
Conflict Detection and Resolution in Context-Aware Authorization

Amir Reza Masoumzadeh, Morteza Amini, and Rasool Jalili
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

{masoumzadeh@ce.,mamini@ce.,jalili@}sharif.edu

Abstract

Pervasive computing environments introduces new re-
quirements in expressiveness and flexibility of access con-
trol policies which are almost addressable leveraging con-
textual information. Although context-awareness augments
the expressiveness of policies, it increases the probability of
arising conflicts. Generally, context-aware authorizations
are defined using some contextual constraints about the in-
volved entities in an access request. Accordingly, princi-
ples such as “more specific overrides”, which are employed
to resolve possible conflicts, are required to consider the
contextual constraints. In this paper, we propose a com-
prehensive approach to resolve conflicts in context-aware
authorization policies. We formalize the use of context
constraints in a typical context-aware authorization policy
model. The policy model supports multi-authority in which
each authority is capable of defining an expressive conflict
resolution policy. The resolution policy leverages context-
based precedence establishment principles; the concept of
context-based specificity is of our main contribution in this
paper.

keywords: Conflict, Context-Awareness, Authorization,
Access Control.

1 Introduction

Evolution of distributed systems, mobile computing en-
vironments, and moving toward pervasive computing en-
vironments introduced new security and access control re-
quirements [18], including expressiveness and flexibility of
security policies. Leveraging contextual information can
address some of these requirements. Context as defined ex-
pressively by Dey [5] is“any information that can be used
to characterize the situation of an entity.”An entity is a
person, place, or object that is considered relevant to the in-
teraction between a user and an application, including the
user and applications themselves. In an access control sys-

tem, authorization policies specify which activities should
be permitted or forbidden. Classic access control models
express their policies using the notions of subjects, objects,
and rights [15]. Several works addressed context-aware ac-
cess control models or security infrastructures such as [8, 2].
We also proposed a context-aware provisional access con-
trol model that decides some required provisional actions in
addition to common binary access decision according to the
context [11]. The central idea of all these models is express-
ing subjects, objects, groups, roles, etc. through context
expressions. Although context-awareness highly augments
the expressiveness of authorization policies, it increases the
probability of conflicts among different policies.

A conflict arises when the objectives of two or more ac-
tive policies can not be simultaneously met. Two major cat-
egories of conflicts are addressed for authorization policies
in the literature. The first category includes conflicts due
to separation of duties [7], conflict of interests [4], and so
on. These conflicts are application specific and imposed by
policies. Modality conflicts constitute the second category
which arise where two or more different policies both per-
mit and forbid an access in a situation. As the second cate-
gory is of the main concern in this paper, modality conflict
is simply called “conflict”.

There are different methods to deal with conflicts:

Conflict Prevention Models such as [12] prevent conflicts
by avoiding definition of new policies conflicting with
previously defined ones. However, there are some rea-
sons making this method impractical. Policies defined
by different authorities may have conflict, as each au-
thority has its own access control requirements. The
need to specify policies exceptional to other policies is
another consideration.

Policy Reformation Reforming the conflicting policies is
also impractical. It is common to define a new tem-
porary policy which may have conflict with older poli-
cies. Amending the older policy to be consistent with

1



the new one, will result in its distortion when the tem-
porary policy is removed.

Precedence EstablishmentIn this method, the idea is to
determine precedence of a policy involved in a conflict
situation over the other policies.

Among the indicated methods, the precedence establish-
ment approach tends to be a more practical solution. It re-
quires establishing a precedence relationship among con-
flicting policies. This can be performed by manual assign-
ment of specific priority to each conflicting policy. How-
ever, precedence establishment is more preferred to be done
automatically because manual assignment may be cumber-
some and impractical in real-world situations. Several prin-
ciples has been suggested for establishing precedence auto-
matically [10, 6]:

• Specific overrides general policy (more specific over-
rides)

• Newer overrides older policy

• Negative/positive policy takes precedence

• Higher authority overrides lower authority

Practically, each principle has its specific application and is
useful in a particular situation.

Generally, in a context-aware authorization system, con-
textual constraints are used to tightly specify the request. To
the best of our knowledge, precedence establishment princi-
ples, such as “more specific overrides”, has been used to re-
solve conflicts in context-aware authorization systems, con-
sidering a few aspects of context. Our main contribution in
this paper is the definition and employment of precedence
establishment principals in a context-aware manner, par-
ticularly context-based specificity relation among context-
aware authorizations. To achieve that, context-aware autho-
rizations are formalized in a rule-based policy model which
tends to serve as a common basis for other context-aware
authorization models. Since centralized authorization is
not feasible for large distributed systems [16] and many
context-aware environments are inherently distributed, the
policy model supports multi-authority to enable decentral-
ized authorization. We propose a comprehensive conflict
detection and resolution method which supports flexible
conflict resolution policies capable of employing different
context-based precedence establishment principals. The
formalization of the method is expressed through graphs to
make it more comprehensible. Our approach considers all
the conflicting authorizations together. This is due to the
possibility of relationship among conflicts [10], and yield-
ing different results when the sequence of pairwise conflict
resolution changes.

The remainder of this paper is organized as follows.
Some major works regarding conflict detection and reso-
lution are surveyed in section 2. In section 3, a typical
context-aware authorization policy model leveraging a for-
mal definition of context is presented. The context-aware
conflict detection and resolution scheme based on the men-
tioned policy model is proposed in section 4. Section 5 con-
cludes the paper.

2 Related Work

Jojodia et al in addition to positive/negative precedence,
provide an approach that states nothing takes precedence
[9]. In this manner the final result is equivalent to the
case where no authorization had actually been specified.
They also handle principles like “more specific overrides”
through different derivation schemes along subject hierar-
chies.

Lupu et al studied conflicts in authorization and oblig-
ation policies [10]. The notion of domains was used as a
means of grouping objects in specifying policy scope and
policy propagation form domains to sub-domains. They dis-
cussed modality conflicts among authorization and obliga-
tion policies, and application specific conflicts such as con-
flict of duties. They defined specificity related to domain
nesting as an equivalent for “more specific overrides” prin-
ciple.

In [6] four possible approaches are considered for the
process of conflict resolution. In pessimistic approach both
potential and actual conflicts are resolved at compile-time,
while in opposite, optimistic approach does the all at run-
time. In the balanced alternative, actual conflicts are re-
solved at compile-time and potential ones remain to run-
time. Another alternative is deciding to resolve each con-
flict individually based on its likelihood of occurring and
cost of resolution.

Ruan et al addressed conflict resolution in presence
of authorization delegation through a formal graph based
framework [14]. In [3], authors proposed a method that
used event calculus in conjunction with abductive reason-
ing to perform a priori analysis of policy specification and
detect conflicts statically.

Syukur et al investigated policy conflict resolution in per-
vasive computing environments [17]. They discussed differ-
ent timing strategies for conflict detection: static, reactive,
proactive, and predictive. However their conflict resolution
techniques seems too limited.

Al-Kahtani et al used the notion of dominance between
authorization rules in their attribute-based user-role assign-
ment model [1]. Dominance in their work is somehow the
reverse notion of context-based specificity in our approach.
However, it supports a limited concepts such as ordinal at-
tributes and is used to induce seniority among authoriza-

2



tions in order to construct the induced role hierarchies.

3 Context-Aware Authorization Policy
Model

In this section we provide a typical policy model which
supports context-aware authorization. It intends to serve as
a typical model in order that the conflict resolution scheme
be general enough to support a wide range of context-aware
authorization systems. It is proposed as a rule-based model
in which rules, roughly correspond to authorizations, are
defined in terms of some constraints on the contextual in-
formation.

3.1 Context Definitions

In order to formalize the use of contextual information in
the model, some definitions regarding context are provided.

Definition 1 (Context Predicate) A context predicateis a
4-ary tuple (subject, type, relater, object).

Subjectis an entity with which the context is concerned,
typerefers to the type of context the predicate is describing,
and object is the value related to the subject through the
relater. For example, (Bob, location, entering, Conference-
Room) states that Bob is entering the conference room, or
(John, position, is, secretary) expresses John’s position. The
basic idea of such context predicates has been adopted from
Gaia project which provides the infrastructure for construct-
ing smart spaces [13]. It is supposed that there is a means
to verify a context predicate in the actual environment. This
can be performed by a context infrastructure or a separate
component in the system architecture usually called context
inference engine. A context predicate is satisfied if it is ver-
ified as correct.

Definition 2 (Context Constraint) A context constraintis
a set of context predicates.

In fact, a context constraint is interpreted as logical conjunc-
tion of its predicates. It is satisfied if all its context predi-
cates are satisfied. An empty context constraint, which is
denoted by∅, is satisfied by default. A context constraint
can descriptively express a situation based on context infor-
mation. For instance,

{(Bob, location, entering, ConferenceRoom),
(ConferenceRoom, social activity, is, presentation)}

expresses that bob is entering the conference room in which
a presentation is carried out.

Since one of the most preferable principles to establish
precedence is “more specific overrides”, we provide the de-
finition of specificity based on context predicates and con-
straints. For example, a predicate stating that the age of the
user must be over 30 should be considered more specific
than a predicate expressing the age of the user must be over
20.

Definition 3 (More Specific Context Predicate)Context
predicatep1 is more specificthan context predicatep2,
denoted byp1 <MS p2, if they both have equal subject and
type, andp2 is inferable byp1; i.e. whereverp1 is satisfied,
p2 is also satisfied.

Several approaches can be employed to perform the re-
quired inference, i.e.p1 → p2. A simple approach is us-
ing a knowledge base and a rule-based inference mecha-
nism. For instance, in order to infer the previous example,
i.e. (user, age, >, 30) <MS (user, age, >, 20), leveraging
a rule such as the following yields the required result:

(S, T,>, O1) ∧ O1 > O2 → (S, T, >, O2)

The specificity regarding context constraints is defined
as follows.

Definition 4 (More Specific Context Constraint) context
constraint c1 is more specificthan context constraintc2

regarding a tuple(s, t), denoted byc1 <s,t
MS c2, if c1

contains a predicate, which its subject iss and its type is
t, and eitherc2 does not have a predicate with the same
subject and type or if it has such one, thec1’s predicate is
more specific thanc2’s.

For example, let C1 = {(user, age, >
, 20), (user, location, in, class A)} and C2 =
{(user, age,≥, 30)}. Therefore, we haveC2 <user,age

MS C1,
andC1 <user,location

MS C2. Note that the simplicity of con-
straint definition makes the specificity relation convenient
and straightforward.

3.2 Policy Model

Authorization policy is actually a collection of authoriza-
tion rules, briefly termed as authorizations.

Definition 5 (Authorization) An authorizationis a tuple
(sign, condition).

Thesigncan be either “+” to state a positive authorization
or “−” to declare a negative one. Thecondition is a con-
text constraint that specifies the situation at which the au-
thorization is active. A typical access request contains three
components:object is the protected entity to be accessed;
subject is the entity who requests for access; andaction
is requested by the subject to be performed on the object.

3



NotationsSBJ, OBJ, andACT may be used respectively to
address those components in order to describe the desired
condition of an access request for an authorization. For in-
stance, the authorization below prohibits a user to access a
confidential or higher classified document remotely:

(−, {(SBJ, connection− type, is, remote),
(OBJ, type, is, document), (OBJ, class,≥, confidential)})

Note that since no predicate is expressed for action, this au-
thorization is considered for all requests regardless of re-
quested action.

The condition of the authorization might seem somewhat
limited in the way that it does not allow disjunctions. How-
ever, since all policy authorizations whose condition is sat-
isfied are active an enforceable in an access situation, the
enforced policy is considered as the disjunction of all ac-
tive authorizations. In order to state an authorization with a
disjoint conditionA∨B, two authorizations, one with con-
dition A and one with conditionB and both with the same
sign, should be defined. The mentioned limitation facilitates
conflict resolution based on context which in its absence can
be quite complicated and costly.

Since many context-aware environments such as per-
vasive computing environments are inherently distributed,
centralized authorization management is not practical. So,
in order to support decentralized authorization, the policy
model supports multiple authorities. Each authority is ca-
pable of defining policy for a restricted virtual space called
authority space.

Definition 6 (Authority Space) An Authority spaceis de-
fined and limited by a context constraint.

Within an authority space, an authority defines its policy
using authorization rules. Based on the current context, an
authority space restricts the subjects, objects, and actions on
which policy can be defined or the situation when it is ap-
plicable. Actually, an authorization defined by the authority
is enforceable when both authority space constraint and au-
thorization condition are met.

The authorities are organized as follows. There is a
global authority which its authority space has no constraint.
An authority can create several sub-authorities within a
more restricted authority space than itself has; the creator’s
authority space constraint is enclosed in the constraint of
the new authority space. Actually, an authority delegates
the policy specification responsibility to the sub-authority
restricted to its authority space constraint. Note that the
authority spaces of sub-authorities are not necessarily iso-
lated; they can overlap each other. In this manner, authori-
ties form a tree structure such that its root is the aforemen-
tioned global authority, and each authority is the parent of
the authorities which it has created. The authority space of a

child is necessarily more restricted than the parent’s. Also,
two or more different authority spaces even in different lev-
els of the tree may overlap. The proposed approach sup-
ports maximal independency for authorities in specification
of their policy. It also facilitates the distribution of conflict
detection and resolution. Fig. 1 illustrates an authority hier-
archy. Note that although authority space of the three users
is contained in the authority space of the presenter, they are
considered as sub-authorities of the room manager.

4 Conflict Detection and Resolution

A conflict arises when the objectives of two or more ac-
tive policies can not be simultaneously met. Conflicts in
the rule-based authorization policy model of section 3 may
arise among different authorizations.

Definition 7 (Conflicting Authorizations) Two or more
authorizations areconflicting in a situation if their condi-
tion elements are satisfied and they have conflicting sign
elements; i.e. some have “+” and the others have “−”
sign.

Furthermore, in a conflict situation, different involved au-
thorities may have conflicting decisions for an access re-
quest. Organizing authorities in a tree structure, as de-
scribed in section 3.2, provides a reasonable way to resolve
the conflicts among the different authorities. The decision
of a parent authority overrides the decisions of its children.
Thus an authority can resolve the conflicts among its sub-
authorities and its own authorization rules to make its fi-
nal decision. The resolution is done according to resolu-
tion policies which are defined by the authority based on
the aforementioned principles in a context-aware manner.
The resolution is formally defined in section 4.2.

The principles for establishing precedence among au-
thorizations may seem inappropriate for resolving conflicts
among sub-authorities. Therefore, in addition to use of
those principles, each authority can define a context-aware
seniority relation among its sub-authorities.

Definition 8 (Seniority Rule) A seniority rule is a triple
(condition, SA1, SA2). It states that if the context con-
straint conditionis satisfied, then sub-authoritySA1 is se-
nior to sub-authoritySA2; i.e. sub-authoritySA1’s deci-
sion overrides sub-authoritySA2’s.

Note that leaving the condition of a rule empty makes it ac-
tive constantly; i.e. imposes a strict seniority. The seniority
relation in an authority is comprised of multiple seniority
rules.

4.1 Conflict Detection

We express the formalism of our approach through
graphs to make it more comprehensible. Forming apoten-

4



Global

RoomManager {(SBJ,location,in,room), (OBJ,location,in,room)}

Presenter {(OBJ,type,realates,presentation)}

Global

RoomManager

Presenter User1 User2 User3

(a) (b)

User1 
{OBJ,owner,
is,User1}

User1 
{OBJ,owner,
is,User2}

User1 
{OBJ,owner,
is,User3}

Figure 1. Sample authority spaces (a), and their corresponding authority hierarchy (b)

tial conflict graph, an authority detects potential conflicts
and investigates possible precedence relations among its au-
thorizations. As mentioned in section 3.2 an authority is re-
sponsible for resolving conflicts among its sub-authorities
in addition to its defined authorizations. In order to increase
the consistency of the graph, in the decision situation for
a specific access request, a sub-authority is considered as
a single authorization: context constraint of sub-authority
space as its condition, and its determined decision for the
request as its sign.

Definition 9 (Potential Conflict Graph) Potential conflict
graphis a multi graph in which each vertex corresponds an
authorization or a sub-authority. Each edge in the graph
represents an overriding relation between two vertices and
is labeled with the relations’s symbol.

Possible relations corresponding to an edge from vertexa1

to a2 include

• <s,t
MS , for different values of subjects and typet,

if and only if a1 and a2 have conflicting signs and
a1.condition <s,t

MS a2.condition

• NoP , if and only if a1 is a negative authorization and
a2 is a positive one

• >S , if and only if there is a seniority rule(c, a1, a2)
and conditionc is satisfied

Overriding relations, presented by labels, can be extended
to include more details or complicated context of autho-
rizations such as relation about time of authorization defi-
nition. In practice, since there can be various relations of
type <s,t

MS , considering different values for subjects and
typet, it is better to limit the subject and types on which the
relation is definable.

Also, note that a reverse relation for each relation is sup-
posable. For instance, for each more specific relation we

can assume a more general relation in reverse. Those re-
lations are not mentioned in the graph due to redundancy
issues. Whenever needed, the reverse of relationα is de-

noted byα−1. For instance, relation<SBJ,location
MS

−1
states

a more general location context for subject, or relation
NoP−1 expresses that a positive authorization overrides a
negative one.

4.2 Conflict Resolution

In order to define how the conflicts in an authority space
should be dealt with, in an expressive and context-aware
manner, the notion ofresolution policyis introduced.

Definition 10 (Resolution Policy) Resolution policyis a
subset of possible relations’ symbols in the potential con-
flict graph or their reverses.

Resolution policy can be considered as a group of prece-
dence relations; i.e. if all relations corresponding to sym-
bols in a resolution policy exist from authorizationa1 to
a2, thena1 overridesa2. For instance, resolution policy
{<SBJ,location

MS , <OBJ,location
MS } states that for each two au-

thorizations, if the first authorization specifies more spe-
cific location context condition for subject and object then it
overrides the second authorization. An advantage of utiliza-
tion of different relations in a resolution policy is the abil-
ity of combining different precedence establishment princi-
ples. For example,{<ACT,type

MS , NoP} expresses that neg-
ative authorizations with more specific action types precede
positive authorizations.

An authority is capable of expressing its conflict resolu-
tion policy using aresolution policy sequence.

Definition 11 (Resolution Policy Sequence)Resolution
policy sequenceis a total order of some resolution policies.
The last resolution policy in the sequence must be either
{NoP} or {NoP−1}.

5



The conflict resolution is a step by step process. Sequen-
tially, at each step, a resolution policy from resolution pol-
icy sequence is selected to resolve remaining conflicts; until
no conflict remains. As defined, the last resolution policy
must state that either negative or positive authorization pre-
cedes. That way, it is assured that existing conflicts in an
authority space are resolved eventually.

In an actual conflict situation, anactual conflict graphis
constructed from the potential conflict graph.

Definition 12 (Actual Conflict Graph) Actual conflict
graphis a multi graph extracted from the potential conflict
graph which is composed of vertices corresponding to
conflicting authorizations at the actual conflict situation
and their corresponding edges; i.e. by eliminating those
vertices whose corresponding authorizations are not in
conflict.

Actual conflict graph is then pruned according to the res-
olution policy sequence; Sequentially a resolution policy is
selected and the correspondingfiltered graphis constructed.

Definition 13 (Filtered Graph) Let AG be an actual con-
flict graph andR be a resolution policy. Thefiltered graph
FGAG,R is a single graph in which

• there is a vertex for each vertex inAG, and

• there is an unlabeled edge from vertexa1 to vertexa2

if

– for every relation’s symbol inR, an edge exists
in AG from a1 to a2 with the same symbol as its
label, and

– for every reverse notation of relation’s symbol in
R, an edge exists inAG from a2 to a1 with the
same symbol as its label.

Constructing the filtered graph, the actual graph is pruned
by omitting vertices corresponding to non-root vertices in
the filtered graph. The enforcing of resolution policies is
continued until no conflict exists. Enforcing last resolution
policy according to the definition, eventually resolves either
negative or positive authorization.

Let us illustrate the approach through a simple example.
Consider Fig. 2.a as an actual conflict graph constructed in a
conflict situation by omitting non-conflicting vertices. If we
use the resolution policy{<SBJ,location

MS }, the filtered graph
in Fig. 2.b would be constructed. Using this graph to prune
the actual conflict graph, all non-root vertices in filtered
graph, i.e.a1, a3, anda4 must be deleted from the actual
graph. If we use resolution policy{<SBJ,location

MS , NoP}
instead, the filtered graph in Fig. 2.c would be constructed.
Accordingly, only vertexa3 will be omitted from the actual
conflict graph.

4.3 Timing Strategy

Factually speaking, the conflict resolution process is a
computationally intensive and time consuming task. Con-
flicts can be detected and resolved either statically at com-
pile time, or dynamically at run time. But due to its cost,
it is more preferable to be done statically [6]. Conflict
resolution in a context-aware authorization system is even
more complicated; determination of context specificity rela-
tions among authorizations requires inference power which
is computationally intensive. The strength of the proposed
scheme in this paper is that conflict detection can be per-
formed almost statically, and the resolution process is left
for run time.

A potential conflict graph is maintained for each author-
ity which can be performed as statically as possible to con-
siderably reduce the cost of conflict resolution. This can
be done when policy is modified; i.e. when adding, delet-
ing, and updating authorizations. The reason is that the
frequency of policy modification is generally far less than
the frequency of arising conflicts in a context-aware pol-
icy at run time. Almost all overriding relations among au-
thorizations and sub-authorities are determinable at com-
pile time. Exceptions are those relations pertaining to the
sign, e.g. NoP, between two sub-authorities or between a
sub-authority and an authorization. Undoubtedly, those re-
lations should be checked at run time if necessary.

4.4 Algorithms

In this section we provide detailed algorithms to imple-
ment our conflict resolution. We also provide the computa-
tional complexity of the algorithms in whichN is the max-
imum number of vertices in a conflict graph, andL is the
number of possible edge labels. Actually,N is the number
of authorization rules that an individual policy administra-
tor considers and probably is not very high. However, the
number of possible edge labelsL should be limited for the
scheme to be practical.

Potential conflict graph can be maintained statically. Al-
gorithm 1 demonstrates how to update the potential conflict
graphPG when a new authorizationA is defined by author-
ity. First, a vertex corresponding to the new authorization
is added toPG. Then, for each vertex ofPG exceptA,
existence of different types of relations between the vertex
andA is checked. Then, for each vertex ofPG exceptA
and for each possible label checks if the relation notated by
the label holds between corresponding authorizations of the
vertex andA. The complexity of the algorithm isO(LN).

Algorithm 2 is used to create a filtered graph from the
actual conflict graphAG based on the resolution policyR.
It first copies the vertices ofAG to FGAG,R and initializes
the edges ofFGAG,R to null. Then it checks for every two

6



a1

-
a2

+

a3

+
a4

-

NoP

NoP

NoP

NoP

<MS
SBJ, location

<MS
SBJ, location

<MS
SBJ, location <MS

SBJ, location

<MS
OBJ, type

<MS
OBJ, type

a1

-
a2

+

a3

+
a4

-

a1

-
a2

+

a3

+
a4

-
(a)

(b)

(c)

Figure 2. Sample actual conflict graph (a), and its corresponding filtered graphs regarding resolution
policy {<SBJ,location

MS } (b), and resolution policy {<SBJ,location
MS , NoP}(c)

Algorithm 1 UpdatePotentialGraphAddAuth(PG, A)

Input: potential conflict graphPG = (V, E), newly added
authorizationa
Output: updated potential graphPG

1: V ← V ∪ {A}
2: for eachv ∈ V \{A} do
3: for eachα ∈ PossibleRelationSymbols do
4: if v.sign 6= A.sign then
5: if v.condition α A.condition then
6: E ← E ∪ {(v, A, α)}
7: end if
8: if A.condition α v.condition then
9: E ← E ∪ {(A, v, α)}

10: end if
11: end if
12: end for
13: end for

possible vertices inAG, according to the resolution policy
R, if one of them overrides the other. The complexity of the
algorithm isO(LN2)

Algorithm 2 CreateFilteredGraph(AG, R)

Input: AG = (V, E), and resolution policyR
Output:FGAG,S = (V

′
, E

′
)

1: V
′ ← V

2: E
′ ← ∅

3: for each two different verticesa andb in V do
4: Lab ← {l | (a, b, l) ∈ E}
5: Lba ← {l | (b, a, l) ∈ E}
6: Sr ← {α | α−1 ∈ R}
7: S ← R \ Sr

8: if S ⊆ Lab ∧ Sr ⊆ Lba then
9: E

′ ← E
′ ∪ {(a, b)}

10: end if
11: if S ⊆ Lba ∧ Sr ⊆ Lab then
12: E

′ ← E
′ ∪ {(b, a)}

13: end if
14: end for

Algorithm 3 resolves the conflicts in an actual conflict
graphAG using resolution policy sequenceRS and results
the final decisionD. The algorithm sequentially selects
the next resolution policy and uses it to construct the fil-
tered graph ofAG. It then keeps only those vertices ofAG
whose corresponding vertices inFG have no input edges,
i.e. those authorizations which are not overridden by oth-
ers according to current resolution policy. The edges corre-

7



sponding to deleted vertices are also removed. The iteration
stops when no conflict remains among authorizations, i.e.
AG has no edges. Note that if an edge inAG means the
existence of a conflict. Finally, the sign of one of the autho-
rizations corresponding to one vertex is returned as result.
The complexity of the algorithm isO(mLN2) wherem is
the number of resolution policies in the resolution policy
sequenceRS.

Algorithm 3 ResolveConflicts(AG, RS)
Input: actual conflict graphAG = (V, E), and resolution
policy RS = (S1, S2, . . . , Sm)
Output: resolved signD

1: for i ← 1 to m do
2: if E = ∅ then
3: break
4: end if
5: FGAG,Si

= (V
′
, E

′
) ← CreateFilteredGraph(AG,

Si)
6: V ← {b ∈ V | 6 ∃(a, b) ∈ E

′}
7: E ← {(a, b, l) ∈ E | a ∈ V ∧ b ∈ V }
8: end for
9: D ← V [0].sign

Note that the algorithm resolves conflicts in an author-
ity. The overall conflict resolution procedure is a recur-
sive process in which an authority requires determination
by its involved children authorities and resolves the pos-
sible conflicts; The process is continued until no conflict
exists among involved authorities. Since the depth of the
authorization hierarchy which is the different administra-
tion levels and restricted in nature, It can be inferred that
the overall complexity of the resolution scheme is bounded
to a constant factor of resolution Algorithm 3.

5 Conclusion

In this paper, we formalized conflict detection and res-
olution in a context-aware authorization system. A typi-
cal context-aware authorization policy model is presented
leveraging formalized context constraints. Specificity rela-
tions concerning contextual information are discussed and
formally defined. Then, a novel graph-based approach is
proposed to enable precedence establishment among autho-
rizations in a conflict situation. The method is capable of
using expressive resolution policies based on context and
considers all authorization in a conflict situation as a whole.
In the detection phase, a potential conflict graph is con-
structed, which is almost statically performable. Leverag-
ing this graph in the actual conflict situation provides cost-
effective context-based conflict resolution. In addition, tim-
ing strategy and detailed algorithms are provided and ana-
lyzed.

References

[1] M. A. Al-Kahtani and R. S. Sandhu. Induced role hierarchies
with attribute-based rbac. In8th ACM Symposium on Access
Control Models and Technologies (SACMAT), pages 142–
148, Como, Italy, 2003. ACM.

[2] J. Al-Muhtadi, A. Ranganathan, R. H. Campbell, and M. D.
Mickunas. Cerberus: A context-aware security scheme for
smart spaces. InFirst IEEE International Conference on
Pervasive Computing and Communications (PerCom 2003),
pages 489– 496, Fort Worth, Texas, USA, 2003. IEEE Com-
puter Society.

[3] A. K. Bandara, E. C. Lupu, and A. Russo. Using event
calculus to formalise policy specification and analysis. In
4th IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY 2003), pages 26–39, Lake
Como, Italy, 2003. IEEE Computer Society.

[4] D. F. C. Brewer and M. J. Nash. The chinese wall security
policy. In 1989 IEEE Symposium on Security and Privacy,
pages 206–214, 1989.

[5] A. K. Dey. Understanding and using context.Personal and
Ubiquitous Computing, 5(1):4–7, 2001.

[6] N. Dunlop, J. Indulska, and K. Raymond. Methods for con-
flict resolution in policy-based management systems. In7th
IEEE International Enterprise Distributed Object Comput-
ing Conference, pages 98–109, Brisbane, Australia, 2003.
IEEE Computer Society.

[7] V. Gligor, S. Gavrila, and D. Ferraiolo. On the formal defin-
ition of separation of duty policies and their composition. In
1998 Symposium on Security and Privacy, pages 172–183,
1998.

[8] W. Han, J. Zhang, and X. Yao. Context-sensitive access
control model and implementation. InFifth International
Conference on Computer and Information Technology (CIT
2005), pages 757–763, Shanghai, China, 2005. IEEE Com-
puter Society.

[9] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical
language for expressing authorizations. InIEEE Symposium
on Security and Privacy, pages 31–42, Oakland, CA, USA,
1997. IEEE Computer Society.

[10] E. Lupu and M. Sloman. Conflicts in policy-based distrib-
uted systems management.IEEE Transactions on Software
Engineering, 25(6):852–869, 1999.

[11] A. R. Masoumzadeh, M. Amini, and R. Jalili. Context-aware
provisional access control. In2nd International Conference
on Information Systems Security, volume 4332 ofLecture
Notes in Computer Science, pages 132–146, Kolkata, India,
2006. Springer Verlag.

[12] F. Rabitti, E. Bertino, K. Won, and D. Woelk. A model of
authorization for next-generation database systems.ACM
Transactions on Database Systems, 16(1):88–131, 2001.

[13] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell, and K. Nahrstedt. A middleware infrastructure
for active spaces.IEEE Pervasive Computing, 1(4):74–83,
2002.

[14] C. Ruan and V. Varadharajan. A formal graph based frame-
work for supporting authorization delegations and conflict
resolutions. International Journal of Information Security,
1(4):211–222, 2003.

8



[15] P. Samarati and S. De Capitani di Vimercati. Access con-
trol: Policies, models, and mechanisms. InFoundations
of Security Analysis and Design (FOSAD), pages 137–196.
Springer, 2001.

[16] R. S. Sandhu and P. Samarati. Access control: Principles
and practice.IEEE Communications Magazine, 32(9):40–
48, 1994.

[17] E. Syukur, S. W. Loke, and P. Stanski. Methods for pol-
icy conflict detection and resolution in pervasive computing
environments, May 10-14 2005.

[18] R. K. Thomas and R. S. Sandhu. Models, protocols, and ar-
chitectures for secure pervasive computing: Challenges and
research directions. In2nd IEEE Conference on Pervasive
Computing and Communications Workshops (PerCom 2004
Workshops), pages 164–170, Orlando, FL, USA, 2004.

9


	Text1: Submitted to the Third IEEE Symposium on Security in Networks and Distributed Systems (SSNDS-07), Niagara Falls, Canada, May 21-23, 2007.


