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Scope and Goals

• Need a suitable transform providing suitable time and 
frequency resolutions.

• Provide us with the frequency of the signals and the 
time associated to those frequencies

• May need different time resolutions for various ranges 
of frequency.

– e.g. higher frequencies require higher time resolutions 
and vice versa.
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Introduction

• From STFT to WT

– Short Time Fourier Transform(STFT) has noticeable 
defects such as:

• Constant time-frequency resolution over all frequencies

• Usage of sinusoid basis functions which extends from 
minus infinity to plus infinity

4
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Introduction

• More robust convolution-based transforms have been 
developed for signal processing that do not have the 
deficiencies of STFT.

• Wavelet Transform (WT) has emerged as a 
powerful tool for time-scale representation of signals.

• A Wavelet Series is a representation of a square-
integrable (real- or complex-valued) function by a 
certain orthonormal series generated by a wavelet. 

• That is, using WT the input signal will be decomposed 
into a series of scaled wavelets that may occur at 
different times.
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Introduction

• Schematically, given a signal and a wavelet:

• The simplified decomposition may look like this:
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Introduction

• A wavelet is a wave-like oscillation with an 
amplitude that begins at zero, increases, and then 
decreases back to zero.

• In this context, scale (on time axis) is the reverse of 
frequency, such that:
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Small scale 

Low frequency

High frequency

Large scale 

Introduction

• Scale gives us some great capabilities such as better 
resolution, possibility of time-dependent denoising, 
etc.

• WT is a linear transform – so it is very well fitted for 
civil engineering applications like modal 
decomposition.

• However, compared to FT and STFT, WT needs a 
rather strong mathematical background.
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Introduction

• A perfect transform in terms of time-frequency 
resolution:

– With additional special properties of the wavelets, the 
resolution in time at higher analysis frequencies of the 
basis function is improved.

– As a result, WT has better frequency resolution in low 
frequencies (high scales), while at high frequencies (low 
scales) the time resolution is more precise, as needed in 
most cases.
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Wavelets

• WT is performed by usage of “Compactly Supported” 
functions known as “Mother Wavelets” as basis 
function rather than infinite sinusoids in FT.

• A function has compact support if it is zero outside of 
a subset of its domain of definition. One meaning of 
compact support is that by compacting the domain, 
we increase the possibility of victory. Compactly 
supported functions refer to functions that in both 
time and frequency domains have finite lengths.
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Wavelets

• Some Mother Wavelets

• Selection of mother wavelet is usually based on input 
signal and the application of the transform.
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• A function could be regarded as wavelet provided 
that:
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• Mother wavelet has zero average in time-domain 
and in order to satisfy admissibility condition, 
wavelet function at zero frequency is equal to zero. 
this means that any wavelet function is a band-pass 
filter in frequency domain.

12



4/26/2014

7

Comparison of WT with STFT

• STFT has constant time-frequency resolution, while 
WT has variable-window resolution which is best fitted 
for signal analysis applications:

– In STFT with a certain time-frequency resolution, we are 
essentially incapable to notice both high and low 
frequency events; however in WT these restrictions do 
not exist.

– Consequently, in WT, a wonderful capability is denoising
the signal regarding a frequency band and certain time; 
on the other hand, filtering using FT does not allow 
different frequency bands at different times.

13

Comparison of WT with STFT

• The usage of “Compactly Supported” mother wavelets 
gives us the opportunity to correlating signal with a 
basis function locally.

– In STFT, basis functions are just multiplication of 
sinusoids by (usually) a Gaussian function. Rather in 
WT, the mother wavelets are generated based on 
diverse mathematical formulations or recursive solving 
of scaling functions

𝜓 𝑥 = 𝐶𝑝𝑒−𝑥2
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠

𝜓 𝑥 = 𝐶𝑒−𝑥2
cos 5𝑥 𝑀𝑜𝑟𝑙𝑒𝑡

𝜓 𝑥 = 𝑓𝑏 𝑠𝑖𝑛𝑐
𝑓𝑏𝑥

𝑚

𝑚

𝑒2𝑖𝜋𝑓𝑐𝑥 𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐵 − 𝑆𝑝𝑙𝑖𝑛𝑒
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Comparison of WT with STFT

• Another advantageous characteristic of wavelets over 
STFT is the possibility of choosing “Complex” basis 
functions rather than real ones as we did in STFT.

– This unique capability enables us to estimate complex 
mode shapes in the case of non-classical damping.

– By choosing complex mother wavelets like “Complex 
Shannon”, “Complex Morlet” we can have both phase 
and magnitude or real and imaginary parts 

15

Comparison of WT with STFT

Fourier Transform  Wavelet Transform
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Numerous analysis structures (more 

customization)

Few analysis procedures

Low computational costsHigh computational costs

Many basis functions Single basis function

Joint time and frequency informationFrequency Information only, time/space 

information is lost

Non-stationary or transient signalsStationary signals
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Continuous Wavelet Transform

where 𝜓∗(.) denotes the complex conjugate of mother 

wavelet 𝜓 𝑡 , and 𝜓
𝑡−𝑏

𝑎
(basis wavelet) is the 

translated and dilated (stretched) version of mother 
wavelet.
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Wavelet
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Continuous Wavelet Transform

• The term 
1

𝑎
has been used in order to normalize the 

energy of this time-scale representation.

• The usage of compactly supported mother wavelets 
gives us the integral over a finite length rather than 
minus infinity to plus infinity as we have in FT.

• Use of mother wavelets with higher vanishing moment 
will increase precision of signal approximation

• The kth moment of a wavelet is defined as:

𝑚𝑘 =  𝑡𝑘𝜓(𝑡)𝑑𝑡

• If 𝑚0 = 𝑚1 = 𝑚2 = ⋯ = 𝑚𝑝−1 = 0, we say 𝜓(𝑡) has 𝑝

vanishing moments   
18
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Continuous Wavelet Transform

• Scalogram of wavelet transform could be produced by 
correlating the signal with wavelets at different scales and 
positions

• Take a wavelet, compare it to a section at the start of the 
original signal and calculate correlation coefficient. Then 
shift the wavelet to the right to cover whole of the signal

• Then move to another scale and perform same procedure 
and finally construct time-scale map
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Continuous Wavelet Transform

• WT also could be computed in frequency domain as 
presented by Parseval’s theorem:

𝑊𝑓 𝜏, 𝑎 =
𝑎

2𝜋
 

−∞

∞

𝐹 𝜔 Ψ∗ 𝑎𝜔 𝑒𝑖𝜔𝜏𝑑𝜔

20



4/26/2014

11

Continuous Wavelet Transform

• Effect of different scales and positions is illustrated 
and it is apparent that higher scales is corresponding 
to more stretched wavelets

21

Continuous Wavelet Transform

• Thus, WT can be seen as a bank of filters. Variation of 
scale parameter generates a set of filters in the 
frequency domain. 

• As scale value decreases the filter reduces its 
amplitude and increases its bandwidth
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Continuous Wavelet Transform

• Different mother wavelets might affect the results 
either in time- or scale- domain due to differences in 
both domains as in seen for Morlet and Mexican Hat 
wavelets 
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Continuous Wavelet Transform

• This transform is applicable for functions which are 
square-integrable denoted by 𝐿2 𝑅 and define as:
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• Radius of time-frequency windows are as follows:
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Continuous Wavelet Transform

• Based on “Heisenberg Uncertainty Principle” the area 
of time-frequency is constant, such that:

Δ𝑡ψ(𝑎)Δ𝜔Ψ(𝑎) = 𝑎 Δ𝑡ψ

Δ𝜔Ψ

𝑎
= Δ𝑡ψΔ𝜔Ψ ≥

1

2
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Discrete Wavelet Transform

• A Discrete Wavelet Transform (DWT) is any wavelet 
transform for which the wavelets are discretely 
sampled.

• As with other wavelet transforms, a key advantage it 
has over Fourier transforms is temporal resolution: it 
captures both frequency and location information 
(location in time).

• Approximations are High-scale, low-frequency 
components of the signal

• Details are low-scale, high-frequency components

26
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Discrete Wavelet Transform

• Note that scales and positions are chosen dyadically in 
order to reduce the computation costs.

• In DWT, basis wavelet, scale and translation are:

𝜓𝑗𝑘 𝑥 = 2
𝑗
2𝜓 2𝑗𝑡 − 𝑘 𝑗, 𝑘 ∈ ℤ

𝑎 = 2−𝑗

𝑏 = 𝑘2−𝑗

• In this context, there exist a scaling function which 
behaves as low-pass filter and a wavelet function as 
high-pass filter.

• DWT has very complex mathematical background 
which is related to functional analysis and subspaces; 
for a more thorough description refer to books and 
other references in this field.

27

Discrete Wavelet Transform

• A simple 3-level DWT has shown in the following

• Frequency allocation in DWT is also has shown

𝑆 = 𝐴1 + 𝐷1 =
𝐴2 + 𝐷2 + 𝐷1 =

𝐴3 + 𝐷3 + 𝐷2 + 𝐷1
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Applications

• Scale-domain aspects:

– Biology for cell membrane recognition

– Metallurgy for the characterization of rough surfaces

– Finance for detecting the properties of quick variation 
of values

– In Internet traffic description, for designing the 
services size

• Time-domain aspects:

– Rupture and edges detection

– Study of short-time phenomena as transient 
processes

29

Applications

• Some other applications are:

– Chaos Dynamics, Intermittence in physics

– Partial Differential Equation solving e.g. buckley-Leverett
equation

– Compression of fingerprints

– Quantum Mechanics, Turbulence

– Nondestructive control quality processes

– EEG, heart-rate, blood pressure, brain rhythms, DNA

– SAR (Synthetic Aperture Radar) imagery, Astrophysics

– Oceanography, earth studies, Seismology, Climatology 

– Molecular Dynamics

– Identification of hydrocarbon and source rock 

– Water distribution systems, forecasting traffic volume

30
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Applications

• However, WT has some very diverse applications in 
engineering such as:

– “System Identification” for civil/mechanical/electrical 
engineering applications as an output-only approach

– Particularly, in “Structural Vibration” for modal damping
and natural frequency identification

– In “Structural Health Monitoring” in order to detect the 
existence, location and severity of damages

– In systems with time-varying or nonlinear behavior; in 
contrast to FT, WT is capable to monitor dynamical behavior 
of system

– For computation of “Impulse Response Functions” and 
time-varying “Frequency Response Functions”

31

Applications

– For a large number of matrix multiplication 
algorithms in order to reduce substantially the time of 
computation; particularly, in cases such as determining 
“Markov Parameters” in the context of “Time-Domain 
System Identification” which require recursive 
multiplication of matrices, WT is  beneficent in quicker 
multiplications

– In order to estimate physical parameters such stiffness, 
damping and stiffness matrices by having the whole 
mass of the structure 

– Computation of time-varying Holder exponent which is 
proposed as a damage-sensitive feature by applying 
wavelet transform on both sides of Holder nonequality
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Applications

• Wavelet transform has merits of less-model 
dependence, sensitivity to local damage, 
robustness to moderate noise, computational 
efficiency, and feasibility for on-line 
implementation.

• Wavelet transform has great potentials to be 
used in multi-level structural health monitoring 
for structures to detect, locate, and assess 
structural damage as well as to make a 
maintenance decision in condition-based 
maintenance procedure.

33

Applications

• Wavelet transform has great potentials for 
structural reliability analysis structures in Monte 
Carlo simulation, adaptive Bayesian reliability 
assessment, and life prediction. 

• Wavelet-based sampling techniques have been 
widely used for random vibration analysis.

• Wavelet is capable for performing adaptive 
Bayesian system identification.

• Adaptive reliability assessment of critical 
structural members and prediction of their 
remaining life can also be done by WT.

34
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Applications

– In active vibration control, for time varying pole 
assignment

– Developing simulated stochastic ground motion 
model compatible with design spectrum with time and 
frequency nonstationarity using decomposing 
capabilities of this transform

– Estimation of seismic response of structures in 
linear/nonlinear systems using capability of WT for 
transforming differential equation of motion to algebraic 
equation of motion either for SDF/MDF systems

– “Mother Wavelets” could be used as “Shape 
Functions”  in the field of “Finite Element Analysis”

35

MATLAB Toolbox

• Despite all the difficulties encountered with the 
“Wavelet Transform”, we have a very handy tool for 
this transform: Wavelet Toolbox (wavemenu)
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MATLAB Toolbox

• In order to perform a “Continuous Wavelet Transform” 
using the “Graphical Interface”, we can simply select 
our signal, mother wavelet, starting and ending 
scales, scale step and also sampling frequency

37

MATLAB Toolbox

• In order to perform a “Discrete Wavelet Transform” 
using the “Graphical Interface”, we can simply select 
our signal, mother wavelet and the desired level.

38
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Practical Implementation in Structural 
Dynamics

• An output-only approach for “Modal Identification” as 
follows: 

colors denote magnitude of wavelet transform

39

Practical Implementation in Structural 
Dynamics

• Obviously, two frequencies can be identified

• Based on frequencies which are extracted, it is 
possible to estimate modal damping ratios and 
real/complex mode shapes as follows:

ln 𝑊𝜓(𝑎0, 𝑏) = −𝜉𝜔𝑛𝑏 + ln(
𝑎0

2
𝐵 𝜓∗(𝑎0𝜔𝑑)

𝑟𝑘,𝑗 =
 𝑙=1

𝑁 𝑅𝑒 𝑊𝜓
𝑥𝑘(𝑎𝑗, 𝑏𝑙) 𝑅𝑒 𝑊

𝜓

𝑥𝑟𝑒𝑓(𝑎𝑗, 𝑏𝑙)

 𝑙=1
𝑁 𝑅𝑒2 𝑊

𝜓

𝑥𝑟𝑒𝑓(𝑎𝑗, 𝑏𝑙)

𝑠𝑘,𝑗 =
 𝑙=1

𝑁 𝑅𝑒 𝑊𝜓
𝑥𝑘(𝑎𝑗, 𝑏𝑙) 𝑅𝑒 𝑊

𝜓

𝑥𝑟𝑒𝑓(𝑎𝑗, 𝑏𝑙)

 𝑙=1
𝑁 𝐼𝑚2 𝑊

𝜓

𝑥𝑟𝑒𝑓
(𝑎𝑗, 𝑏𝑙)

𝑟𝑘,𝑗, 𝑠𝑘,𝑗 are real and imaginary parts of mode shape

40



4/26/2014

21

Practical Implementation in Structural 
Dynamics

• Wavelet tools can be used to locate damage 
regions based on either spatial distribution of 
spikes for sudden damage or change in mode 
shapes for progressive damage

41

Practical Implementation in Structural 
Dynamics

• As it is seen, in DWT for nodes 22, 24, 31, 33 there is 
a spike at 5th second of the signal

• Each node having spike in the low levels of details 
means that the node is related to a high-frequency 
event

• High-frequency events could be an impulse or damage 
or sudden change in stiffness

• Another useful but difficult application of WT is the 
possibility of time-dependent denoising of non-
stationary signals
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