
Proceedings of the International Multiconference on ISBN 978-83-60810-14-9
 Computer Science and Information Technology, pp. 827 – 836 ISSN 1896-7094

Abstract―With the advent of semantic technology, access
control cannot be done in a safe way unless the access decision
takes into account the semantic relationships among the entities
in a semantic-aware environment. SBAC model considers this
issue in its decision making process. However, time plays a cru-
cial role in new computing environments which is not sup-
ported in the model. In this paper we introduce the Temporal
Semantic Based Access Control model (TSBAC), as an exten-
sion of SBAC, which enhances the specification of user-defined
authorization rules by constraining time interval and temporal
expression over users' history of accesses. A formal semantics
for temporal authorizations is provided and conflicting situa-
tions (due to the semantic relations of the SBAC model and a
sub-interval relation between authorizations) are investigated
and resolved in our proposed model. An architecture for the ac-
cess control system based on the proposed model is presented,
and finally, we discuss and evaluate TSBAC.

I. INTRODUCTION

CCESS control is a mechanism that allows owners of
resources to define, manage and enforce access condi-

tions applicable to each resource [1]. An important require-
ment, common to many applications, is related to the tempo-
ral dimension of access permissions. In these systems, per-
missions are granted based on previous authorizations given
to the users of the system in specific time points (in the
past).

A

Another critical requirement is the possibility of express-
ing the semantic relationships that usually exist among dif-
ferent authorization elements, i.e. subjects, objects, and ac-
tions. To overcome this challenge, our model is constructed
based on the SBAC model [2, 3] which is a semantic-based
access control model. SBAC authorizes users based on the
credentials they offer when requesting an access right. On-
tologies are used for modeling entities along with their se-
mantic interrelations in three domains of access control,
namely subjects domain, objects domain, and actions do-
main. To facilitate the propagation of policies in these three
domains, different semantic interrelations can be reduced to
the subsumption relation.

In this paper we unify the two concepts mentioned previ-
ously, that is, we use SBAC (as the base model), and asso-
ciate a temporal expression with each authorization. Due to
the nature of some application domains (such as the banking

environment), a real representation of time is required to be
used for modeling temporal dependencies between history of
accesses. So, in this paper, we use real time operators to
impose constraints on elements of History Base.
Furthermore, a temporal interval bounds the scope of the
temporal expressions (e.g., [1,20] shows that the authoriza-
tion is valid for time interval starting at ‘1’ and ending at
‘20’). Thus, the main feature provided by TSBAC is the
possibility of specifying authorization rules which express
temporal dependencies among authorizations. These rules
allow derivation of new authorizations based on the presence
or absence of other authorizations in specific past time
instants (stored in History Base in the form of
done(t,s,o,a) and denied(t,s,o,a)

A formal semantics is defined for temporal authorizations.
The subject of Temporal Authorization Base (TAB) adminis-
tration and conflicting situations are investigated and re-
solved. An architecture for the access control system based
on TSBAC, and an evaluation is presented.

The rest of this paper is organized as follows: in Section 2
we discuss the related works on this topic. Section 3 gives a
brief introduction of the SBAC model and describes the
model of time used throughout our work. In section 4, we
represent our authorization rules in detail and offer the for-
mal semantics followed by a brief description of administra-
tion of the authorization base and conflict resolution in ac-
cess decision point. Section 5 gives an architecture for the
access control system based on the proposed model. In sec-
tion 6 we give a brief evaluation of our work. Finally, sec-
tion 7 concludes the paper.

II. RELATED WORK

Access control systems for protecting Web resources
along with credential based approaches for authenticating
users have been studied in recent years [1]. With the advent
of Semantic Web, new security challenges were imposed to
security systems. Bonatti et al., in[4] have discussed open is-
sues in the area of policy for Semantic Web community such
as important requirements for access control policies. Devel-
oping security annotations to describe security requirements
and capabilities of web service providers and requesting
agents have been addressed in [5]. A concept level access

827

A Semantic Aware Access Control Model with Real Time Constraints
on History of Accesses

Ali Noorollahi Ravari
Network Security Center, Computer Engineering Department,

Sharif University Of Technology, Tehran, Iran
Email: noorollahi@ce.sharif.edu

Morteza Amini, Rasool Jalili
Network Security Center, Computer Engineering Department,

Sharif University Of Technology, Tehran, Iran
Email: { m_amini@ce., jalili@} sharif.edu

828 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

control model which considers some semantic relationships
in the level of concepts in the object domain is proposed in
[6]. The main work on SBAC, which is the basis of our
model, is proposed in [2, 3] by Javanmardi et al.. SBAC is
based on the OWL ontology language and considers the
semantic relationships in the domains of subjects, objects,
and actions to make decision about an access request.

The first security policy based on past history of events
was introduced as Chinese Wall Security Policy (CWSP) [7].
The objective of CWSP is to prevent information flows
which cause conflict of interest for individual consultants.
Execution history also plays a role in Schneider’s security
automata [8] and in the Deeds system of Edjlali [9]. How-
ever, such works focus on collecting a selective history of
sensitive access requests and use this information to con-
strain further access requests; for instance, network access
may be explicitly forbidden after reading certain files. An-
other approach which considers the history of control trans-
fers, rather than a history of sensitive requests, is presented
in [10].

In a basic authorization model, an authorization is mod-
eled by a triple (s,o,±a), interpreted as “subject s is (not)
authorized to exercise access right a on object o”. Recently,
several extensions to this basic authorization model have
been suggested. One of them is the temporal extension,
which increases the expressive power of the basic authoriza-
tion model [11-15]. In the model proposed by Bertino et al.
in [11], an authorization is specified as (time,auth), where
time=(tb,te) as the time interval, and
auth=(s,o,m,pn,g) as an authorization. Here, tb and te

represent the start and end times respectively, during which
auth is valid; s represents the subject, o the object, and m the
privilege; pn is a binary parameter indicating whether an
authorization is negative or positive, and g represents the
grantor of the authorization. This model also allows
operations WHENEVER, ASLONGAS, WHENEVERNOT,
and UNLESS on authorizations. For example, WHENEVER
can be used to express that a subject si can gain privilege on
object o whenever another subject sj has the same privilege
on o. Later Bertino et al. in [14] extended the temporal
authorization model to support periodic authorizations. They
completed their research in [16] by presenting a powerful
authorization mechanism that provides support for: (1)
periodic authorizations (both positive and negative), that is,
authorizations that hold only in specific periods of time; (2)
user-defined deductive temporal rules, by which new
authorizations can be derived from those explicitly
specified; (3) a hierarchical organization of subjects and
objects, supporting a more adequate representation of their
semantics. From the authorizations explicitly specified,
additional authorizations are automatically derived by the
system based on the defined hierarchies.

III. PRELIMINARIES

In this section we give a brief introduction of the SBAC
model, proposed by Javanmardi et al. [2, 3], and introduce
the representation of time used throughout this work.

A. Introduction to SBAC

Fundamentally, SBAC consists of three basic compo-
nents: Ontology Base, Authorization Base, and Operations.
Ontology Base is a set of ontologies: Subjects–Ontology
(SO), Objects–Ontology (OO), and Actions–Ontology (AO).

By modeling the access control domains using ontologies,
SBAC aims at considering semantic relationships in differ-
ent levels of ontology to perform inferences to make deci-
sion about an access request. Authorization Base is a set of
authorization rules in the form of (s,o,±a) in which s is an
entity in SO, o is an entity defined in OO, and a is an action
defined in AO. In the other words, a rule determines whether
a subject which presents a credential s can have the access
right a on object o or not.

The main feature of the model is reduction of semantic re-
lationships in ontologies to subsumption relation. Given two
concepts C and D and a knowledge base Σ, C≺D denotes
that D subsumes C in Σ. This reasoning based on subsump-
tion proves that D (the subsumer) is more general than C
(the subsumee).

By reducing all semantic relationships to the subsumption,
the following propagation rules are enough:

• Propagation in subjects domain: Given (si,o,±a), if
sj≺si then (sj,o,±a).

• Propagation in objects domain: Given (s,oi,±a), if
oj≺oi then (s,oj,±a).

• Propagation in actions domain:
o Given (s,o,+ai), if aj≺ai then (s,o,+aj).
o Given (s,o,-aj), if aj≺ai then (s,o,-ai).

B. Modeling of Time

In this paper, we assume a real representation of time.
It is worthwhile to note that, we suppose that the response
time of the access control system is trivial and thus we ig
nore the time duration required by the system to check
whether a requested access is granted or denied. This as
sumption allows us to take an access request time as the ac
cess time recorded in the history.

A good representation of time for instantaneous events, if
possible, is using an absolute dating system. This involves
time stamping each event with an absolute real-time. For in-
stance, a convenient dating scheme could be a tuple consist-
ing of the year, month in the year, day in month, hour in the
day, minutes, and seconds. For example, (2008 1 20 10 4
50) would be the 20th day of January 2008, at 10:04 (AM)
and 50 seconds. The big advantage of dating schemes is that
they provide for constant time algorithms for comparing
times and use only linear space in the number of items
represented.

Time comparisons are reduced to simple numeric compar-
isons. Date-based representations are only usable, however,
in applications where such information is always known, i.e.
applications where every event entered has its absolute date
identified. There are many applications where this is a rea-
sonable assumption; for instance, databases of transactions
on a single machine, say a central machine maintaining
banking records. In addition, with absolute dating, we also

ALI NOOROLLAHI RAVARI ET. AL.: A SEMANTIC AWARE ACCESS CONTROL MODEL WITH REAL TIME CONSTRAINTS 829

have information about the duration of time between events
(we simply subtract the date of the later event from the date
of the earlier one).

IV.TEMPORAL SEMANTIC BASED ACCESS CONTROL
MODEL

In this section we introduce our authorization model,
Temporal Semantic based Access Control model (TSBAC),
which is an extension of the SBAC model. In TSBAC, we
extend the basic authorization model in two directions:
adding authorization validation time interval, and associating
a temporal expression over a History Base (history of users'
accesses).

A. Temporal Authorization Rules with Real Time
Scheme

In TSBAC we consider a temporal constraint to be as-
sociated with each authorization. This constraint is based on
the privileges granted to subjects of the system (on objects),
or access requests denied, in a specific real time point in the
past. These elements of history are stored in History Base, in
the form of donet,s,o,a and deniedt,s,o,a. We refer to
an authorization, together with a temporal constraint and a
validation time interval, as a temporal authorization rule. A
temporal authorization rule is defined as follows.

Definition (Temporal Authorization Rule): A temporal
authorization rule is a triple ([ts,tf],(s,o,±a),F), where
ts∈real-time-sceheme, tf∈real-time-scheme, and
ts≤tf. In this notation, [ts,tf] represents the authorization
validation time interval, and formula F is a temporal con-
straint which is formally defined as in Table 1.

TABLE 1.
DEFINITION OF TEMPORAL PREDICATE F

Temporal authorization rule ([ts,tf],(s,o,±a),F) states
that subject s is allowed (or not allowed) to exercise access a
on object o in the interval [ts,tf], including time instants ts

and tf, in the case that F is evaluated to true.
Definition (Temporal Authorization Base): A temporal

authorization base (TAB) is a set of temporal authorization
rules in the form of ([ts,tf],(s,o,±a),F), where ts∈real-
time and tf∈real-time.

Definition (History Base): A History Base is a set of
authorizations and time points, in the form of
done(t,s,o,a) which means access a has been granted to
subject s on object o at real time point t, and
denied(t,s,o,a) which means the system has denied
access a on object o at real time point t requested by
subject s.

B. Informal Meaning of Temporal Authorization Rules

The intuitive meaning of temporal authorization rules is as
follows. In these statements auth is representative of (s,o,
±a).
• ([ts,tf],auth,done(s,o,a)): Authorization auth is valid

in all time instants t, in interval [ts,tf], in which
done(s,o,a) is evaluated to true. In other words, auth
is valid at time t, if done(t,s,o,a) exists in HB.

• ([ts,tf],auth,denied(s,o,a)): Authorization auth is
valid in all time instants t, in interval [ts,tf], in which
denied(s,o,a) is evaluated to true. In other words,
auth is valid at time t, if denied(t,s,o,a) exists in
HB.

• ([ts,tf],auth,~done(s,o,a)): Authorization auth is
valid in all time instants t, in interval [ts,tf], in which
done(s,o,a) is not evaluated to true.

• ([ts,tf],auth,~denied(s,o,a)): Authorization auth is
valid in all time instants t, in interval [ts,tf], in which
denied(s,o,a) is not evaluated to true.

• ([ts,tf],auth,prev(A)): Authorization auth is valid at
the time of request (t) in interval [ts,tf], if A is
evaluated to true at the previous moment (t-1). The
previous time point is determined due to the precision
of selected time scheme. For example, if the precision
of time is “seconds”, the tuple to represent time is of
the form of (yyyy dd hh mm ss), so the previous
time point is (yyyy dd hh mm (ss-1)). In short, to
calculate the previous time point, we simply subtract
the numerical representation of time by one. So,
PrvTimePoint(yyyy dd hh mm ss)=(yyyy dd
hh mm ss)-1 Figure 1 gives a more comprehensible
view of the operation of this operator.

Figure 1. Operation of the prev operator on real time axis.

▄
• ([ts,tf],auth,past#(A)): Authorization auth is valid at

the time of request (t) in interval [ts,tf] if F is
evaluated to true for # of times from ts till t. 2 gives a
more comprehensible view of the operation of this
operator.

Example 1. Subject s1 is allowed to get another loan (on
Deposit1), if he has paid all his (past 36) payments. It is
assumed that the date of getting the first loan is
2004/07/01. This rule can be expressed as:

830 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Figure 2. Operation of past# operator on real time axis.

▄
• ([ts,tf],auth,H(A,chunk)): Authorization auth is valid

at the time of request (t) in interval [ts,tf], if F is evalu
ated to true, at least once in each time interval of
length chunk, from ts till t. chunk is used to reduce the
precision of the operator and relax its operation. Fi
gure 3 gives a more comprehensible view of this opera
tor operation.

Figure 3. Operation of H operator on real time axis.

Example 2. Due to insurance rules, everybody can be
insured, if he pays for it monthly. This rule for subject s1 that
has entered the system since January, 2005 is expressed as:
(note that it is assumed a month to be 30 days)

▄
All of the operators studied so far, has only one element

as their argument. It means that they make their decision (to
grant or deny a request) based on presence or absence of just
one element in the history base (or first order logic
combination of them, but not the temporal relation between
two or more of them). In some applications, we need to
decide based on the relation between elements of HB. So,
TSBAC uses operators that consider the temporal relation
between two elements of the history base.
• ([ts,tf],auth,sb#(A1,A2)): Authorization auth is valid

at the time of request (t) in interval [ts,tf] if A1 is
evaluated to true # of times before the last occurrence
of A2, from ts till t. 4 gives a more comprehensible view
of the operation of this operator.

Figure 4. Operation of the sb# operator on real time axis

▄
• ([ts,tf],auth,ab(A1,A2)): Authorization auth is valid at

the time of request (t) in the interval [ts,tf] if, if A1 is
evaluated to true in t'ts≤t'≤t, then there exist a time
point t" t'≤t"≤t, in which A2 is evaluated to true. In
the other words, A1 is evaluated to true in time instants
before the evaluation of A2 to true, from ts till the time
of request (t). Figure 6 gives a more comprehensible
view of the operation of this operator.

Figure 5. Operation of the ab operator on real time axis

Example 3. Subject s1 is allowed to get loan on his
account (Account1), if he has not withdrawn money from his
account since applying for it (that is 2007/01/20). This rule
can be expressed as:

▄
• ([ts,tf],auth,ss(A1,A2,chunk)): Authorization auth is

valid at the time of request (t) in interval [ts,tf], if A1 is
evaluated to true, at least one time in all time intervals
of length chunk, from the first occurrence of A2 in in
terval [ts,t]. Figure 6 gives a more comprehensible
view of the operation of this operator.

Figure 6. Operation of ss operator on real time axis

ALI NOOROLLAHI RAVARI ET. AL.: A SEMANTIC AWARE ACCESS CONTROL MODEL WITH REAL TIME CONSTRAINTS 831

Example 4. Subject s1 is on the car waiting list, if he paid
a prepayment (2006/02/01), and since then he has been
paying a defined payment monthly. This rule can be
expressed as:

▄
• ([ts,tf],auth,during(A1,A2)): Authorization auth is

valid at the time of request (t) in interval [ts,tf] if A1 is
not true before the first, or after the last time instant in
which A2 is true. Figure 7 gives a more comprehensible
view of the operation of this operator.

Figure 7. Operation of during operator on real time axis

▄
• ([ts,tf],auth,~E): Authorization auth is valid for each

time instant t in interval [ts,tf] in which E is not
evaluated to true.

• ([ts,tf],auth,E1∧E2): Authorization auth is valid for
each time instant t in the interval [ts,tf] in which E1

and E2 are both evaluated to true.
• ([ts,tf],auth,E1∨E2): Authorization auth is valid for

each time instant t in the interval [ts,tf] in which E1 or
E2 or both of them are evaluated to true.

• ([ts,tf],auth,E1→E2): Authorization auth is valid for
each time instant t in the interval [ts,tf] in which, if A1

is evaluated to true, then A2 is also evaluated to true.
• ([ts,tf],auth,E1↔E2): Authorization auth is valid for

each time instant t in the interval [ts,tf], in which A1 is
evaluated to true if and only if A2 is evaluated to true.

C. Formal Semantics of Temporal Authorization Rules

Next we formalize the semantics of authorization rules
described so far.

Definition (Valid Authorization): an authorization (s,o,
±a) is valid at time t, if one of the following situations
occurred:
1. At time t, a temporal authorization rule ([ts,tf],(s,o,

±a),F) with ts≤t≤tf exists in TAB and F is evaluated
to true based on the elements exist in History Base (we
define function f for performing such an evaluation),

2. There exists a temporal authorization rule ([ts,tf],(s',o',
±a'),F) in TAB with ts≤t≤tf in which F is evaluated
to true, and (s',o',±a') is derived from (s,o,±a)
following the inference rules of SBAC.

• To formalize the semantics of temporal authorization
rules, we first define an evaluation function freal. This

function evaluates the predicate F of temporal authoriza-
tion rules at a real time point t and based on the elements
stored in History Base. The semantics of such an evalua-
tion is given in first order logic and is reported in Table 2.
The semantics of a set X of temporal authorization rules,
denoted by S(X), is the conjunction of the first order for-
mulas corresponding to each element in the set.
• Note that a temporal authorization rule can be removed
and therefore not be applicable anymore for the derivation
of authorizations. In the formalization we take this possi-
bility into account, by associating with each temporal au-
thorization rule the time td at which it is removed. Note
that time td is not a constant and it is not known from the
former. We use it as shorthand for expressing the point up
to which a temporal authorization rule is applicable. A
function removed() can be defined, which, given a tempo-
ral authorization rule, X, and a time t returns false if at
time t, X is still present in the TAB, and ,true, otherwise.
Time td is the smallest time t for which function
removed(t , X) returns true.

TABLE 2.
FORMAL SEMANTICS OF THE FREAL EVALUATION FUNCTION

832 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

By the definition of evaluation function freal and by the
assumption described above, the semantics of autho-
rization rules are in Table 3 . In the following,
grantt,s,o,a denotes subject s is granted to exercise ac-
tion a on object o and analogously denyt,s,o,a denotes
the access request of s for exercising an access a on object
o is denied.

TABLE 3.
SEMANTICS OF REAL TIME AUTHORIZATION RULES

D. Access Control

The centric security mechanism in each system is an
access control system. By receiving an access request in such
a system, we need to make a decision whether to grant the
requested access or deny it. Following the proposed model of
temporal authorization in the previous sections, upon
receiving an access request sr,or.ar at time t, the access
control system performs the following steps:
1. Determine the explicit and implicit valid authorization
rules in TAB at time t (following the definition of valid
authorization rules), satisfying the following conditions:

• ts≤t≤min(tf,td)
• Temporal predicate F is evaluated to true at time t

(based freal evaluation function).
2. Extract the set of valid authorization rules such as ([ts,tf],
(s,o,±a),F) which match the access request. These
authorization rules must satisfy, at least, one of the following
conditions:

• s=sr , o=or , a=ar
• Following the propagation rules of the SBAC

model, in the case of a positive action (+a), we have
sr≺s , or≺o , ar≺a, and in the case of a negative
action (-a), we have sr≺s , or≺o , a≺ar.

3. If there exist just positive valid authorization rule(s) such
as ([ts,tf],(s,o,+a),F) in MVA, grant the requested access,
4. If there exist just negative valid authorization rule(s) such
as ([ts,tf],(s,o,-a),F) in MVA, deny the access request,
5. If there exist both positive and negative authorization
rules in MVA, do conflict resolution and follow the result,
6. If there exists no valid authorization rule, which matches
the requested access, follow the default access policy,
7. Record done(sr,or.ar) in the case that the requested
access is granted, and denied(sr,or,ar) in the case that the
access request is denied.

In this model, the default access policy might be positive
(open) to grant all undetermined accesses, or negative
(close) to deny them. The default access policy is
determined by the administrator.

E. Conflict Detection and Resolution

A conflict occurs when two or more access policies
cannot be applied in the same time. In access control, due to
modal conflict between matched valid authorizations, we
need a conflict resolution strategy.

1) Conflict Occurrence
In TSBAC, conflict occurs due to semantic relations

between entities (in the domains of subjects, objects, or
actions) and applying the inference rules of SBAC, or due to
subinterval relationship between the temporal authorization
rules of the TSBAC model.

• Conflict due to semantic relations between the
entities: as mentioned before, in the domains of subjects
and objects, the subsumee has all the privileges (posi-
tive and negative) of the subsumer, but, in the domain of
actions, positive access rights is propagated from sub-

ALI NOOROLLAHI RAVARI ET. AL.: A SEMANTIC AWARE ACCESS CONTROL MODEL WITH REAL TIME CONSTRAINTS 833

sumer to subsumee, while negative access rights is
propagated in the opposite direction (that is from sub-
sumee to subsumer). These semantic relationships and
the propagation of negative and positive authorizations
between the entities may result in conflicting situations.
As an example, consider the following History Base, se-
mantic relation, and authorization rules:

If Ali requests a read access at time 11 , due to R 2

authorization rule, this access is denied, but due to the R 1

authorization rule we have Student,doc1,+read , and
based on the sample subjects ontology, the read access is
also granted for Ali . So, in this situation we are confronted
with a conflicting situation, due to the semantic relationships
between the entities.

• Conflict due to sub-interval relationship between
authorization rules: as an example, consider the
following HB, and authorization rules:

If Ali requests a read access at time 11 , due to R2

authorization rule, this access is denied, but is granted due to
the R1 authorization rule. So, we are confronted with a
conflicting situation based on the sub-interval relationship
between R1 and R2.

2) Conflict Resolution
The model supports four predefined strategies for

conflict resolution; negative authorization rule takes
precedence (NTP) strategy, positive authorization rule takes
precedence (PTP) strategy, most specific authorization rule
takes precedence, and newer authorization rule takes
precedence. Similar to default access policy, the conflict
resolution strategy is determined by the administrator.

F. Temporal Authorization Base Administration

Authorization rules can be changed upon the
execution of administrative operations. In this paper, we
consider a centralized policy for administration of

authorizations where administrative operations can be
executed only by the administrator.

Administrative operations allow the administrator to add,
remove, or modify (a remove operation followed by an add
operation) temporal authorizations rules. Each temporal
authorization rule in the TAB is identified by a unique label
assigned by the system at the time of its insertion. The label
allows the administrator to refer to a specific temporal
authorization rule upon execution of administrative
operations. A brief description of the administrative
operations is as follows:

addRule: To add a new temporal authorization rule. When
a new rule is inserted, a label (rule identifier or rid) is
assigned by the system.

dropRule: To drop an existing temporal authorization rule.
The operation requires as argument, the label of the rule to
be removed.

V. ARCHITECTURE

In order to guarantee the applicability of the model
and usefulness in semantic based and temporal
environments, an architecture for the temporal semantic
based access control model is proposed.

Several frameworks has been proposed for access control
and security in recent years, which, the standard framework
of the ITU-T [17] for access control and the standard
framework OASIS under the name XACML [18] are the
most popular ones. during the design of our model, we have
tried to include the elements of both the frameworks
mentioned above, especially, the XACML. The major
elements of the system are illustrated in .8 The system is
composed of a number of internal and external elements
which are described next.

A. External Entities

The major external entities interacting the system are:
Subject: A subject can be a person, a service, or a machine

that tries to access resources or objects in a semantic based
environment.

Environment: The set of attributes that are relevant to an
authorization decision and are independent of a particular
subject, resource, or action.

Objects and access rights: entities which provide
ontologies in the domains of subject, object, and action.
These ontologies and the semantic relations between them
are helpful in propagation and inference of new security
rules.

B. Administration Console

This console enables the security administrator to describe
meta-policies and also description and administration of the
ontologies. The major components of the administration
console are as follows:

Policy Administration Point (PAP): The system entity
that creates a policy or policy set.

Ontology manager: Gathers and updates ontologies in
domains of subjects, objects, and actions and also reduces
the semantic relations to the subsumption relation.

834 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

C. Knowledge Base

As described in the model, the knowledge base is com-
posed of the set of authorization rules in TAB, history of
authorizations (HB), subsumption relations between
concepts (SUB), and a time counter (TIME). Inference of
implicit authorization rules is based upon the facts and rules
in the knowledge base.

D. Security Enforcement Server

This element manages inference of the implicit
authorization rules and applying them in access control
requests. Major sub-elements of this element are as follows:

Policy Decision Point (PDP): The system entity that
evaluates applicable policy and renders an authorization
decision by making use of an inference engine, based on
facts and rules in the knowledge base.

Policy Enforcement Point (PEP): The system entity that
performs access control, by making decision requests and
enforcing authorization decisions.

VI. DISCUSSION AND EVALUATION

Evaluating authorization models and access control
mechanisms, and presenting acceptable criteria in this
domain, has been a problem in security and access control
zone. Comparing security models with each other, due to
differences between them in security definition, seems
improper. Security is a comparative quality, and assumptions
in security definitions in an environment and security
requirements in that environment makes distinctive
differences in designing the model. The best way to evaluate
a model is to qualitatively scrutiny the model to ensure

accordance with security requirements of environment under
custody. Moreover, we can take some quantitative criteria
into account, but this consideration is possible if an imple-
mentation exists for the access control system based on the
model.

A. Qualitative Evaluation of TSBAC Model

In this section, we evaluate TSBAC, regarding
requirements of semantic and history based environments.

• Fine-grained and Coarse-grained Authorization:
TSBAC allows definition of policies for entities in three
domains of access control (namely subjects, objects, and
actions), so it provides coarse-grained authorization.
Moreover, with the existence of ontology, and
possibility of defining entities to the individual level,
fine-grained authorization is provided.

• Conditional Authorization: With the existence of tem-
poral operators, TSBAC supports this type of autho-
rization. In this model, due to wide spectrum of tem-
poral operators, and using first order logic operators for
combining temporal expressions, conditional au-
thorization is provided, on the basis of existence or non-
existence of specific authorizations in the past.

• Different Policies and Expressing Exceptions:
TSBAC provides synthetic policy (including negative
and positive authorizations). Moreover, by using
ontology in domains of subjects, objects, and actions,
and utilizing different authorization propagation
methods, expressing exceptions and synthetic policies is
possible.

Figure 8. An architecture for an access control system based on TSBAC model

ALI NOOROLLAHI RAVARI ET. AL.: A SEMANTIC AWARE ACCESS CONTROL MODEL WITH REAL TIME CONSTRAINTS 835

• Conflict Detection and Resolution: Conflict
occurrence may be a result of semantic relationships
between authorizations, or, sub-interval relations
between validity constraint intervals. TSBAC detects
these conflicts, and resolves them. Different conflict
resolution policies include: denials take precedence,
positives take precedence, most specific takes
precedence, and newer overrides older.

• Ease of Implementation and Integration with
Semantic Web technologies: Security models designed
for Semantic Web should be compatible with the
technology infrastructure under it. In other words, the
implementation of security mechanisms should be
possible based on the semantic expression models.
SBAC is designed based on the widely accepted
semantic web languages, OWL and SWRL; therefore its
implementation can be easily achieved by existing tools
designed for working with these languages.

• Supporting History-based Information: The main
feature of TSBAC is that authorizing an access request
is done based on granted or denied access requests
(done and denied access requests, which are stored in
History Base), or, access requests that have not been
done or have not been denied in the system (which can
be inferred from History Base). These elements could
be combined with temporal operators, or first order
logics operators to compose temporal expressions.

• Interoperability : Interoperating across administrative
boundaries is achieved through exchanging autho-
rizations for distributing and assembling authorization
rules. The ontological modeling of

• Authorization rules in SBAC results in a higher
degree of interoperability compared with other
approaches to access control. This is because of the
nature of ontologies in providing semantic
interoperability.

• Generality: Modeling different domains of access
control has added a considerable generality to the
model. In the subject domain, TSBAC uses credentials
which are going to be universally used for user
authentication. In the domain of object, different kinds
of resources such as web pages or web services can be
modeled and can be identified by their URI in autho-
rization rules.

B. Quantitative Evaluation of TSBAC

• Time Complexity: Since every access request is vali-
dated at the time of the request, and the process of
authorization is based upon searching History Base and
evaluating the temporal predicate, due to vast amount of
elements of History Base and temporal predicate
complexity, access control in TSBAC is time
consuming. In some situations, in order to evaluate the
temporal predicate, we need to scrutinize the existence
of "not-done" or "not denied" requests, and this adds to
the time complexity of access control process.

In order to clarify the subjects mentioned above, we give
a brief complexity analysis on real time operators (in case of
existence of n elements in History Base) of the model:

complexityprev=n
complexityH=t-ts/chunk×n
complexitypast#=#×n
complexitysb#=#+1n
complexityab=n
complexityss≤t-ts/chunk×n
complexityduring=n

• Space Complexity: All of the access requests (granted
or denied) are stored in History Base. Storing all the re-
quested accesses in the system, gradually, requires a
huge amount of storage space. In case of a vast amount
of history elements, and thus incapability of keeping all
these elements on volatile storage, time complexity of
access control process is amplified.

VII. CONCLUSIONS AND FUTURE WORK

Access control and its requirements in new computing
environments, semantic aware access control, and history
based access control have been discussed in this paper.
Based on the Semantic Based Access Control model
(SBAC), and to enhance the capabilities of the model, a
semantic aware access control model, which takes the
history of accesses of the system into account (TSBAC) is
proposed. TSBAC uses the same semantic relationships of
the SBAC model, and moreover, it is capable of using
temporal relations between authorizations in applying access
control. Specifically, TSBAC assigns a temporal expression
(over users' history of accesses) to each authorization that
expresses the conditions under which the authorization
applies. A constraining time interval restricts the interval of
validity of the authorization. These authorization rules
(which are composed of base authorization of SBAC,
constraining time interval, and temporal expression),
provides the ability to derive new authorizations based on
existence (or non-existence) of other authorizations in the
past.

We also proposed formal semantics of our authorization
rules. Access control, and conflict detection and resolution
presented. An architecture for the access control system
based on TSBAC was presented.

Producing preconditions of applying temporal logics
operators in Java language, and using these preconditions in
CLIPS inference engine in order to apply access control can
be considered as some future works.

One of the main deficiencies of TSBAC is the lack of a
formal proof for soundness and completeness of temporal
operators of the model. On the other hand, a generalized
history-based access control model that could be applied to
other access control policies (such as RBAC) is one of the
important works that could be done.

REFERENCES

[1]. Samarati, P. and S.C.d. Vimercati, Access control: Policies, models,
and mechanisms. Foundations of Security Analysis and Design, LNCS,
2001. 2171: p. 137-196.

836 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

[2]. S. Javanmardi, A. Amini, and R. Jalili. An Access Control Model for
Protecting Semantic Web Resources. in Web Policy Workshop. 2006.
Ahens, GA, USA.

[3]. Javanmardi, S., et al. SBAC: "A Semantic-Based Access Control
Model". in NORDSEC-2006. 2006.

[4]. Bonatti, P.A., et al., Semantic web policies: a discussion of re-
quirements and research issues. ESWC, 2006. 2006: p. 712-724.

[5]. RABITTI, F., et al., A Model of Authorization for Next-Generation
Database Systems. ACM TODS, 1991. 16(1): p. 87-99.

[6]. Qin, L. and V. Atluri. Concept-level access control for the Semantic
Web. in 2003 ACM workshop on XML security. 2003.

[7]. Brewer, D.F.C. and M.J. Nash. The Chinese Wall Security Policy. in
IEEE Symposium on Security and Privacy. 1989. Oakland, California.

[8]. Dias;, P., C. Ribeiro;, and P. Ferreira, Enforcing History-Based
Security Policies in Mobile Agent Systems. 2003.

[9]. Edjlali, G., A. Acharya, and V. Chaudhary. History-based access
control for mobile code. in 5th ACM conference on Computer and
communications security. 1998.

[10]. Abadi, M. and C. Fournet. Access control based on execution history.
in 10th Annual Network and Distributed System Security Symposium.
2003.

[11]. Bertino, E., et al., A temporal access control mechanism for Database
Systems. IEEE Trans. Knowl. Data Eng, 1996. 8(1): p. 67-80.

[12]. Thomas, R.K. and R.S. Sandhu. Sixteenth National Computer
Security Conference. 1993. Baltimore, Md.

[13]. Bertino, E., C. Bettini, and P. Samarati. A temporal authorization
model. in Second ACM Conference on Computer and Communications
Security. 1994. Fairfax, Va.

[14]. Bertino, E., et al., An access control model supporting periodicity
constraints and temporal reasoning. ACM Trans. Database Systems,
1998. 23(3): p. 231-285.

[15]. Ruan, C., Decentralized Temporal Authorization Administration.
2003.

[16]. Bertino, E., et al., Temporal authorization bases: From specification
to integration. Journal of Computer Security, 2000. 8: p. 309-353.

[17]. ISO/IEC:10181-3. Information Technology - Open Systems In-
terconnection - Security Frameworks for Open Systems: Access Control
Framework. 1995.

[18]. Moses, T., eXtensible Access Control Markup Language, Version 2.0.
2005.

