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Abstract: Speech technology is one of the key technical issues involved in 
Information Technology as it constitutes an important aspect of Human Computer 
Interaction. Prediction of speech signal has applications in speech technology, 
especially in coding. Conventionally linear prediction is used. However, non-linear 
phenomena exist in speech production. Therefore, considering this non-linearity 
should lead to lower signal dynamics during coding with a consequent reduction in 
bit-rate and the needed bandwidth. This is studied in this paper using Feed Forward 
and Recurrent Neural Nets. It is shown through different evaluation schemes that the 
speech non-linearity is negligible and that non-linear speech prediction does not lead 
to an appreciable further reduction in the residual signal to be coded. 
 

1. Introduction 
 
The prediction of speech has applications in speech technology i.e. speech 
recognition, synthesis and coding. Linear prediction is used conventionally to reduce 
the redundancy of speech signal and decrease the bit-rate in coding. The reduction in 
bit-rate is achieved by coding the residual signal i.e. what remains from the speech 
once its predictable part has been removed. However, it is known that radiation 
effects from the lips and turbulences of the air flow from the lungs cause non-linear 
phenomena in speech production [1]. Therefore, considering the non-linearity in 
speech prediction is believed to result in lower dynamics of the residual signal to be 
coded. The non-linear prediction of speech can be achieved using Artificial Neural 
Nets. 
 
2. Artificial neural nets and non-linear prediction.  
 
Neural nets have been used extensively in non-linear problems for which an optimum 
explicit solution can not be found; among them non-linear prediction [2]. One reason 
for the popularity of the neural nets is the mere fact that they can automatically 
generate an optimum solution if it exists. The second one is the high speed of 
execution. Maybe finding the solution is time consuming, during training, but 
applying it, specially using parallel processing, is quite fast [3]. 
Hundreds of structures have been proposed for neural nets [4],[5]. However, from the 
structural point of view, these structures can be divided into two main groups: Feed 
Forward Neural Nets (FFNN) and Recurrent Neural Nets (RNN). In FFNNs, the 
mapping between the input and output remains unchanged once the training is 
completed and the output is calculated given the input regardless of the preceding and 
following states of the network; in other words the network is stationary. On the other 
hand, RNNs and among them Hidden Markov Models (HMM) and Hopfield 
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networks are non-linear dynamic nets because of the presence of cyclic connections 
with their own complexity.  
In most problems it is convenient to use multi-layer FFNNs (MLFN), due to their 
simplicity, when supervised learning is possible. In our study, MLFNs both with and 
without cyclic connections have been used. This choice was influenced by the fact 
that MLFNs can be used with and without direct connections from the first to the last 
layer [2], so permitting linear and non-linear Auto Regression (AR) modeling whilst 
the same structure with cyclic connections can be viewed as non-linear Auto 
Regression Moving Average (ARMA) modeling [6]. 
 
2. Non-linear prediction of the speech residual signal. 
 
It is usually suggested that all linear trends of the input be removed before it is 
applied to a neural net. So doing will reduce the computation load leaving the neural 
net to extract the non-linear correlation left in the input. This can be done explicitly 
by calculating the linear prediction coefficients and the excitation signal and using 
this signal as the input of an MLFN or, implicitly by loading the calculated values as 
the fixed weights of the direct connections between the first layer neurons and the 
single neuron of the last layer of the network, as shown below, where the speech 
waveform is input to the structure arranged as Time Delay MLFN (TD-MLFN).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: TD-MLFN with direct connections between the first and last layer. 
 
Alternatively, instead of loading the pre-calculated linear prediction coefficients as 
weights of the connections shown above as dashed lines, the net can be let to 
calculate them in combination with all other weights. This is linear and non-linear 
prediction combined. When the network is to carry both linear and non-linear 
prediction, the neuron in the last layer must have a linear characteristic instead of the 
usual Sigmoid or Tansigmoid function. 



 
3. The speech prediction using the TD-MLFN structure. 
 
Generally speaking, the input of a neural net is a spatial pattern i.e. a vector of values. 
However, in some applications such as in speech processing, the input pattern is 
composed of values with temporal continuity. A conventional method for 
transforming this temporal signal into an input vector is to use a tapped delay line as 
shown in figure 1. When the prediction of the input signal is the issue, the output of 
the TD-MLFN is z(t)=x(n+1) where the network carries the prediction of the input 
one sample interval ahead. When the desired output is x(n+p), the prediction is for the 
pth interval ahead in time. 
 
4. The back propagation training algorithm and its generalization. 
 
The well known BP algorithm used for training of FFNNs can be generalized for 
training of MLFNs that include connections between a layer and any layer above it. 
This is shown as an example in [4]. The generalization of the BP algorithm to 
recurrent networks is given in [7]. This generalization as outlined in [4] has been used 
in this work. Other recurrent algorithms exist and can be found in [6].  
The BP algorithm is the basis of training algorithm used in MATLAB NN Toolbox 
whose routines have been extensively used in our work. Nevertheless, we developed 
our own package of routines in Visual C++ using this algorithm and its 
generalizations mainly, to overcome the limitations of recurrent routines in MATLAB 
that are rather approximations. 
 
4.1 The selection of the best training algorithm. 
 
Many different variants of the BP algorithm exist for the training of simple MLFNs. 
Choosing the best algorithm is difficult and depends on many factors such as the 
network complexity, the number of samples in the training set, the initializations of 
weights and biases etc. MATLAB suggests the Levenberg-Marquardt (LM) algorithm 
as the best for networks with less than 100 eights [8]. This algorithm has been used 
here in batch training mode when using MATLAB Toolbox. The incremental training 
mode was not used because of its low speed. Batch Gradient Descent with Momentum 
was the method used for training in our developed package. In all cases the mean 
square error has been used as the optimization criterion. 
 
4.2 Initialization. 
 
When using MATLAB, the Ngugen-Widrow algorithm [ ] has been used for 
initialization. This algorithm is known to initialize the weights and biases so that 
fewer neurons are left inactive in the network and all neurons participate efficiently, 
increasing the speed of processing. The random initialization has been used in our 
package for simplicity. 
 
4.3 Overtraining and the ways to avoid it. 
 
One of the problems encountered during training is over-training or over-fitting. In 
this condition, the error in the training set is very low but when new data are 



employed the output error increases. In this situation the network is not generalized 
for new inputs. One of the methods used to avoid this problem is early stopping. 
 
4.3.1 The early stopping of the training phase. 
 
In this method the available data is divided in three sets: Training, validation and test. 
The training set is used for calculating weights and gradients during training. The 
validation set is also used during training and the error is calculated for this set 
although it is not used for network calculation. In normal conditions, continuing the 
training will reduce both the training set and the validation set errors but, when over-
fitting is occurred the error for the validation set starts to grow. That is when training 
should be stopped. Naturally, the test set is only to assess the performance of the 
network once it is trained. 
Early stopping has been used in this work. 
 
5. Post-regression analysis of results. 
 
The performance of a trained network can be assessed considering the errors 
corresponding to the above three sets. However, a regression analysis can be applied 
between the actual and the desired outputs. A linear regression is sought and the 
analysis is carried out calculating three parameters; namely m,b,r. The parameters m 
and b are respectively the slope and the distance from the zero origin in the best linear 
regression if there is any. If the network performs ideally m=1 and b=0. The 
parameter r is the correlation coefficient between the desired and actual output of the 
net. If r=1 then there is a complete correlation between the two. 
 
6. The data-base. 
 
The waveforms of phrases and words uttered by two male speakers were recorded at 
11 and 22 KHz sampling frequencies and digitized with 8 and 16 bits. Then words 
were segmented into syllables to be saved in separate files as items of our data-base. 
The phonetic description of the files’ contents and other characteristics such as the 
speaker code and the code of microphone used were attached to each file. A search 
engine permits to extract all files with a specific phonetic content and other needed 
characteristics such as the sampling frequency or bit representation for different 
experiments. 
 
7. The experimental results. 
 
The results obtained using TD-MLFNs are first reported. It is therefore assumed that 
this is the network used unless otherwise specified.  
Since the initialization of network parameters was random it was necessary to repeat 
each experiment many times to ensure that local optimizations were avoided and a 
correct solution was achieved. When assessing the performance of the net on different 
inputs, such as in generalization, each experiment was repeated ten times and the best 
result saved for later comparison with similar experiments with other inputs. 
 
7.1 Determining the network structure and dimension. 
 



One of the important issues in neural computing is the selection of appropriate 
network structure and dimension. This problem has been dealt with in the literature. 
The following points are used usually as guidelines [3]. 

1- Use only one hidden layer. There are very few cases where using more than 
one hidden layer leads to better results. More than two hidden layers is not 
justified theoretically. 

2- Use as few as possible neurons in different layers. Start with very few e.g. 3 
and increase the number if necessary. 

In some neural structures like TD-MLFNs, used for processing of speech signals, the 
correlation between input samples and other information such as the sampling 
frequency can be used for determining the minimum number of neurons needed in the 
first layer called also the sensors layer.     
As for the speech signal sampled at almost twice the maximum frequency (i.e. 8 to 10 
KHz), it is well known that considering neighboring samples more than 10 samples 
distant does not produce further reduction in the linear prediction error suggesting that  
the correlation drops to negligible value after 9 to 10 samples [9]. Therefore, from the 
point of view of the net’s dimension, the 9-3-1 structure seemed appropriate to start 
with. 
 
7.1.1 The optimum structure. 
 
For input speech sampled at 11 KHz increasing the number of neurons in the hidden 
layer from 3 to 4 resulted in reducing the output error in most cases. But, for speech 
sampled at 22 KHz this reduction was insignificant. Increasing the number of neurons 
in the input layer from 9 to 15 reduced the output error for 11 KHz speech but again, 
this reduction was much less in the case of speech sampled at 22 KHz. It was 
concluded that the 9-3-1 structure was appropriate especially for speech inputs 
sampled at 22 KHz sampling frequency. 
As for the neuron type, specified by the neuron’s excitation function, changing it from 
tansigmoid (tansig) to pure linear (purelin) was without effect on the output. 
Therefore, it was assumed that the network for combined linear- non-linear prediction, 
with linear function for the output neuron, was structurally no different from the non-
linear prediction network making the comparison easier.  
 
7.2 The effect of bit resolution. 
 
The results obtained on 22 KHz speech files at 8 and 16 bit resolutions showed that 
the training errors, for an equal number of training epochs, were very close and the 
network performed almost equally for either resolution. This showed the relative 
immunity of the network to quantization noise, a well known property, at least for 
high sampling frequency. 
 
7.3 The effect of sampling frequency. 
 
Different network structures and inputs with both resolutions were used, trained for 
the same number of epochs, with inputs sampled at 11 and 22 KHz. It was observed 
that a lower output error could be achieved for inputs sampled at 22 KHz as compared 
with those sampled at 11 KHz. This was interpreted as neural nets being capable of 
using more information presented in a wider input bandwidth. 
 
7.4 Comparison of linear and non-linear prediction of speech. 



 
Despite it was hoped that non-linear prediction being more general should result in 
lower output error, the error using a neural net and the linear prediction error 
calculated in a conventional manner were almost equal in all studied cases. This 
suggested that the redundancy in speech signal was mostly linear and non-linear 
prediction did not lead to an appreciable reduction in prediction error. This 
observation can be seen in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Prediction error signals; linear (top) and non-linear (bottom). 

 



 
7.4.1 The non-linear prediction of the speech excitation signal. 
 
When the linear prediction error signal, called also the excitation signal, was used as 
input the network was trained in the first few epochs showing that no further training 
was possible. In all cases the output error was only slightly smaller than the excitation 
input where the peaks were attenuated to some degree.  Results obtained in these 
experiments confirmed what was mentioned earlier that the redundancy in speech 
signal was of a linear nature. This observation was confirmed by the post regression 
analysis as shown in figure 3.  
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3: Post-regression analysis of non-linear prediction of speech excitation signal. 
 

7.4.2 The combined linear – non-linear prediction of speech signal. 
 
The combined linear and non-linear prediction using direct connections from the input 
layer to the output neuron with purelin excitation function led to a slightly lower error 
than the non-linear prediction using neural net. The difference being almost the same 
as in applying the speech excitation signal as input.  
 
7.5 The generalization of the net. 
 
7.5.1 The generalization for the same vowel. 
 
The generalization was carried out first by training a net, for a given vowel, on the 
first of a sequence of files with the same content and using the trained net as the 
starting point for continuing the training with other files in the sequence. The 
procedure was repeated several times by changing the order of appearance of files in 
the sequence. The generalization depended on the set output error. For a moderate 
level of error the generalization was good even for a mixture of files from different 



speakers, resolutions and sampling frequencies. But, for low output errors the network 
did not generalize for 11 KHz speech inputs. Excluding these files permitted good 
generalization on 22 KHz speech files.  
This observation was confirmed when using the early stopping of training as a means 
of controlling the generalization process. It can then be concluded that the 
generalization for the same vowel is quite good for inputs with 22 KHz sampling 
frequency. The bit resolution did not have much effect on this generalization. 
 
7.5.2 The generalization for two or more vowels. 
 
The training procedure was the same as above and two sets of experiments were 
conducted: One using a sequence of different inputs and using a trained net as the 
starting point for the next file and second using the early stopping for controlling the 
generalization. The result was almost the same. The network did not generalize well 
when 11 KHz files were included; but generalization was good with 22 KHz speech 
files. 
 
7.6 Results with recurrent networks. 
 
The experiments reported above were conducted with TD-MLFN in MATLAB. 
Nevertheless, they were confirmed using our own developed package. As for 
recurrent networks, the problem with MATLAB is that all recurrent connections 
include one sample delay and there is no obvious way avoiding these delays if a true 
instantaneous interaction is required. In our developed algorithm loops with and 
without delays were envisaged. Results using MATLAB recurrent nets were first 
confirmed employing our algorithm and then extended to true recurrent nets. 
There was no difference in the above results when simple TD-MLFNs were replaced 
with recurrent substitutes where hidden layer neurons were connected two by two 
together. However, it is important to note that recurrent nets were trained, for the 
same output error goal, in less number of epochs; but because of the nature of the 
algorithm, the training took much longer. 
 
8. Conclusion. 
 
The ensemble of experiments conducted in this work shows that the redundancy in 
speech is of a linear nature and its non-linearity is not significant and does not warrant 
non-linear prediction especially when the linear prediction is conducted pitch 
synchronously where the prediction parameters are calculated for a short pitch period. 
The only advantage of non-linear prediction of speech using neural nets is perhaps its 
generalization power which can be achieved only if the input bandwidth is not limited 
in the sampling process. 
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