

NoSQL Database Systems and their Security Challenges

Morteza Amini amini@sharif.edu

Data & Network Security Lab (DNSL) Department of Computer Engineering Sharif University of Technology

September 2015

12th ISC International Conference on Information Security and Cryptology (ISCISC'15)

Talk Outline

2 / 59

ISCISC 2015

Introduction

3 / 59

ISCISC 2015

Current Trends

The new generation of applications like cloud or Grid apps, Business Intelligence, Web 2.0, Social networking requires storing and processing of terabytes and even petabytes of data

ISCISC 2015

Today

- □ We have...
 - More users
 - More data
 - Interactive apps

The requirements of storage database systems is changed

Relational Database is not suitable Distributed Storage and Processing

NoSQL = **Not Only SQL**

6 / 59

NoSQL vs. Relational Databases

7 / 59

ISCISC 2015

Why relational database is not suitable ?

□ A relational database is a data structure that allows you to link information from different 'tables'

Car	Car					Color	
CarKey	Makel	Key Mode	IKey ColorKey	Year		ColorKey	Color
1	1	1	2	2003		1	Red
2	2	1	3	2005		2	Green
3	2	1	2	2005		3	Blue
M	MakeModel				Make		
M	ModelKey Mak		Model		Make	Make	
1		1	Pathfinder		-	ey Mai	ke
1		2	Bluebird		1	Niss	an
2		1	Civic		2	Hon	ida

8 / 59

ISCISC 2015

Why relational database is not suitable ?

Pros

- Have been well-developed to meet confidentiality, availability and integrity
- Work best with structured data
- Use standard query language

ACID

Very good for small dataset

Why relational database is not suitable ?

Scaling

- Relied on scale up rather than scale out
- Large feature set
- Non-linear query execution time
- Static schema

Reasons for Distributed Storage and Processing

- Take advantage of multiple systems as well as multi-core CPU architectures
- Servers have to be globally distributed for low latency and failover

ISCISC 2015

Characteristics of NoSQL Databases

- NoSQL databases have been designed for solving the Big
 Data issue by utilizing distributed, collaborating hosts to
 achieve satisfactory performance in data storage and retrieval.
- Mostly being non-relational
 - No join / Unstructured data
- Provide great performance, availability, scalability and flexibility
- Distribution, Replication, Failover

NoSQL Trend

Characteristics of NoSQL Databases

- Provide BASE (Basically Available, Soft state, Eventual consistent) system, but not ACID as a Relational Database Management System.
- □ Schema-free
- Easy replication support and running well on clusters
- □ Simple API

ISCISC 2015

14 / 59

Any shared-data system can have **at most two** of these properties

■ AP

CAP Theorem

- Voldemart (Key-value)
- CouchDB (Document),
- Riak(Document)

CA

- Relational databases
- Vertica (column-oriented)
- GreenPlum (Relational)

CP

- BigTable (Column Oriented),
- MongoDB(Document)

15 / 59

ISCISC 2015

Types of NoSQL Databases

16 / 59

ISCISC 2015

NoSQL Data Models

□ There are more than 150 NoSQL databases

17 / 59

ISCISC 2015

Major Companies using NoSQL Databases

Company Name	NoSQL Name	NoSQL Storage Type		
Adobe	HBase	Column		
Amazon	Dynamo SimpleDB	Key-Value Document		
BestBuy Riak		Key-Value		
eBay	Cassandra MongoDB	Column Document		
Facebook	Cassandra Neo4j	Column Graph		
Google	BigTable	Column		
LinkedIn	Voldemort	Key-Value		
LotsOfWords	CouchDB	Document		
MongoHQ	MongoDB	Document		
Mozilla	HBase Riak	Column Key-Value		
Netflix	SimpleDB HBase Cassandra	Document Column Column		
Twitter	Cassandra	Column		

© Fidelis Cybersecurity, 2014

ISCISC 2015

NoSQL Data Models

19 / 59

ISCISC 2015

Key-value Stores

- □ Work by matching keys with values, similar to a dictionary
 - very fast
 - very scalable
 - simple model
 - able to distribute horizontally
- Cons: many data structures (objects) can't be easily modeled key value pairs

Key-value Stores

<key=customerid></key=customerid>				
<value=object></value=object>				
Customer				
BillingAddress				
Orders				
Order				
ShippingAddress				
OrderPayment				
OrderItem Product				

© http://www.thoughtworks.com/insights/blog/nosql-databases-overview

ISCISC 2015

NoSQL Data Models

22 / 59

ISCISC 2015

Column-Wide Stores

 $@\ http://www.thoughtworks.com/insights/blog/nosql-databases-overview$

23 / 59

ISCISC 2015

NoSQL Data Models

24 / 59

ISCISC 2015

Document Stores

<Key=CustomerID> "customerid": "fc986e48ca6" Key "customer": "firstname": "Pramod", "lastname": "Sadalage", "company": "ThoughtWorks", "likes": ["Biking", "Photography"] "billingaddress": { "state": "AK", "city": "DILLINGHAM", "type": "R"

http://www.thoughtworks.com/insights/blog/nosql-databases-overview

ISCISC 2015

NoSQL Data Models

26 / 59

ISCISC 2015

Graph Stores

© http://scraping.pro/where-nosql-practically-used/

27 / 59

ISCISC 2015

Which one is the best?

□ It depends on the application requirements

Size of data
Complexity
CAP theory
Format of data

ISCISC 2015

28 / 59

NoSQL Security Challenges

29 / 59

ISCISC 2015

NoSQL Security

- Most of NoSQL databases do not provide any feature of embedding security in the database itself.
 - Developers need to impose security in the middleware.

Security issues that affected RDBMSs were also inherited in the NoSQL databases as well as new ones imposed by their new features.

NoSQL Security

- Security may be difficult
 - Owing to the unstructured (dynamic) nature of the
 - data stored in these databases
 - Distributed environment
 - Cost of security in contrast to prformance
 - No strong consistency

NoSQL Major Security Challenges

NoSQL Major Security Challenges

Threats Posed By Distributed Environments

Zombie node

Ghost node

- Distributed Environments increase attack surface across several distributed nodes
- Compromised Clients
 - Malicious data gets propagated from a single compromised location
 - Protecting nodes, name servers and those clients becomes difficult especially when there is no central management security point.
 - Vulnerabilities of Gossip based membership protocol in Cassandra and Dynamo [Aniello, et al. 2013]

NoSQL Major Security Challenges

35 / 59

ISCISC 2015

□ Two important challenges:

Possibility: how to define security policies for schema-less or dynamic-schema databases?

Performance: availability vs. access control overhead: how to manage cost of access control?

- □ Fine-grained (row or column level) access control:
 - heterogeneous data is stored together in one database as opposed to relational models which conform to defined schemas and tables that store only related data.
 - Schema-less nature of NoSQL DBs does not allow finegrained access control. We need Looking Forward Security
 - Most of them allow Column Family level authorization.

NoSQL DBMS	Granularity	Explanation
BigTable	Column Family	Using ACL
Cassandra	Column Family	Using IAuthorizer API
HBase	Column Family / Cell	Group-based authorization
Accumulo	Cell	Using Visibility field

□ Fine-grained (row or column level) access control:

38 / 59

ISCISC 2015

□ Fine-grained (row or column level) access control:

39 / 59

Grouping data with the same

ISCISC 2015

Inference Control: Access control on aggregated data, especially in Column-Wide databases and Time-Series databases.

Overlapping Window policies with same permission

ISCISC 2015

40 / 59

Data	1,5,3,77	4,0,7,32	20,34,27,22	1,6,9,3	9,6,10,4	
Max	77		34			
Max		34		10		
	Values <=77	Values <= 34	Values <= 34	Values <=10	Values <=10	
	· · ·			2		
	77 is here		34 is here			
	1 12	?• •,'		24		

- □ Administration / Access Control Management: how and where to grant database accesses
 - Local vs. Global access policies and their possible conflicts.
 - Centralized approach: single-point-of-failure, availability issues
 - Distributed approach: consistency of distributed access rules
 - Semidistributed approach:

□ By default, there is no authorization.

□ Privileged admins can grant the privileges on

resources to a selected user.

□ By default, there is no authorization.

□Provisions authorization on a per--database level

by using a role--based approach.

ISCISC 2015

NoSQL Major Security Challenges

43 / 59

ISCISC 2015

Safeguarding Integrity

- Enforcing integrity constraints is much harder in NoSQL database system
 - Consistency is in contrast with availability and performance
 - **Transactional integrity** is in contrast with its soft nature
- How to define integrity constraints? [its schema-less nature]
- □ Which types of integrity constraints can be defined?
- How to control? [there is absence of central control/ performance and availability issues]

NoSQL Major Security Challenges

45 / 59

ISCISC 2015

Protection of Data at Rest

- □ Encryption is widely regarded as the defacto standard for safeguarding data in storage.
- Most industry solutions offering encryption services lack horizontal scaling and transparency required in the NoSQL environment.
- Only a few categories of NoSQL databases provide mechanisms to protect data at rest by employing encryption techniques.

We need Light Weight Cryptography!

46 / 59

Protection of Data at Rest

Use Transparent Data Encryption (TDE) to protect data that is written to disk.
The commit log is not encrypted at all.

Data files in MongoDB are never encrypted.

NoSQL Major Security Challenges

Users Data Privacy

- Privacy, main challenge of Web 2.0 and Virtual Social Networks.
- Large amounts of user- related sensitive information in NoSQL databases.
- Which kinds of methods is applicable in practice for NoSQL databases?
 - Access Control
 - Encryption

....

49 / 59

Anonymization

ISCISC 2015

NoSQL Minor Security Challenges

- Audit And Logging
- Protection of Data at Motion
- API Security

50 / 59

ISCISC 2015

Authentication

□ By default, there is no authentication.

□ Has Password Authenticator.

cassandra Can further provide Kerberos authentication.

□ By default, there is no authentication.

□ Support for authentication on a per--database level.

Audit and Logging

NoSQL databases has poor logging and log analysis methods

□ Auditing is available in Enterprise Cassandra.

□ Filters are available for logging

□ MongoDB is far behind in implementing the

desired security logging and monitoring.

Protection of Data in Motion

 Communication between clients and nodes (traditional issue)

Communication between nodes

RPC over TCP/IP

Protection of Data in Motion

□Client-Node Communications: By default, is not encrypted. SSL can be configured.

□Inter-Node Communications: By default, is not encrypted. SSL can be configured.

Client-Node Communications: it is required to either

recompile MongoDB with the "--ssl" option.

□ Inter-Node Communications: is not supported.

API Security

- APIs can be subjected to several attacks such as Code injection, buffer over flows, command injection as they access the NoSQL databases.
- Server Side JavaScript Injection (SSJS)
 - Schema injection / Query injection / JSON injection

```
> In PHP:
$query = 'function() {var search_year = \'' .$_GET['year'] . '\';' .
'return this.publicationYear == search_year || ' . ' this.filmingYear
== search_year || ' . ' this.recordingYear == search_year;}';
$cursor = $collection->find(array('$where' => $query));
```

DoS Attacks

http://server/app.php?year=1995';while(1);var%20foo='bar

API Security

56 / 59

ISCISC 2015

Summary

- □ NoSQL Database Systems for unstructured and big data
 - Main features: Performance, Availability, Scalability
- NoSQL Security Challenges:
 - Threats posed by their distributed nature
 - Fine-grained authorization and inference control
 - Integrity constraint definition and control
 - Light weight transparent encryption of data in rest
 - Users' privacy

...

Some References

- [Aniello, et al. 2013] L. Aniello, S. Bonomi, M. Breno, R. Baldoni, "Assessing Data Availability of Cassandra in the Presence of non-accurate Membership", *The 2nd International Workshop on Dependability Issues in Cloud Computing*, 2013.
- [Kadebu, et al. 2014] P. Kadebu, I. Mapanga, A Security Requirements Perspective towards a Secured NOSQL Database Environment, *International Conference of Advance Research and Innovation*, 2014.
- [Noiumkar, et al. 2014] P. Noiumkar, and T. Chomsiri, A Comparison the Level of Security on Top 5 Open Source NoSQL Databases, *The 9th International Conference on Information Technology and Applications*, 2014.
- Fidelis Cybersecurity 2014] Current Data Security Issues of NoSQL Databases, Fidelis Cybersecurity, 2014.
- [Okman, et al. 2011] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes, and J. Abramov, Security Issues in NoSQL Databases, *International Joint Conference of IEEE TrustCom-11/IEEE ICESS-11/FCST-11*, 2011.
- □ [Shermin 2013] M. Shermin, An Access Control Model for NoSQL Databases, *M.Sc. thesis*, The University of Western Ontario, 2013.
- [Ron, et al. 2015] A. Ron, A. Shulman-Peleg, E. Bronshtein, No SQL, No Injection? Examining NoSQL Security, *The 9th Workshop on Web 2.0 Security and Privacy*, 2015.
- [Rong, et al. 2013] C. Rong, Z. Quan, A. Chakravorty, On Access Control Schemes for Hadoop Data Storage, *International Conference on Cloud Computing and Big Data*, 2013.

58 / 59

ISCISC 2015

Thanks for your attention ...

amini@sharif.edu

Thank Ms Dolatnezhad for helping in preparing this presentation.

59 / 59

ISCISC 2015