not
K

 (29) 

Table VI. Security policy rules 

Default Policy Rules  
1default(H , ro,av, v, Universal,Close)  (30) 

default(H ,Medical _Staff ,Use,Internal _Service, Internal _ IP,Open)1  (31) 
Access Policy Rules  

permission(H ,Physician,Consult,Medical_ Record,Attending _ Physician)1 (32) 
p rohibition(H ,Physician,Consult,Medical _ Record,1
Non _ Attending _ Physician)

 (33) 

permission(H ,Guest,See,Public _ Data,Universal)1  (34) 
Exception Policy Rules  

1exception(H , Physician,Consult, Medical _ Record, Emergency)  (35) 

1exception(H , Ad min istrator,av,Sensetive _ Data, External _ IP)  (36) 
Conflict Resolution Strategy(Denial-Takes- Precedence)  

is _ permitted(su,ac,ob), is _ prohibited(su,ac,ob)
is _ prohibited(su,ac,ob)→

K K
K

 (37) 

VII. CONCLUSION AND FUTURE WORK 
Non-monotonicity is an important feature in context-aware 

access control models. Furthermore, semantic technology and 
semantic modeling languages like OWL are appropriate and 
widely used mechanisms to context modeling. In this paper, 

the advantages of semantic technology and answer set 
programming have been integrated to propose a powerful 
context-aware access control model using MKNF+. In the 
model, DL is used to model main entities of OrBAC as well as 
the context information. In addition, MKNF+ rules, which are 
used to express security policy rules and context information, 
enable the model to support non-monotonic reasoning in 
presence of incomplete context information. The default 
policy and exception policy rules are defined using negation as 
failure, as supported in the MKNF+ logic.  

We demonstrated how incomplete context information can 
be handled using negation as failure based on the closed-world 
assumption and also how default context information can be 
specified in a context-ware access control model. However, 
handling inconsistent and uncertain context information in 
such an access control model remains as future work.  
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