4/7/2014

Fourier Transform • Fourier analysis expands signals or functions in terms of sinusoids (or complex exponentials). • It reveals all frequency components present in a signal. $p_n = \sum_{j=0}^{N-1} P_j e^{i(j\omega_0 t_n)} = \sum_{j=0}^{N-1} P_j e^{i(2\pi n j/N)} \quad \text{Inverse DFT}$ $P_j = \frac{1}{T_0} \sum_{n=0}^{N-1} p_n e^{-i(j\omega_0 t_n)} \Delta t = \frac{1}{N} \sum_{n=0}^{N-1} p_n e^{-i(2\pi n j/N)} \quad \text{DFT}$ With the second of Civil Engineering

Short-Time Fourier Transform
Steps (continued)
 Compute the FT of the truncated signal, save results.
 For each time location where the window is centered, we obtain a different FT
 Each FT provides the spectral information of a separate time- slice of the signal, providing simultaneous time and frequency
information
 Incrementally slide the window to the right
 Repeat until window reaches the end of the signal
Sharif University of Technology Department of Civil Engineering

	Short-Time Fourier Transform
• Tin	 ne and Frequency Resolution (Continued): To explain this limitation, note that in Fourier transform: To increase the frequency resolution of the window the frequency spacing of the coefficients (sequence in frequency domain) needs to be reduced.
	 Decreasing Nyquist (max) frequency (and keeping N constant) will cause the window size to increase — since there are now fewer samples per unit time.
	 The other alternative is to increase N, but this again causes the window size to increase.
R.	 So any attempt to increase the frequency resolution causes a larger window size and therefore a reduction in time resolution—and vice-versa.
	Sharif University of Technology

Shart-Time Fourier	Trancform
	114115101111

Applications:

 Signal processing of any non-stationary signal (audio signals, earthquake excitations, structural responses to ambient vibrations, ...)

In structural dynamics, STFT can be used to:

- Determine the dominant modes of vibration (and their shapes and frequencies) at any time interval
- Health monitoring and damage detection through the study of dominant frequencies

 e.g. a reduction in frequency is generally indicative of damages leading to softer structures

Sharif University of Technology

