
A History Based Semantic Aware Access Control Model Using Logical Time

Ali Noorollahi Ravari, Morteza Amini, Rasool Jalili, and Jafar Haadi Jafarian

Network Security Center, Computer Engineering Department,

Sharif University Of Technology, Tehran, Iran

noorollahi@ce.sharif.edu,jafarian@ce.sharif.edu, m_amini@ce.sharif.edu, jalili@sharif.edu

Abstract
With the advent of semantic technology, access control

cannot be done in a safe way unless the access decision

takes into account the semantic relationships among the

entities in a semantic-aware environment. The SBAC

model (Semantic Based Access Control model) considers

this issue in its decision making process. However, time

plays a crucial role in new computing environments,

which is not supported in SBAC. In this paper, we

propose the Temporal Semantic Based Access Control

(TSBAC) model, as an extension of SBAC, which

enhances the specification of user-defined authorization

rules by constraining time interval and temporal

expression over users' history of accesses. TSBAC uses

logical time, rather than to real time, in its authorization

rules. A formal semantics for temporal authorizations is

provided and conflicting situations (due to the semantic

relations of the SBAC model and a sub-interval relation

between authorizations) are investigated and resolved in

our proposed model. An architecture for the access

control system based on TSBAC is presented.

1. Introduction
An important requirement of any information

management system is to protect data and resources

against unauthorized disclosure (confidentiality) and

unauthorized or improper modifications (integrity), while

at the same time ensuring their availability to legitimate

users (no denials-of-service). Therefore, enforcing

protection requires that every access to a system and its

resources be controlled and all and only authorized

accesses can take place [1]. The development of an access

control system requires the definition of the regulations

according to which access is to be controlled and their

implementation as functions executable by a computer

system.

An important requirement, common to many

applications, is related to the temporal dimension of

access permissions. In these systems, permissions are

granted based on previous authorizations given to the

users of the system or denied in specific time points (in

the past). Another critical requirement is the possibility of

expressing the semantic relationships that usually exist

among different authorization elements, i.e. subjects,

objects, and actions. To overcome this challenge, our

model is constructed based on the SBAC model

(Semantic Based Access Control model) [2, 3] which is a

semantic-based access control model. SBAC authorizes

users based on the credentials they offer when requesting

an access right. Ontologies are used for modeling entities

along with their semantic interrelations in three domains

of access control, namely subjects domain, objects

domain, and actions domain. To facilitate the propagation

of policies in these three domains, different semantic

interrelations can be reduced to the subsumption relation.

In this paper we unify the two concepts mentioned

above; that is, we use the SBAC model (as the base

model), and associate a temporal expression with each

authorization. Thus, in this paper we employ logical time

operators to specify historical constraints over the

elements of the history base in authorization rules.

Furthermore, a time interval bounds the scope of

applicability of the temporal authorization rules, and

usage of elements of history (e.g., �1, 2, 20� shows that
the authorization is valid for time interval starting at ‘1’

and ending at ‘20’, and history elements with the time

stamp greater than 2 are taken into account). Thus, the

main feature provided by our model is the possibility of

specifying authorization rules which express temporal

dependencies among access events in the past (stored in a

history base in the form of ��	
��,
, �, �� and �
	�
���,
, �, ��)
The rest of this paper is structured as follows: Section

2 discusses the related work in this topic. Section 3 gives

a brief introduction of the SBAC model and describes the

model of time used throughout our work. In section 4, we

represent our authorization rules in detail, offer their

formal semantics, and conflict resolution in access

decision point. Section 5 gives an architecture for the

access control system based on the proposed model. In

Section 6 an implementation of the basic components of

the model using CLIPS is presented In section 7, a case

study in a banking environment is described. A qualitative

and quantitative evaluation of the model is discussed in

section 8. Finally, Section 9 concludes the paper and

gives some future works on the topic.

Proceedings of International Workshop on Internet and Distributed Computing Systems (IDCS’ 08)
24 December, 2008, Khulna, Bangladesh

1-4244-2136-7/08/$20.00 ©2008 IEEE 43

2. Related Work
Access control systems for protecting web resources

along with credential based approaches for authenticating

users have been studied in recent years. With the advent

of Semantic Web, new security challenges were imposed

to security systems. Bonatti et al. [4] have discussed open

issues in the area of policy specification for Semantic

Web community such as important requirements for

access control policies. Developing security annotations

to describe security requirements and capabilities of web

service providers and requesting agents have been

addressed by Rabitti et al. [5]. Qin and Atluri [6]

proposed a concept level access control model that

considers some semantic relationships in the level of

concepts in objects domain. SBAC which is the basis of

our model, is proposed by Javanmardi et al. [2, 3], and is

based on the OWL ontology language and considers the

semantic relationships in the domains of subjects, objects,

and actions to make decision about an access request.

The first security policy based on the history of events

was introduced as Chinese Wall Security Policy (CWSP)

[7]. The objective of CWSP is to prevent information

flows which cause conflict of interest for individual

consultants. Execution history also plays a role in

Schneider’s security automata [8] and in the Deeds

system of Edjlali [9]. However, such works focus on

collecting a selective history of sensitive access requests

and use this information to constrain further access

requests; for instance, network access may be explicitly

forbidden after reading certain files. Another approach

that considers the history of control transfers, rather than a

history of sensitive requests, is presented by Abadi and

Fournet [10].

In a basic authorization model, an authorization is

modeled by a triple �
, �, ���, interpreted as “subject s is
(not) authorized to exercise access right a on object o”.

Recently, several extensions to this basic authorization

model have been suggested. One of them is the temporal

extension, which increases the expressive power of the

basic authorization model [11-15]. In the model proposed

by Bertino et al. [11], an authorization is specified as ����
, �����, where ���
 � ��� , ��� is the time interval

in which the authorization ���� � �
, �, �, �	, �� is
valid. In auth, s represents the subject, o the object, and m

the privilege, pn is a binary parameter indicating whether

an authorization is negative or positive, and g represents

the grantor of the authorization. This model also allows

operations WHENEVER, ASLONGAS, WHENEVERNOT,

and UNLESS on authorizations. For example,

WHENEVER can be used to express that a subject si can

gain privilege on object o whenever another subject sj has

the same privilege on o. Later Bertino et al. [14] extended

the temporal authorization model to support periodic

authorizations. They completed their research in [16] by

presenting a powerful authorization mechanism that

provides support for: (1) periodic authorizations (both

positive and negative), that is, authorizations that hold

only in specific periods of time; (2) user-defined

deductive temporal rules, by which new authorizations

can be derived from those explicitly specified; (3) a

hierarchical organization of subjects and objects,

supporting a more adequate representation of their

semantics. From the authorizations explicitly specified,

additional authorizations are automatically derived by the

system based on the defined hierarchies.

3. Preliminaries
In this section we give a brief introduction to the SBAC

model, proposed by Javanmardi et al. [2, 3], and

introduce the model of time used throughout our work.

3.1 Introduction to SBAC
Fundamentally, SBAC consists of three basic

components: Ontology Base, Authorization Base, and

Operations. Ontology Base is a set of ontologies:

Subjects–Ontology (SO), Objects–Ontology (OO), and

Actions–Ontology (AO). By modeling the access control

domains using ontologies, SBAC aims at considering

semantic relationships in different levels of ontology to

perform inferences to make decision about an access

request. Authorization Base is a set of authorization rules

in the form of �
, �, ��� in which s is an entity in SO, o is
an entity defined in OO, and a is an action defined in AO.

In the other words, a rule determines whether a subject

which presents a credential s can have the access right a

on object o or not.

The main feature of the model is reduction of semantic

relationships in ontologies to subsumption relation. Given

two concepts C and D and a knowledge base Σ, � � �

denotes that D subsumes C in Σ. This reasoning based on
subsumption represents that D (the subsumer) is more

general than C (the subsumee).

3.2 Modeling of Time
We assume that the system is composed of a single

process, and we timestamp each event with a counter

based clock. The clock ticks every time an event occurs.

4. SBAC with Logical Time Constraints
In some applications, only the logical sequence of events

is of considerable importance, or due to the system

specifications, time stamping of events with real time is

impossible. Thus, in these situations, we use logical time

instead of real time and timestamp events using the

logical time scheme introduced in section 3.2.

Definition (Temporal Authorization Rule) A temporal

authorization rule is a triple ��� ! , � ", �#$, �
, �, ���, %& ,
where � ! , � ", �# ' (���)�*+��
, , and � ! , � " , �#. In
this notation, �� !, � " , �#$ represents the authorization �
, �, ��� validation time interval, and formula F is a

temporal constraint which is formally defined in Table 1.

44

Table 1. Definition of temporal predicate F . /� ��	
�
, �, ��|�
	�
��
, �, ��|1��	
�
, �, ��|1�
	�
��
, �, ��2 /� �3
4�.�|��
�#�.�|6�.�|
7#�., .�|�7�., .�|

�.�|��3�	��., .�% /� �3�
|8�*

|2|12|2 9 2|2 : 2|2 ; 2|2 < 2
The temporal authorization rule ��� ! , � ", �#$, �
, �, ���, %& states that subject presenting

credential s is allowed (or not allowed) to exercise access

a on object o, in the time interval �� ! , �#$ if formula F is

evaluated to true by the access events occurred in the time

interval �� ", �#$.
Definition (Temporal Authorization Base) A temporal

authorization base (TAB) is a set of temporal

authorization rules in the form of ��� ! , � ", �#$, �
, �, ���, %&.
Definition (History Base) A History Base is a set of

authorizations with timestamp, in the form of ��	
��,
, �, �� that means access a has been granted to

subject presenting credential s on object o at logical time

t, and �
	�
���,
, �, �� that means the system has denied

access a on object o at logical time t requested by subject

presenting credential s.

4.1 Informal Meaning of Temporal Authorization

Rules
The intuitive meaning of (logical time) temporal

authorization rules is as follows (in these statements auth

is used instead of �
, �, ���):
− =�>?@, >?A, >B$, CD>A, EFG@�H�I: Authorization auth is

valid at the time of request (t), � ! , � , �#, if A is
evaluated to true at the time (� J 1), and � J 1 K � ". =�>?@, >?A, >B$, CD>A, EC?>#�H�I: Authorization auth is
valid at the time of request (t), � ! , � , �#, if A is
evaluated to true # of times in the time interval �� ", ��
in the history base.

− =�>?@, >?A, >B$, CD>A, L�H�I: Authorization auth is

valid at the time of request (t), � ! , � , �#, if A is
evaluated to true at all time-points in the time interval �� ", �� in the history base.

− =�>?@, >?A, >B$, CD>A, ?M#�HN, HO�I: Authorization auth
is valid at the time of request (t), � ! , � , �#, if A1 is
evaluated to true # of times before the last occurrence

of A2 in the time interval �� ", ��.
− =�>?@, >?A, >B$, CD>A, CM�HN, HO�I: Authorization auth

is valid at the time of request (t), � ! , � , �#, if A1 is
evaluated to true at �P�� ! , �Q , ��, and there exist a
time-point �" ��Q , �" , ��, in which A2 is evaluated to
true.

− =�>?@, >?A, >B$, CD>A, ??�HN, HO�I: Authorization auth
is valid at the time of request (t), � ! , � , �#, if A1 is
always evaluated to true, from the first occurrence of

A2 in the time interval �� ", �� till t.
− =�>?@, >?A, >B$, CD>A, SDFTUV�HN, HO�I: Authorization
auth is valid at the time of request (t), � ! , � , �#, if
A1 is not true before the first, or after the last time-

point in which A2 is true in the time interval �� ", ��.
4.2 Comparison with Linear Time Temporal

Logic Operators
As mentioned in previous sections, TSBAC is an access

control model that makes its access control decision based

on the temporal relation between users’ access events in

the history. Due to this requirement, we considered a

modified set of operators of the Propositional Linear

Temporal Logic (Future and Past version) [17]. In

addition, some of the operators were added due to the

requirements of real environments where the access

control system based on the model is applicable. In the

following, an overall comparison of the operators of

TSBAC and LTL is presented. The newly added operators

are described next.

The basic temporal operators of this system are ‘Fp’

(sometime por eventually p), ‘Gp’ (always p or

henceforth p), ‘Xp’ (next time p), ‘p U q’ (p until q), and

the modality ‘p B q’ (p precedes q).

‘Prev’ in TSBAC is the past time equivalent of ‘X’ in

LTL (or WX), ‘H’ is the past time equivalent of ‘G’ (or YX), ‘sb#’ is the past time equivalent of ‘B’ which takes

into account the number of instants in which the first

operand (A1) is evaluated to true. In some situations we

need to identify the situation in which an event (A1) has

been repeated in all timepoints in the past. Thus, the

operator ‘ab’ seems necessary. ‘ss’ is the ‘Since’ operator

but with a minor modification; in addition to being a past

time equivalent, it is required that the first operand (A1)

holds from the moment that A2 is evaluated to true.

In order to describe a situation in which an event

occurred only between the first and last occurrence of

another event, during operator seems necessary. ‘past#’ is

the modified version of ‘prev’ which makes its decision

based on the desired number of its operand evaluated to

true.

For the purpose of increasing the expressiveness of the

model, the propositional logic combination of the

predicates generated so far was taken into account to

create a temporal expression. In this manner, we have a

fully functional expressive set of operators that could be

used to express different temporal relations between the

elements of a history of accesses.

45

4.3 Formal Semantics of Logical Time

Authorization Rules
To formalize the semantics of temporal authorization

rules, we first define an evaluation function Φ. This

function evaluates the predicate F of temporal

authorization rules at a logical time point t, and based on

the elements stored in History Base. The semantics of

such an evaluation is given in first order logic and is

reported in Table 2.

Table 2. Formal semantics of the [evaluation
function Φ\�� ", ��	
�
, �, ��&�] �3�
 , � K � " 9 ��	
��,
, �, �� ' 6^8�*

 , � , � " : ��	
��,
, �, �� _ 6^ ̀ Φ\�� ", �
	�
��
, �, ��&�] �3�
 , � K � " 9 �
	�
���,
, �, �� ' 6^8�*

 , � , � " : �
	�
���,
, �, �� _ 6^ ` Φ\�� ", 1��	
�
, �, ��&�] �3�
 , a�, � K � ", ��	
��,
, �, �� ' 6^8�*

 , b�, � K � ", ��	
��,
, �, �� ' 6^ ̀ Φ\�� ", 1�
	�
��
, �, ��&�] �3�
 , a�, � K � ", �
	�
���,
, �, �� ' 6^8�*

 , b�, � K � ", �
	�
���,
, �, �� ' 6^ ̀ Φ\�� ", �3
4�.�& � Φ\Xc�� ", .�

Φ\�� ", ��
�#�.�& � b�c, … , �# e f Φ\g�� ", .�#
hic

Φ\�� ", 6�.�& � j�k , � " , �k , �, Φ\l�� ", .� Φ\�� ",
7#�.c, .m�& � b�mm, � " , �mm , �, b�c, … , �#
, �mm e Φ\nn�� ", .m� 9 f Φ\g�� ", .c�#

hic

Φ\�� ", �7�.c, .m�& � =b�c, � " , �c , � e Φ\o�� ", .c�I; =b�m, �c , �m , � e Φ\n�� ", .m�I Φ\�� ",

�.c, .m�& � j�m, � " , �m, �, pΦ\n�� ", .m�
; =j�k , �m , �k , � ; Φ\l�� ", .c�Iq

Φ\�� ", ��3�	��.c, .m�&
� rpb�skt , � " , �skt
, � 9 Φ\ulv�� ", .m�9 =a�w, � " , �w, �skt 9 Φ\x�� ", .m�&q
9 yb�szw , � " , �szw, � 9 Φ\u{x�� ", .m�9 pa�| , �szw , �|
, � 9 Φ\}�� ", .m�I~�
; =j�c, �c , �; �Φ\o�� ", .c� ; �skt , �c , �szw&I Φ\�� ", 12� � Φ\�� ", 2� Φ\�� ", 2c 9 2m� � Φ\�� ", 2c� 9 Φ\�� ", 2m� Φ\�� ", 2c : 2m� � Φ\�� ", 2c� : Φ\�� ", 2m� Φ\�� ", 12� � 1Φ\�� ", 2� Φ\�� ", 2c 9 2m� � Φ\�� ", 2c� 9 Φ\�� ", 2m� Φ\�� ", 2c : 2m� � Φ\�� ", 2c� : Φ\�� ", 2m� Φ\�� ", 2c ; 2m� � Φ\�� ", 2c� 9 1Φ\�� ", 2m� Φ\�� ", 2c < 2m� � �Φ\�� ", 2c� ; Φ\�� ", 2m�&9 �Φ\�� ", 2m� ; Φ\�� ", 2c�&

By the definition of the evaluation function Φ and by

the assumption described above, the semantics of

authorization rules are presented in Table 3. In the

following, �3�	���, �
, �, ��& denotes subject presenting
credential s is granted to exercise action a on object o, and

analogously, �
	���, �
, �, ��& denotes the access request
of subject having credential s for exercising an access a

on object o is denied.

Table 3. Semantics of logical time authorization

rules ��� , �#$, �
, �, ���, %&� j� =� ! , � " , � , �# 9 Φ\�� " , %�I; �3�	���, �
, �, ��& ��� , �#$, �
, �, J��, %&� j� =� ! , � " , � , �# 9 Φ\�� " , %�I; �
	���, �
, �, ��&
4.4 Access Control
The centric security mechanism in each system is an

access control system. Upon receiving an access request

in such a system, we need to make a decision whether to

grant the requested access or deny it. Following the

proposed model of temporal authorization in the previous

sections, upon receiving an access request �
� , �� , ��� at
46

time t, the access control system performs the following

steps:

1. Determine the explicit and implicit valid authorization

rules in TAB at time t (following the definition of valid

authorization rules), satisfying the following conditions:

• � , � , ��	��# , ��&, td is the time of deletion of a

specific authorization rule.

• Temporal predicate F is evaluated to true at time t

(based on �� evaluation function).
2. Extract the set of valid authorization rules such as ��� ! , � ", �#$, �
, �, ���, %& which match the access

request. These authorization rules must satisfy, at least,

one of the following conditions:

•
 �
� , � � �� , � � ��
• Following the propagation rules of the SBAC

model, in the case of a positive action (��), we
have
� �
 , �� � � , �� � �, and in the case of a
negative action (J�), we have
� �
 , �� � � , � ��� .

3. If there exist just positive valid authorization rule(s) such

as ��� !, � ", �#$, �
, �, ���, %& in MVA, grant the

requested access.

4. If there exist just negative valid authorization rule(s) such

as ��� !, � ", �#$, �
, �, J��, %& in MVA, deny the access

request,

5. If there exist both positive and negative authorization
rules in MVA, resolve the conflict and follow the result.

6. If there exists no valid authorization rule, which matches

the requested access, follow the default access policy.

7. Store ��	
��,
� , �� , ��� in case of the requested access is
granted and �
	�
���,
� , �� , ��� in case of the access
request is denied.

4.5 Conflict Detection and Resolution
A conflict occurs when two or more access policies

cannot be applied in the same time. In access control, due

to modal conflict between matched valid authorizations,

we need a conflict resolution strategy.

4.5.1 Conflict Occurrence

In TSBAC, conflict occurs due to the semantic relations

between the entities (in the domains of subjects, objects,

or actions) and applying the inference rules of SBAC, or

due to the sub-interval relationship between temporal

authorization rules of TSBAC.

• Conflict due to the semantic relations between

the entities: as mentioned before, in the domains

of subjects and objects, subsumee has all the

privileges (positive and negative) of subsumer,

but, in the domain of actions, positive access

rights is propagated from subsumer to subsumee,

while negative access rights is propagated in the

opposite direction (that is from subsumee to

subsumer). These semantic relationships and

propagation of negative and positive

authorizations between entities may result in

conflicting situations.

4.5.2 Conflict Resolution

In access control, due to modal conflicts between valid

matched authorization rules (in set MVA), it is required to

have a conflict resolution strategy to resolve conflicts.

The conflict might be a result of semantic relationships

between the entities (i.e. subjects, objects, and actions)

and applying the inference rules of SBAC model, or the

sub-interval relation between authorizations (i.e. �� !m, �#m$ is a sub-interval of �� !c, �#c$).
TSBAC supports three predefined strategies for conflict

resolution; negative authorization rule takes precedence

(NTP) strategy, positive authorization rule takes

precedence (PTP) strategy, and most specific rule takes

precedence. Similar to the default access policy, the

conflict resolution strategy is determined by the

administrator.

5. Architecture
In order to guarantee the applicability of the model and

usefulness in semantic based and temporal environments,

an architecture for the access control system based on the

proposed model is presented.

47

Figure 1. An architecture for the access control system based on TSBAC model

6. Implementing TSBAC using CLIPS
In order to make inference by CLIPS engine, we must

introduce TSBAC to the CLIPS inference engine. This

procedure can be summarized into these steps:

• Expressing description logics axioms.

• Expressing subjects ontology, objects ontology,

and actions ontology.

• Expressing fix facts of the model.

• Expressing inference rules of SBAC.

• Feeding history base to the inference engine.

• Expressing temporal authorization rules.

• Applying access control and conflict resolution.

The description and details of the implementation

could be found in the following URL:

http://ce.sharif.edu/~noorollahi/Downloads.html

7. Case Study
The required information for applying access control is

as follows: two subjects, that is, s1 and s2 exist in the

environment, and objects ontology and actions

ontology can be seen in Figure 2.

Account

LongTermDeposit CurrentAccount SpecialDeposit

FullAccess

Withdraw Settlement Payment

Interest

Withdraw
GetLoan PrePayment

Figure 2. Objects and actions ontology in the

sample banking environment

Sample temporal authorization rules are as follows:

�c: � �10, ∞�, =
c, (�	�+
3��
��
��c,��	�
3

������3�� I ,6�1��	
�
c, (�	�+
3��
��
��
c, �����3���&�

�m: p �0, ∞�, �
c, ��33
	�.))��	�c, J�����3���,
70���	
��**, ��33
	�.))��	�c, �
��*
�
	��, �3�
�q
��: ��10, ∞�, �
c, ��33
	�.))��	�c, �Y
���
��
�,

 p��	
�
c, ��33
	�.))��	�c, Y
���
��
�,1�
	�
���**, ��33
	�.))��	�c, ��

�, 1q�

48

��:
�
��

�120, ∞�, �
m, ��
)��*�
��
��
m, �Y
�(��	�,

 p��	
�
m, ��
)��*�
��
��
m, �3
����
	��,��	
�
m, ��
)��*�
��
��
m, ����
	��, 30 q 9
��
�120���	
�
m, ��
)��*�
��
��
m, ����
	��&�

��

The elements of history base are as follows: 1: ��	
�20,
c, (�	�+
3��
��
��
c, �����3��� 2: ��	
�30,
c, (�	�+
3��
��
��
c, �����3��� 3: ��	
�25,
c, ��33
	�.))��	�c, �
��*
�
	�� 4: ��	
�35,
c, ��33
	�.))��	�c, �
��*
�
	�� 5: �
	�
��50,
m, ��33
	�.))��	�c, ��

� 6: ��	
�51,
m, ��33
	�.))��	�c, ��

� 7: ��	
�130,
m, ��

)��*�
��
��m, �3
����
	�� 8: ��	
�140,
m, ��

)��*�
��
��m����
	�& 9: ��	
�150,
m, ��

)��*�
��
��m, ����
	�� 10: ��	
�160,
m, ��

)��*�
��
��m, ����
	�� 11: ��	
�170, ��

)��*�
��
��m, ����
	��
• First Access Scenario: Suppose that request 3
�c ��
c, (�	�+
3��
��
��
c, �	�
3

������3���

is initiated at the time ���¡ � 40. Regarding R1
and elements #1 and #2 of History Base, the

temporal predicate is evaluated to false, and this

access request (req1) is denied (in the case of a

closed access policy, or granted in the case of a

open access policy). Finally, �
	�
� =40,
c, (�	�+
3��
��
��
c,�	�
3

������3�� I is added
to History Base.

• Second Access Scenario: Suppose that request 3
�m � �
c, ��33
	�.))��	�c, �����3��� is

initiated at the time ���¡ � 75. Regarding R2 and
elements #3 and #4 of History Base, no negative

authorization is issued for this request. Therefore,

in case of an open access policy, the authorization

is granted and ��	
�75,
c, ��33
	�.))��	�c, �����3��� is

added to History Base, but in case of a negative

access policy, the authorization is denied and �
	�
��75,
c, ��33
	�.))��	�c, �����3��� is
added to History Base.

• Third Access Scenario: Suppose that request 3
�� � �
c, ��33
	�.))��	�c, Y
���
��
� is

initiated at the time of ���¡ � 100. Regarding R3
and element #5 that exists in History Base, this

access request is denied and �
	�
��100,
c, ��33
	�.))��	�c, Y
���
��
�
is added to History Base.

• Fourth Access Scenario: Suppose that request 3
�� � �
m, ��
)��*�
��
��m, Y
�(��	� is

initiated at the time ���¡ � 200. Regarding R4 and
elements #7…#11 exist in History Base, in spite of

existence of element #7 (prepayment) and

elements #8 through #11 (monthly settlement),

this access request is denied (because the number

of monthly payments is less than 120) ,and �
	�
��200,
m, ��
)��*�
��
��m, Y
�(��	� is

added to History Base.

8. Discussion and Evaluation
The best way to evaluate an access control model is to

qualitatively evaluate it against the security

requirements of the environment. Moreover, we can

take some quantitative criteria into account, but this

consideration is only possible if an implementation of

an access control system based on the proposed model

exists.

8.1 Qualitative Evaluation of TSBAC Model
In this section we evaluate TSBAC regarding

requirements of semantic-aware environments.

• Conditional Authorization: With the existence of

temporal operators, TSBAC supports this type of

authorization. In this model, due to wide spectrum

of temporal operators, and using first order logic

operators for combining temporal expressions,

conditional authorization is provided, on the basis

of existence or non-existence of specific

authorizations in the past.

• Conflict Detection and Resolution: Conflict

occurrence may be a result of semantic

relationships between authorizations, or, sub-

interval relations between validity constraint

intervals. TSBAC detects these conflicts, and

resolves them. Different conflict resolution

policies include: denials take precedence, positives

take precedence, and most specific takes

precedence.

• Supporting History-based Information: The main

feature of TSBAC is that authorizing an access

request is done based on granted or denied access

requests (done and denied access requests, which

are stored in History Base), or, access requests that

have not been done or have not been denied in the

system (which can be inferred from History Base).

These elements could be combined with temporal

operators, or first order logics operators to

compose temporal expressions.

8.2 Quantitative Evaluation of

TSBAC
Due to the existence of an implementation for TSBAC,

quantitative evaluation of the model is possible. The

time and space complexity of the system based on the

logical time operators of the model is as follows.

• Time Complexity: Since every access request is

validated at the time of the request, and the

process of authorization is based upon searching

History Base and evaluating the temporal

predicate, due to vast amount of elements of

History Base and temporal predicate complexity,

49

access control in TSBAC is time consuming. In

order to clarify the subjects mentioned above, we

give a brief complexity analysis on logical time

operators (in case of existence of n elements in

History Base) of the proposed model.)���*
¢�����3
4� �)���*
¢����6� � �� J � � £)���*
¢������
�#� � # £)���*
¢����
7#� � �# � 1�)���*
¢�����7� �)���*
¢����

� , �� J � � £)���*
¢������3�	�� � 	
• Space Complexity: All of the access requests

(granted or denied) are stored in History Base.

Storing all the requested accesses in the system,

gradually, requires a huge amount of storage

space. In case of a vast amount of history

elements, and thus, incapability of keeping all

these elements on volatile storage, time

complexity of access control process is amplified

too.

9. Conclusion
In this paper, an extension of the Semantic Based

Access Control model (SBAC), in order to enhance its

capabilities by taking the history of accesses of the

system into account was proposed. The proposed

model (named TSBAC) uses the same semantic

relationships of SBAC, and moreover, it is capable of

using temporal relations between the access events

occurred in the past (composed as a temporal

expression) in specifying authorization rules. In this

model, a dynamic aspect are also given to the

authorizations by attaching a time interval to each of

the authorizations that restricts the validity period of

them. These authorization rules (which are composed

of base authorization of SBAC, validity time interval,

and temporal expression over the history of users'

accesses in the system), provides the ability to derive

new authorizations based on the occurrence (or not

occurrence) of other accesses in the past.

The formal semantics of our authorization rules,

plus the access control and conflict resolution

procedures were proposed. An architecture for an

access control system based on TSBAC was presented.

Finally, a banking environment was modeled using

TSBAC as a case study.

A generalized history-based access control model

that could be applied to other access control policies

(such as RBAC) is one of our important future works

that will be done.

References
1. Samarati, P. and S. Vimercati. Access Control:

Policies, models, and mechanisms. in Foundations

of Security Analysis and Design (FOSAD). 2001.

Bertinoro, Italy: Springer-Verlag.

2. S. Javanmardi, A. Amini, and R. Jalili. An Access

Control Model for Protecting Semantic Web

Resources. in Web Policy Workshop. 2006. Ahens,

GA, USA.

3. Javanmardi, S., et al. SBAC: "A Semantic-Based

Access Control Model". in NORDSEC-2006. 2006.

4. Bonatti, P.A., et al., Semantic web policies: a

discussion of requirements and research issues.

ESWC, 2006. 2006: p. 712-724.

5. Rabitti, F., et al., A Model of Authorization for

Next-Generation Database Systems. ACM

Transactions on Database Systems, 2001. 16(1): p.

88-131.

6. Qin, L. and V. Atluri. Concept-level access control

for the Semantic Web. in 2003 ACM workshop on

XML security. 2003.

7. Brewer, D.F.C. and M.J. Nash. The Chinese Wall

Security Policy. in IEEE Symposium on Security

and Privacy. 1989. Oakland, California.

8. Dias;, P., C. Ribeiro;, and P. Ferreira, Enforcing

History-Based Security Policies in Mobile Agent

Systems. 2003.

9. Edjlali, G., A. Acharya, and V. Chaudhary.

History-based access control for mobile code. in

5th ACM conference on Computer and

communications security. 1998.

10. Abadi, M. and C. Fournet. Access control based on

execution history. in 10th Annual Network and

Distributed System Security Symposium. 2003.

11. Bertino, E., et al., A temporal access control

mechanism for Database Systems. IEEE Trans.

Knowl. Data Eng, 1996. 8(1): p. 67-80.

12. Thomas, R.K. and R.S. Sandhu. Sixteenth National

Computer Security Conference. 1993. Baltimore,

Md.

13. Bertino, E., C. Bettini, and P. Samarati. A temporal

authorization model. in Second ACM Conference

on Computer and Communications Security. 1994.

Fairfax, Va.

14. Bertino, E., et al., An access control model

supporting periodicity constraints and temporal

reasoning. ACM Trans. Database Systems, 1998.

23(3): p. 231-285.

15. Ruan, C., Decentralized Temporal Authorization

Administration. 2003.

16. Bertino, E., et al., Temporal authorization bases:

From specification to integration. Journal of

Computer Security, 2000. 8: p. 309-353.

17. Emerson, E.A., Temporal and modal logic.

Handbook of Theoretical Computer Science, 1990.

B: Formal Models and Sematics (B): p. 997-

1072.

50

