4/7/2014

	7
• Sc	cope and Goals
• M	odeling of Nonlinear Behavior
-	Simple: Elastic-Perfectly Plastic
	Intermediate: Bilinear Modeling Isotropic Hardening Kinematic Hardening
	Advanced: Bouc-Wen Model
• Dy	ynamic Behavior of Nonlinear SDF Systems
-	Important Parameters
	Amplification Factors and the Effect of Dynamic Properties on Response
Par s	Nonlinear Response Spectra
Stands.	Sharif University of Technology Department of Civil Engineering

8

9

nonlinearities resulting from gaps and degradation. For example, refer to:

 Sivaselvan and Reinhorn, Hysteretic Models for Deteriorating Inelastic Structures, ASCE JSE 126(6), 633-640.

Dynamic Behavior of SDF Systems

- Parameters Affecting the Nonlinear Response of SDF Systems
- Initial Stiffness
- Mass
- Damping
- Loading Characteristics
- Yield Displacement
- Ductile/Brittle Behavior
- Post-Yield Stiffness
 - Ductility Demand (Share of Post-Yield Behavior in

0.8 1 1.2 1.4 Frequency Ratio (ω_L/ω_n)

1.6 1.8 2

0.4 0.6

Sharif University of Technology Department of Civil Engineering

0.4 0.6 0.8

Sharif University of Technology Department of Civil Engineering 1.2 1.4 1.6 1.8

Frequency Ratio (ω_L / ω_n)

2

1

Sharif University of Technology Department of Civil Engineering

Dynamic Behavior of SDF Systems

- Response Spectra
 - Parameters in linear spectra:
 - Natural Frequency
 - Damping Ratio
 - Parameters in nonlinear spectra:
 - Natural Frequency (initial)
 - Damping Ratio
 - Ductility
 - » Results in more detailed analysis needs, since ductility is not known before the analysis
 - Note that the vertical axis in a nonlinear spectrum is used to determine the yield acceleration and yield strength; i.e. the yield strength to achieve the given ductility

Dynamic Behavior of SDF Systems

- Developing Nonlinear Response Spectra
 - This usually requires many analyses with small time steps. This is particularly problematic in stiff systems (systems with large natural frequency), since in these systems, the post-yield displacements are usually very large. Obtaining the desired ductility ratio may require very high precision in the analysis.
 - Usually, the precision is not kept constant for the entire range of frequencies

