
A Semantic-Aware Ontology-Based Trust Model

for Pervasive Computing Environments�

Mohsen Taherian, Rasool Jalili, and Morteza Amini

Network Security Center, Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran

{taherian,m amini}@ce.sharif.edu,
jalili@sharif.edu

Abstract. Traditionally, to handle security for stand-alone computers
and small networks, user authentication and access control mechanisms
would be almost enough. However, considering distributed networks such
as the Internet and pervasive environments, these kinds of approaches
are confronted with flexibility challenges and scalability problems. This
is mainly because open environments lack a central control, and users
in them are not predetermined. In such ubiquitous computing environ-
ments, issues concerning security and trust become crucial. Adding trust
to the existing security infrastructures would enhance the security of
these environments. Although many trust models are proposed to deal
with trust issues in pervasive environments, none of them considers the
semantic relations exist among pervasive elements and especially among
trust categories. Employing Semantic Web concepts, we propose a com-
putational trust model based on the ontology structure, considering the
mentioned semantic relations. In this model, each entity can calculate its
trust in other entities and use the calculated trust values to make deci-
sions about granting or rejecting collaborations. Using ontology structure
can make the model extendible to encompass other pervasive features
such as context awareness in a simple way.

1 Introduction

Nowadays, with the immense growth of available data and information which
motivates moving toward distributed environments, security of users and in-
formation is getting more important than ever. With these distributed envi-
ronments, existing challenges about security and data integrity in centralized
environments, must be investigated more extensively. Many authentication and
access control mechanisms have been proposed to deal with security issues in dis-
tributed environments. However, by increasing the distribution of information,
and the arising open environments such as pervasive computing environments,
existing security infrastructures are not adequate for new requirements of users
from now on [6,14].
� This research is partially supported by Iran Telecommunication Research Center

(ITRC).

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 47–59, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

48 M. Taherian, R. Jalili, and M. Amini

Pervasive computing environments, as a new generation of computing envi-
ronments after distributed and mobile computing, were introduced in 1991 with
a new look at the future of computing environments. The aim of pervasive com-
puting is to move computers and computing devices to the background and
place them in human living environments such that they were hidden from hu-
mans. To this aim, computing devices must be designed in small sizes to locate
in apartments, walls, and furnitures [15]. In pervasive computing environments,
users expect to access resources and services anytime and anywhere, leading to
serious security risks and problems with access control as these resources can
now be accessed by almost anyone with a mobile device. Adding security to such
open models is extremely difficult with problems at many levels. An architecture
with a central authority can not be assumed and access control is required for
external users. The portable hand-held and embedded devices have severe lim-
itations in their processing capabilities, memory capacities, software support,
and bandwidth characteristics. Existing security infrastructures deal with au-
thentication and access control. These mechanisms are inadequate due to the
increasing flexibility required by pervasive environments.

Trust, which is similar to the way security is handled in human societies, plays
an important role in enhancing security of pervasive environments. However, it
is not considered in traditional access control models seriously [7]. Till now,
several trust models have been proposed for pervasive environments including
computational models and none-computational ones. In a computational trust
model, the entity’s trust to another one is estimated. On the other hand, the
aim of a non-computational trust model is only to find out if an entity is trusted
or not. It is worthwhile to note that an entity can trust another one in different
categories. For example, the device A may trust the device B in the category
of reading a file, but A may give up trusting B in the category of writing a
file. The semantic relations exist among pervasive devices and specially trust
categories may significantly affect security policies. For instance, if we know a
special device belongs to the family of PDAs, and also if we have a subsumption
relation between PDAs and mobile devices, we can generalize the security rules
defined for mobile devices to this particular device. Semantic relations among
trust categories mean the security relevance of categories to each other. For
example, If an entity A has a high degree of trust to an entity B in getting a
web service, we expect A to have a high degree of trust to B in getting a mail
service as a consequence.

None of published trust models for pervasive environments have considered
the mentioned semantic relations yet. Employing ontology structure propounded
in Semantic Web, we propose a new trust model for pervasive environments. This
model, in addition to being a computational trust model, considers semantic re-
lations among devices and among trust categories. Each entity can calculate its
trust degree to other entities and make security decisions based on the calcu-
lated trust values. In fact, each entity can accept or reject collaboration with
other entities with regard to their trust values. Also, each entity can vote for an-
other entity after a direct collaboration with it. Furthermore, this model satisfies

A Semantic-Aware Ontology-Based Trust Model 49

autonomy which is an important property of pervasive entities. A pervasive de-
vice can define its security rules independently using the SWRL language [1],
which is a semantic language for defining rules on ontology structures. The use
of ontology structure, makes the model capable of encompassing other pervasive
concepts such as context awareness in a simple way.

The rest of the paper is organized as follows; In section 2, previous trust
models proposed for pervasive environments are reviewed. The structure of our
trust model and its main components are discussed in section 3. Section 4 is
devoted to explain the trust inference protocol and updating trust values. Finally,
we conclude the paper and introduce some future work in section 5.

2 Related Work

Many trust models have been proposed for distributed environments. A small
number of them, such as the one proposed by Abdul-Rahman in [3], were designed
with such generality to be applicable in all distributed environments. Other cases
concentrated on a particular environment. The trust models for web-based social
networks [8,9,12] and the ones for peer-to-peer networks [10,16] are examples of
these trust models. In this section, our review focuses on the trust models have
been already suggested for pervasive computing environments. In almost all dis-
tributed trust models, there must be some basic services and facilities. Trust in-
ference and trust composition are examples of such facilities. By trust inference,
we mean calculating our belief to a statement based on the believes of some other
people to whom we trust. Trust composition is a necessary part of a trust inference
algorithm to combine the believes obtained from different sources.

The trust model proposed by Kagal et al. in 2001 [13,14] is one of the well-known
trust models for pervasive computing environments. This model is not a computa-
tional trust model and uses certificates to determine whether an entity is trusted
or not. In the Kagal’s suggested architecture, each environments is divided into
some security domains and for each security domain a security agent is leveraged.
The security agent is responsible for defining security policies and applying them
in the corresponding domain. Interfaces of available services in a domain are also
provided by its security agent. When an external user requests a service offered in
a domain, he must provide a certificate from the agents which are trusted for the
security agent of the domain. Then, he must send its request accompanying the
acquired certificates to the security agent. The security agent checks the validity
of the certificates and responses the user’s request. In fact, the Kagal’s trust model
is more likely to be a certificate-based access control model. In this model, an en-
tity can be trustworthy or not from the security agent’s point of view. An entity
is not capable of calculating trust values of other entities and collaboration with
inter-domain entities which are trusted for a security agent are not supervised.

Among the existing trust models for pervasive environments, the model pro-
posed by Almenarez et al. in [4,5], called PTM 1, is so popular. This trust
model is a computational trust model and it is implemented on a wide range of

1 Pervasive Trust Management.

50 M. Taherian, R. Jalili, and M. Amini

pervasive devices. Considering two kinds of trust, direct trust and recommenda-
tion trust [4], the architecture of this model is divided into two parts; 1) belief
space, which assigns an initialize trust value to new arriving entities, and 2)
evidence space, which updates the trust values of entities with respect to their
behaviors over the time. To combine trust values, the weighted average opera-
tor (WAO) is used and values in the belief space are presented as fuzzy values.
A recommendation protocol is defined to recommend an entity the trust values
of other entities. If an entity wishes to collaborate with another one, it uses this
protocol to acquire that entity’s trustworthy degree. In the first collaboration
of an entity, its initial trust value, which is assigned in the belief space, is con-
sidered. However, over the time, the entity’s trust value changes with respect
to the entity’s behavior. The implementation of this model is added to security
infrastructure of some pervasive devices to enhance their security [2].

The above mentioned approaches present drawbacks for open pervasive envi-
ronments. Perhaps, the main drawback of them is not taking into account the
semantic relations among pervasive devices and among trust categories. We have
defined a pervasive trust model based on ontology structure between autonomous
entities without central servers. Considering mentioned semantic relations makes
the model capable of defining security rules with more flexibility. The model is
also simple enough to implement in the very constrained devices which have
strict resource constraints.

3 The Trust Model

In our proposed model, in addition to calculating the trust values from each
entity to other entities, the semantic relations among pervasive devices and trust
categories are considered using an ontology structure. In this section, the basic
components of this model are introduced.

3.1 Trust Ontology

In this model, to represent trust relations among pervasive devices, a particular
ontology is defined, called trust ontology. As known, each ontology O contains
a set of concepts (classes) C and a set of properties P . The formal notation of
trust ontology is defined as follows:

O={C,P}

C={Device, Category, TrustValue, DirectTrust, RecTrust,
CategoryRelation, RelevanceValue, Time}

P={hasDirectTrust, hasRecTrust, initialTrustValue,
trustedDevice, trustedCategory, hasTrustValue,
trustRelated, relatedCategory, hasRelevanceValue,
updateTime, collaborationNo}

A Semantic-Aware Ontology-Based Trust Model 51

Classes of the Trust Ontology. The class Device represents the available
devices of pervasive environment such as users, sensors and PDAs. The class
Category includes individuals which represent trust categories, e,g., login access
or reading file. In fact, the trust category describes the semantics of a trust
relation. The class TrustV alue contains the valid values of trust degrees. The
float numbers in the range of [0..1] can be an example of these values.

Similar to many other trust models, two kinds of trust are considered in our
model. First, direct trust which is given by the knowledge of an entitys nature
or its past interactions in the physical world, without requesting information
from other entities. Second trust type is indirect trust or recommendation trust.
When two entities, unknown to each other, are willing to interact, they can
request other entities to give information about the other party. This process
of asking other entities and calculating the final trust value from the received
answers is called trust inference.

To model the trust relations, for both direct trust and recommendation trust,
some properties must be defined in the ontology. These properties have some
attributes themselves. In Semantic Web languages, such as RDF and OWL, a
property is a binary relation; it is used to link two individuals or an individual
and a value. However, in some cases, the natural and convenient way to represent
certain concepts is to use relations to link an individual to more than just one
individual or value. These relations are n-ary relations. For instance, it might
be required to represent properties of a relation, such as our certainty about it,
relevance of a relation, and so on. One solution to this problem is creating an
individual representing the relation instance itself, with links from the subject of
the relation to this instance and with links from this instance to all participants
that represent additional information about the instance. In the class definition
of the ontology, an additional class is required to include instances of this n-ary
relation itself. Classes DirectT rust and RecTrust are of such classes.

One of the main features of our model is considering semantic relations among
trust categories. Like direct trust and indirect trust relation, the semantic re-
lation among trust categories is n-ary relation. The class CategoryRelation is
defined to include instances of this n-ary relation.

The class RelevanceV alue defines the valid values for the relevance values
among trust categories. Finally, the class T ime characterizes the time values in
the model. Individuals of this class are used to hold the time of inferring trust
values.

Properties of the Trust Ontology

– initialTrustValue: An instance of this property assigns to a new arriving
entity an initial trust value. This assignment is done by special agents called
trust managers which are described in the next section. One way is to assign
different initial trust values to the new entity corresponding to different
trust categories. Another way is to assign only one initial trust value for all
trust categories. Concentrating on simplicity of the model, the latter one is
considered in this paper. The criteria of assigning this value is dependent to

52 M. Taherian, R. Jalili, and M. Amini

Fig. 1. initialT rustV alue property

the policies of the trust manager. The schema of this property is shown in
Fig. 1.

– hasDirectTrust: When an entity collaborates with another one, it gains a
degree of trust about that entity. This type of trust is called direct trust. Since
this relation is not a binary relation and it has some attributes, the pattern
described before to define n-ary relations is used. Fig. 2 shows the schema
of hasDirectT rust property. The class DirectT rust includes instances of
the relation. The property trustedDevice determines the device that the
trust relation is established with. The class N includes the natural numbers
and the property collaborationNo identifies number of collaborations which
are already done between these two entities. The property hasT rustV alue
assigns a trust value to the trust relation and the property trustedCategory
characterizes the trust category in which the trust relation is set up.

– hasRecTrust: If an entity wants to begin a collaboration with another one,
it may want to know the opinions of other entities about the other party.
The trust value derived in this way is called indirect trust or recommenda-
tion trust. Like hasDirectT rust, this relation is also an n-ary relation. The

Fig. 2. hasDirectT rust property

A Semantic-Aware Ontology-Based Trust Model 53

Fig. 3. hasRecTrust property

Fig. 4. trustRelated property

schema of this relation is illustrated in Fig. 3. The class RecTrust includes
individuals of the relation. All attributes of this relation is similar to the
direct trust relation except that instead of property collaborationNo, the
property updateT ime is added. This property determines the time of last
trust inference. Details of the inference algorithm is discussed in section 4.

– trustRelated: The semantic relation between two categories of trust is mod-
eled with this property. According to Fig. 4, the class CategoryRelation
contains individuals of the relation itself. The property trustedCategory

54 M. Taherian, R. Jalili, and M. Amini

represents the related category and the property hasRelevanceV alue as-
signs a relevance value to this relation. The class RelevanceV alue consists
of the valid values for this relevancy.

3.2 Trust Manager

A pervasive environment, is divided into different domains and each domain has
a trust manager. The trust manager is responsible for assigning the initial trust
values, defining semantic relations among trust categories, defining a hierarchy
of devices, and holding the base trust ontology. The hierarchy of devices can
be defined with using the subClassOf property of an ontology. The base trust
ontology, contains the relations among trust categories and hierarchy of pervasive
devices. These relations can be defined by the security manager of each domain.

When a new entity enters a domain, it sends a message to the domain’s trust
manager and declares its physical specifications. According to these specifica-
tions and its own policies, the trust manager finds out if this new entity is an
individual of the class Device or one of its subclasses. Then, an initial trust value
is assigned to the entity. After updating the ontology, trust manager sends the
file of ontology to the new entity. Thus, all entities receive the domain’s base
trust ontology when they enter the domain. The trust manager also broadcasts a
new massage to update the ontologies of already existing entities. The structure
and format of the alert message are out of this paper’s scope.

3.3 Security Rules

The autonomy of pervasive devices is a basic property of them. In our model,
each entity is independent of the other ones in defining security rules. The poli-
cies are described in the SWRL language, a language to process and to query
the ontologies which are written in the OWL language. Although formats and
patterns of defining security rules are not explained here, an example is given
to understand the concept. Note that instead of SWRL syntax, a pseudocode
syntax is used in order to make it more legible. Suppose that entity e1 begins a
collaboration with entity e2 in the trust category c1. A security rule for e1 can
be represented as:

if e2 is a sensor
and

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎣
hasDirectTrust(e1)=X and
trustedDevice(X)=e2 and
trustedCategory(X)=c1 and
hasTrustValue(X)≥ 0.6

⎤
⎥⎥⎦ and

⎡
⎢⎢⎢⎢⎣

hasRecTrust(e1)=Y and
trustedDevice(Y)=e2 and
trustedCategory(Y)=c1 and
hasTrustValue(X)> 0.7 and
updateTime(Y)≥ (now-20s)

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

then collaboration with e2

in the category c1 is granted.

A Semantic-Aware Ontology-Based Trust Model 55

Before beginning the collaboration, e1 looks up in its security rules to find
the matching rules. In this case, the mentioned security rule is matched with the
collaboration properties. If the found rules are satisfied, the entity begins the
collaboration. If no rule is matched with an interaction, granting or denying
the interaction can be decided according to the security policies. In this approach,
a possible problem is conflicting the rules, matched with a collaboration. Conflict
resolution is out of the scope of this paper.

4 Trust Inference

In any trust model, one of the main parts is the algorithm of inferring trust.
Trust inference means calculating indirect trust value (or recommendation trust
value). In addition to indirect trust, the way in which direct trust values are
created is important too. In this section, trust inference protocol and the method
of updating both direct and indirect trust values are discussed. The approach
of applying semantic relations among trust categories is also described in the
following subsections.

4.1 Trust Inference Protocol

Suppose that device e1 does not have any information about entity e2 and it is
willing to interact with e2. Consider that this type of interaction needs a degree
of trust in the trust category c1. Now, e1 needs to derive the trust value of e2 by
asking other entities. Thus, e1 broadcasts a query message to other entities. The
query part of this message is expressed in the SWRL language. Although the
format and structure of messages are not discussed in this paper, an example of
broadcasting query is illustrated below using pseudocode.

hasDirectTrust(x)=X and trustedDevice(X)=e2 and
trustedCategory(X)=c1 and hasTrustValue(X)= ?

In the above query, x matches with each entity that receives the message.
It is clear that to answer the sender, address of sender must be located in the
message. Also, a timeout must be declared by sender to ignore indefinite waiting.
Each entity which has a direct trust to e2 in the category c1, replies e1. After
finishing the declared timeout, e1 calculates the derived trust value with respect
to delivered answers. The equation 1 shows this operation.

Tinfer(e1, e2, c1) =
∑n

i=1 T (ei, e2, c1) × T (e1, ei, c1)
T (e1, ei, c1)

(1)

The entities who reply e1 are denoted by ei. T (ei, e2, c1) is the value of di-
rect trust from entity ei to e2 in the trust category c1 and T (e1, ei, c1) is the
direct trust value from e1 to ei in the trust category c1. Considering trust value of

56 M. Taherian, R. Jalili, and M. Amini

sender to repliers causes that answers from more reliable entities, having more
impact on the inferred trust value. Note that if e1 does not have a direct trust to
ei (e1 has not done any interaction with ei in the trust category c1 yet.), it con-
siders the initial trust value of ei (initialT rustV alue(ei)) instead of T (e1, ei, c1).
As it is mentioned before, this initial trust value is assigned by the trust manager.
It is obvious that the inferred trust value will be located in the valid range of
trust values defined by class TrustV alue of trust ontology. After computing the
inferred trust value, e1 updates its ontology. The time of inferring trust (tinfer)
will be also located in the ontology using updateT ime property. Updating the
trust ontology of e1 includes the following items:

hasRecTrust(e1)=X and trustedDevice(X)=e2 and
trustedCategory(X)=c1 and updateTime(X)=tinfer and
hasTrustValue(X)=Tinfer(e1,e2,c1)

In our inference method, the weighted average operator (WAO) is used to
combine the trust values. Although other distributed trust models use alterna-
tive operators to combine trust values which may cause getting more accurate
results, like the consensus operator [11] used in [12], for pervasive devices which
have considerable limitations on battery life, memory capacities, size, and per-
formance, the simplicity is preferred to accuracy.

4.2 Updating the Trust Values

To update indirect trust values, different approaches can be used. One way is
that each entity recalculates its trust value to another entity after a predefined
time periods. Another way is to derive the trust value whenever a rule consisting
the time constraint is fired up. A combination of these two approaches can be
used too. In a pervasive domain, the security manager can choose one of the
above methods.

Now, the question is that how direct trust values can change. In this model,
after completing a transaction, entities can vote for each other. The new direct
trust value can be computed by the equation 2.

Tnew(e1, e2, c1) =
Told(e1, e2, c1) × collaborationNo + vote(e1, e2, c1)

collaborationNo + 1
(2)

In this equation, Told(e1, e2, c1) represents the direct trust value from e1 to
e2 in the category c1 before beginning the transaction. The term vote(e1, e2, c1)
represents the opinion of e1 about e2 in the category c1 after completing the
transaction and collaborationNo is the number of transactions between e1 and e2

which have taken place in the category c1 before this transaction. Tnew(e1, e2, c1)
is the new direct trust value from e1 to e2 in the category c1. Updating the trust
ontology of e1 includes the following items:

A Semantic-Aware Ontology-Based Trust Model 57

hasDirectTrust(e1)=X and trustedDevice(X)=e2 and
trustedCategory(X)=c1 and
collaborationNo(X)=collaborationNo(X)+1 and
hasTrustValue(X)=Tnew(e1,e2,c1)

Note that the new direct trust values can be alerted to the trust manager to
take these values into account in its later decisions.

4.3 Semantic Relations among Trust Categories

Defining the trustRelated property in the trust ontology provides this possibil-
ity for the trust model to represent semantic relations among trust categories.
Considering these relations, provide us security rules with more flexibility and
higher security level. For example, assume that e1 wishes to begin an interaction
with e2 which requires satisfaction of the following security rule:

hasDirectTrust(e1)=X and trustedDevice(X)=e2 and
trustedCategory(X)=c1 and hasTrustValue(X)≥ 0.6

Now, suppose that e1 would collaborate with e2 if it has the same degree of
trust to e2 in other categories which are related to c1 with the relevancy value
of 0.8. The security rule to support this requirement is shown below:

hasDirectTrust(e1)=X and trustedDevice(X)=e2 and
trustedCategory(X)=Y and trustRelated(Y)=Z and
relatedCategory(Z)=c1 and hasRelevanceValue(Z)> 0.8
hasTrustValue(X)≥ 0.6

5 Conclusions and Future Works

In this paper, we have introduced a new semantic-aware trust model for perva-
sive environments based on ontology concepts. A standard ontology, called trust
ontology, is defined to support trust in pervasive environments. The trust ontol-
ogy is represented with the OWL language and queries on the ontology can be
expressed in existing rule languages such as SWRL. Using the ontology structure,
the model provides a standard trust infrastructure for pervasive devices.

Using the weighted average operator (WAO), a simple inference protocol is
proposed to calculate the indirect trust values. For pervasive devices which have
significant limitations on battery life, memory capacities, size, and performance,
the simplicity of inference protocol offers many benefits to calculate the indi-
rect trust values. Another advantage of the model is taking into account the
autonomy of pervasive devices. Each device can define its private security rules
independent of other devices. There exist such flexibility for devices to employ
both direct and indirect trust values in defining their security policies.

58 M. Taherian, R. Jalili, and M. Amini

Considering the semantic relations among trust categories and defining hi-
erarchical structure of pervasive devices, provides us more flexibility to define
security rules. With this feature, a wide range of security policies can be ex-
pressed in a simple way. Adding more attributes of pervasive environments such
as context-awareness is possible with making a little extension to the model. For
example, suppose that we want to add a context variable such as the location.
The property hasLocation and a class validP laces can be defined in the trust
ontology to support this context variable. New security rules can use this new
concept to enhance their expressiveness.

Future work includes defining the structure of messages and patterns of se-
curity rules. Moving toward implementing this model on pervasive devices like
PDAs and evaluating the performance impacts are also in our future plans.

References

1. Swrl: A semantic web rule language combining owl and ruleml,
http://www.w3.org/Submission/SWRL

2. Ubisec project, pervasive trust management model (ptm),
http://www.it.uc3m.es/∼florina/ptm

3. Abdul-Rahman, A., Hailes, S.: A distributed trust model. In: New Security
Paradigms Workshop, pp. 48–60. ACM Press, New York (1998)

4. Almenarez, F., Marin, A., Campo, C., Garcia, C.: Ptm: A pervasive trust man-
agement model for dynamic open environments. In: First Workshop on Pervasive
Security, Privacy and Trust PSPT (2004)

5. Almenarez, F., Marin, A., Diaz, D., Sanchez, J.: Developing a model for trust man-
agement in pervasive devices. In: Fourth Annual IEEE International Conference on
Pervasive Computing and Communications Workshop (PERCOMW 2006) (2006)

6. Blaze, M., Feigenbaum, J., Keromyts, A.D.: The role of trust management in dis-
tributed systems security. In: Secure Internet Programming, pp. 185–210 (1999)

7. English, C., Nixon, P., Terzis, S., McGettrick, A., Lowe, H.: Dynamic trust models
for ubiquitous computing environments. In: Ubicomp Security Workshop (2002)

8. Golbeck, G.A.: Computing and Applying Trust in Web-Based Social Networks.
PhD thesis, University of Maryland (2005)

9. Golbeck, G.A., James, H.: Inferring binary trust relationships in web-based social
networks. ACM Transactions on Internet Technology 6(4), 497–529 (2005)

10. Griffiths, N., Chao, K.M., Younas, M.: Fuzzy trust for peer-to-peer systems. In:
P2P Data and Knowledge Sharing Workshop (P2P/DAKS 2006), at the 26th In-
ternational Conference on Distributed Computing Systems (ICDCS 2006), Lisbon,
Portugal, pp. 73–73. IEEE Computer Society Press, Los Alamitos (2006)

11. Josang, A.: The consensus operator for combining beliefs. Artificial Intelligence
Journal 142(1-2), 157–170 (2002)

12. Josang, A., Hayward, R., Pope, S.: Trust network analysis with subjective logic.
In: Australasian Computer Science Conference (ACSC 2006), Hobart, Australia,
pp. 85–94 (2006)

13. Kagal, L., Finin, T., Joshi, A.: Trust-based security in pervasive computing envi-
ronments. IEEE Computer 34(12), 154–157 (2001)

http://www.w3.org/Submission/SWRL
http://www.it.uc3m.es/~florina/ptm

A Semantic-Aware Ontology-Based Trust Model 59

14. Kagal, L., Finin, T., Joshi, A.: Moving from security to distributed trust in ubiq-
uitous computing environments. IEEE Computer (2001)

15. Satyanarayanan, M.: Pervasive computing: Vision and challenges. IEEE Personal
Communications 8(4), 10–17 (2001)

16. Wang, Y., Vassileva, J.: Trust and reputation model in peer-to-peer networks. In:
3rd International Conference on Peer-to-Peer Computing (P2P 2003), pp. 150–157.
IEEE Computer Society, Los Alamitos (2003)

	Introduction
	Related Work
	The Trust Model
	Trust Ontology
	Classes of the Trust Ontology.
	Properties of the Trust Ontology

	Trust Manager
	Security Rules

	Trust Inference
	Trust Inference Protocol
	Updating the Trust Values
	Semantic Relations among Trust Categories

	Conclusions and Future Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

