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Abstract

This paper is concerned with estimation and stability of control systems over communication links
subject to limited capacity, power constraint, fading, noisy feedback, and different transmission
rate rather than system sampling rate. A key issue addressed in this paper is that in the presence
of noisy feedback associated with channel, which models transmission of finite number of bits over
such links as is the case in most practical scenarios, the well-known eigenvalues rate condition is
still a tight bound for stability. Based on an information theoretic analysis, necessary conditions
are derived for stability of discrete-time linear control systems via the distant controller in the mean
square sense. By construction of a specific coding scheme and by the design of a proper controller,
the tight sufficient conditions for stability of control systems are also derived for linear discrete-
time control systems over both Additive White Gaussian Noise (AWGN) and fading channels.
This implies that the proposed coding scheme is efficient. The results are presented with the
mismatch assumption between channel symbol and plant sample rates. As one key result of this
paper, it is shown that if the channel symbol rate is less than the system sample rate, the control
system is still stabilizable via increasing the transmission power.

Keywords: Networked control system, estimation, stability, feedback channel, capacity,
mismatch factor.

1. Introduction

1.1. Motivation and Background

Networked Control Systems (NCSs) have attracted lots of interest in recent years. One charac-
teristic of such distributed systems is that their components need to communicate with each other
over communication networks that are subject to imperfections. This topic is also becoming of
high interest as future generation of mobile communications, such as 5G, are explicitly intended
to meet latency requirements for control applications [1]. For example, the tactile Internet which
has been proposed within such context, refers to systems with low latency that allow real-time
interactions with the environment through remote tactile control [2].

In NCSs, one important issue is how to estimate the system states in real-time at the distant
controller and subsequently stabilize the system. The imperfect communication channel can be
modeled based on the environment in which NCSs are deployed, leading to different practical
system design paradigms [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

As the system output is continuous alphabet and the input and output of the Gaussian chan-
nels are also continuous alphabet, many works have studied the problems of controlling dynamic
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systems over AWGN channel, e.g., [5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19]. In the aforemen-
tioned papers, a number of issues, such as estimation, stability, and performance were addressed.
However, in the case of discrete-time systems, all earlier works have assumed that the plant output
sample rate and the channel input symbol rate are the same. Addressing estimation and stabil-
ity with mismatch assumption between plant sample rate and channel symbol rate is important
because in general, they can be different as it is considered in this paper. Also, the mismatch as-
sumption between these two rates may be restrictive. For example, in [16], the stability condition
for sampled continuous-time control systems is considered, where the bandlimited AWGN channels
have been considered in the link from the plant to the controller and also from the controller to the
plant. However, as the plant output sample rate and the channel input rate have been assumed
to be the same in [16], the control system cannot be stabilized for some plant sample rates. Nev-
ertheless, using our proposed coding scheme, the stability conditions for different sampling rates
can be obtained in this paper.

In [19], it is shown that in the presence of AWGN channel with perfect feedback, the mean
square stability of noisy discrete time linear systems is possible and the well-known eigenvalues
rate condition (i.e., C ≥

∑
j=1;|λj(A)|>1 ln |λj(A)|, where C is the channel capacity in nats per time

instant and λj(A)s are the eigenvalues of the linear system) is tight; while in the absence of this
feedback link, the stability is impossible. This raises the fundamental question of what would
happen if this feedback link is noisy? Addressing this question is important because noisy link
models transmission of finite number of bits as is the case in most practical scenarios.

Furthermore, the fading channels have been the subject of interest in recent years as is the case
in practical scenarios and studied in different models [4], [6], [8], [20], [21], [22], [23], [24]. In [20],
the effect of fading has been modeled as variations in packet noise variance where the high variance
noisy packets are dropped. Some articles have also modeled fading as a random multiplying factor
without additive noise [4], [21], [22], [23]. [8] modeled fading as a digital channel with different
Markov rate, and [6] considered multiplying flat fading AWGN broadband channel for continuous-
time systems. In [24], a tight condition for stabilizing a noiseless dynamic systems over an AWGN
fading channel is obtained.

1.2. Paper Contributions

The NCS considered in this paper is shown in Fig. 1, where the communication channel is as-
sumed to be an AWGN channel with specific symbol rate. We also consider the same scenario with
the AWGN channel replaced by a fading AWGN channel with perfect Channel Side Information
(CSI) at receiver and transmitter sides. The basic NCS of Fig. 1 has been considered in many re-
search papers, e.g., [3], [4], [6], [7], [19]. In this basic NCS block diagram, the communication from
plant to the distant controller is subject to communication imperfections; while the communication
from distant controller to the plant is perfect. This is the case, for example, in the tele-operation
of micro autonomous vehicles, where the vehicle is supplied by limited capacity power supply and
hence transmission from the vehicle to the remote base station where the controller is located is
performed with low power and so it is subject to communication imperfections; while as the base
station can be supplied with high power, the communication from distant controller to vehicle is
almost perfect.

To address the aforementioned open problems, this paper first address the problem of estima-
tion and stability with different sample rates; and it presents an extended version of the well-known
eigenvalues rate condition for this case. All earlier works for discrete time systems are based on
the assumption that there is only a single channel transmission between any two plant samples,
which may not be the case in many practical scenarios. For example, in the tele-operation of
autonomous road vehicles, the transmission link can be utilized at a higher rate to improve the
control system performance. On the other hand, in the tele-operation of Autonomous Underwater
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Figure 1: Control/communication system over AWGN channel

Vehicles (AUVs) that are controlled over a wireless acoustic channel with very limited bandwidth,
transmission of a channel symbol may span over several plant samples. If the channel symbol rate
is less than plant sample rate, previous schemes (e.g., [16]) leads to instability even for the case
of high capacity channels, due to accumulative transmission delay. In the reverse case, if set the
goal to transmit every plant sample once or a number of times (using repeated codes) through
the channel, a tight bound on the stability condition cannot be achieved. However, by using the
scheme proposed in this paper, the optimal design is achieved.

Secondly, this paper addresses the problem of estimation and stability of noisy linear systems
over AWGN channel with noisy feedback link and noisy link from the distant controller to on-
board plant actuator; and it shows that the eigenvalues rate condition is still a tight bound for
stability for this case. Earlier works are based on perfect feedback link between transmitter and
receiver and also perfect link from distant controller to actuator in order to obtain sufficient con-
ditions for control objectives [6],[7],[12],[19], [25]. In practice, irrespective of whether transmission
is performed over a noisy link or through a finite number of quantization bits, some level of un-
certainty is introduced as the signal passes through the link.To the best of our knowledge, for the
first time, the tight bound on the mean square stability of system over AWGN channel under such
scenarios is achieved in this paper. It should be noted that some articles such as [26] consider
noisy channels in both forward and reverse paths, however, in the presence of noiseless feedback
channels. Furthermore, there are several works which consider imperfect feedback channel only in
the case of packet erasure channel, e.g., [27, 28]. Also, the authors in [29] compared the solution
of LQG problem in the cases of noiseless and noisy feedback channels.

Finally, in this paper, we also address a noiseless dynamic system over AWGN fading channels
with noiseless output feedback, where the CSI is available instantaneously at the receiver but with
delay at the transmitter side, while the mismatch assumption between channel symbol and plant
output rates are also taken into account at the same time. The similar channel model is also
considered in [24] for which a tight necessary and sufficient condition on the stability is obtain in
the mean square sense for m = 1. In this paper, by choosing different criteria for the stability in
the case of AWGN fading channel, we propose a different structure to stabilize dynamic systems
under condition mC ≥

∑
j=1;|λj(A)|>1 ln |λj(A)| which is tight and less restrictive than the obtained

condition in [24] in the special case of m = 1.

1.3. Paper Organization

In the next part, we first present the necessary and sufficient conditions for discrete-time
systems over AWGN and fading channels using a new coding/decoding scheme which utilizes
different sample rates. Then, we address a real scenario in which there are some level of noise
in communication feedback and controller-actuator links. Extension to the multi-dimensional
systems is also addressed.

The paper is organized as follows: In Section II, the problem formulation is given. In Section
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III, we present necessary and sufficient conditions for different scenarios of scalar discrete-time
systems. Extension of the results to the vector case is presented in Section IV. Finally, Section V
concludes the paper.

2. Problem formulation

2.1. Notations

We use the following notations throughout this paper. |.| denotes the absolute value and ‖.‖
the Euclidean norm. ln(.) is the natural logarithm, E[.] denotes the expected value function, (.)tr

denotes the transpose of matrix, (.)+ denotes pseudo-inverse of matrix, and det(.) is the function
that computes the determinant of a square matrix. trace(.) denotes the sum of the diagonal
elements of matrix, b.c maps the real number to the smallest next integer, mod(a, b) finds the
remainder of division of number a by b, zk describes the sequence (z0, z1, . . . , zk), z(j) denotes the
jth element of the vector z, {A}ij represents the ijth element of the matrix A where the first
subscript is the row number and the second is the column number and x̂k|n is the estimation of
xk given the observation v0,v1 . . . ,vn. diag(v), In and 0n, respectively denote, square diagonal
matrix with the elements of vector v on the main diagonal, identity matrix of size n and zero
vector with n elements. N(m,Q) denotes Gaussian distribution with mean m and covariance
matrix Q. exp(.) denotes the exponential function. λ(A) denotes the eigenvalue of the matrix A.
Finally, R and W denote the set of real numbers and non-negative integer numbers, respectively.
As we consider mismatch factor, the number of generated plant samples is not necessarily equal to
the number of transmitted channel symbols. Therefore, we illustrate the index of channel symbol
with i and the index of the plant states with k.
In this paper, we use lower-case and lower-case boldface, respectively, for scalar and vector vari-
ables.

2.2. Preliminaries

Fig. 1 represents the system model considered in this paper. In what follows, we describe the
input-output relation of each building block of the system.
Plant: discrete-time plant considered in this paper is described by the following linear, time-
invariant and fully-observed system:

xk+1 = Axk +Buk +Gwk,

yk = xk,
(1)

where xk ∈ Rd is the state, uk ∈ Rs is the control input, wk ∈ Rl is the process noise,
wk ∼ N(0l, I), and yk is the observation signal. It is assumed that (A,B) is a stabilizable
pair and x0 is a random variable with bounded entropy.
Communication channel: We assume that there is a discrete-time AWGN fading channel be-
tween sensor and controller described by

vi = ζifi + ni, (2)

where fi ∈ R denotes the channel input, vi ∈ R the channel output, ζi is the channel state which
is available at the receiver instantaneously and with one delay at transmitter, and ni ∈ R the
additive white Gaussian noise with zero mean and variance N0/2 which models the uncertainties
in this networked control system. We assume ζi is an independent identical distribution (i.i.d.)
random process with the distribution:

P{ζi = ζl} = γl, for i ∈W,
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where l ∈ {0, 1, . . . , s}, and γl > 0s are constant numbers, where
∑s

l=1 γl = 1. Assume that 1
Tc

symbols per second are transmitted through the channel. If the CSI is available at the receiver
instantaneously and with one delay at the transmitter, the capacity of this channel with output

noiseless feedback under average power constraint Pav ≤ P is computed as C = 1
2
Eζi(ln(1 +

ζ2i P

N0/2
))

which is also the capacity of channel with no output feedback [30], where Eζi(.) denotes the ex-
pected value function with respect to channel state ζi.
Note that, for a given input signal, the average power can be computed as Pav = lim

N→∞
1
N

∑N−1
i=0 E[f 2

i ]

which is assumed to be less than P due to the average power constraint. If the channel states are
deterministic and ζi = 1 for every i ∈ W, the channel is in fact a discrete-time AWGN channel,
i.e.,

vi = fi + ni. (3)

Channel and process noise are assumed to be independent from each other and also from the
initial state. The key parameter of interest in our analysis is the mismatch factor between plant
sample rate and communication channel symbol rate, m , Ts

Tc
. As the plant sampling rate and

channel symbol rate are, in general, set independently, there is no reason for them to be equal.
For example, in the case of m = 2, it is possible to transmit one additional symbol between two
consecutive plant samples.
To compensate the effects of transmission noise, power constraint and fading, we need to use a
proper encoder and decoder.
Encoder: We present two class of encoders. One maps (x0, v

i−1, ζ i−1) → fi and the other maps
(xb i

m
c, v

i−1, ζ i−1) → fi for i = {1, 2, . . .}. In this paper, in the case of no process noise, we can

design the encoder of the first class since x0 can be obtained from xb i
m
c and vice versa.

Decoder: The decoder is the operator that maps (uk−1, vbmkc, ζbmkc) → x̂k|bmkc at time instant
kTs for k = {0, 1, . . .}.
Controller: The controller generates the input of plant based on the value of x̂k|bmkc ∈ Rd. We
use a linear controller, i.e. uk = Gkx̂k|bmkc, where the controller gain Gk should be designed to
ensure stability as defined below.

Definition 1. System (1) over the aforementioned communication link is bounded asymptotically
(respectively, asymptotically) stabilizable in mean square sense if there exists an encoder, decoder
and controller gain Gk such that lim

k→∞
E[(xk)

tr(xk)] <∞ (respectively, lim
k→∞

E[(xk)
tr(xk)] = 0).

Remark 1. In the case of fading channel, the asymptotic stability is defined in the sense of
lim
k→∞

E[(xk)
tr(xk)|ζbmkc]

a.s
= 0, where

a.s
= denotes the almost sure convergence.

3. Discrete-time systems with mismatch factor

In this section, we present a necessary condition for stability of discrete-time invariant linear
systems and propose two classes of encoder-decoder designs to obtain sufficient conditions. An
important contribution in this part is that source and channel symbol rates are not restricted to
be equal.

3.1. Necessary condition

In the following, we obtain a stability necessary condition for dynamic system (1) over AWGN
fading channel (2) in terms of its capacity. For this channel model, the capacity is the same in the
presence and absence of output noiseless feedback. Therefore, this theorem presents a necessary
condition in the case of AWGN fading channel with perfect output feedback as well as without
feedback or with noisy feedback.
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It should be noted that for the case of AWGN channel, the condition lim
k→∞

E[(xk)
tr(xk)|ζbmkc]

a.s
<

∞ is equivalent to the condition lim
k→∞

E[(xk)
tr(xk)] < ∞ . Hence, the following theorem which

presents the stability necessary condition in the sense of lim
k→∞

E[(xk)
tr(xk)|ζbmkc]

a.s
< ∞ also implies

the stability necessary condition in the mean square sense for AWGN channels.

Theorem 1. A necessary condition for the stability of the system (1) over communication channel

(2) in the sense of lim
k→∞

E[(xk)
tr(xk)|ζbmkc]

a.s
< ∞ is presented as mC ≥

∑
{j=1,|λj(A)|>1} ln |λj(A)|,

where C is the channel capacity.

Proof: Since the stable eigenvalues of system have no effect on the stability [3],without loss of
generality, we assume that all eigenvalues are outside the unit circle. At first, let we use X, F ,
V , Z, U and W as the random variables associated with, respectively, the system state, channel
input, channel output, channel CSI, system input, and process noise. Subsequently, we follow the
similar steps as taken in the proof of Lemma 1 in [24] to obtain the following inequity in the case
of mismatch factor m:

Nζi(Xb i
m
c|V i) ≥ exp(−2

d
Ci)Nζi−1(Xb i

m
c|V i−1), (4)

where Ci , 1
2

ln(1 +
ζ2i P

N0/2
) and Nζi(Xb i

m
c|V i) denotes the conditional averaged entropy power of

Xb i
m
c. It should be noted that conditional averaged entropy power is defined as Nζi(Xb i

m
c|V i) ,

1
2πe

exp(2
d
EV i|ζi [h(Xb i

m
c|V i = vi, Zi = ζ i]), where h(.|.) denote the conditional differential entropy

and EV i|ζi denotes the expected value function only over random variable V i conditioning on the
event Zi = ζ i. Using equation (1) results in:

h(Xb i
m
c|V i−1 = vi−1, Zi−1 = ζ i−1] =h

(
Ab

i
m
c−b i−1

m
cXb i−1

m
c +B

b i
m
c−1∑

t=b i−1
m
c

Ab
i
m
c−1−tUt

+

b i
m
c−1∑

t=b i−1
m
c

Ab
i
m
c−1−tWt

∣∣∣∣V i−1 = vi−1, Zi−1 = ζ i−1

)
,

(a)

≥ (bi/mc − b(i− 1)/mc) ln |det(A)|+ h(Xb i−1
m
c|V i−1 = vi−1, Zi−1 = ζ i−1]), (5)

where (a) follows due to the fact that ut is a function of (vt, ζt), and furthermore, Wt , t ∈
{b i−1

m
c, . . . , b i

m
c−1} and Xb i

m
c are two independent random variables. Therefore, using inequalities

(4) and (5) results in:

Nζi(Xb i
m
c|V i) ≥ exp

(
−2

d

(
Ci − (b i

m
c − b i− 1

m
c) ln |det(A)|

))
Nζi−1(Xb i−1

m
c|V i−1). (6)

The recursive solution leads to inequality Nζi(Xb i
m
c|V i) ≥ exp

(
− 2
d

(∑i
t=1 Ct−b

i
m
c ln |det(A)|

))
×

Nζ0(X0|V 0). By preposition II.I in [31] and the assumption of theorem, its conclude that condition

limi→∞Nζi(Xb i
m
c|V i) ≤ limi→∞E[(Xb i

m
c)
tr(Xb i

m
c)|Zi = ζ i]

a.s
< ∞ holds for this system which

results in limi→∞
1
i

∑i
t=1 Ct−

1
i
b i
m
c ln |det(A)|

a.s

≥ 0. Using the law of large number in [32] leads to
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the following inequality as the necessary condition:

lim
i→∞

1

i

i∑
t=1

Ct −
1

i
b i
m
c ln |det(A)|) a.s

= E[Ci]−
1

m
ln |det(A)| ≥ 0. (7)

Hence, the stability necessary condition in the sense of lim
k→∞

E[(xk)
tr(xk)|ζbmkc]

a.s
< ∞ is reduced

to mC = mE[Ci] ≥
∑
{j=1,|λj(A)|>1} ln |λj(A)|. �

3.2. Sufficient conditions for stability

First, we propose two classes of encoder-decoder:
(1)The encoders that map (x0, v

i−1, ζ i−1)→ fi for every i ∈ {0, 1, . . .}, and the decoders that map
(uk−1, vbmkc, ζbmkc) → x̂k|bmkc at every time instant kTs, where k ∈ {0, 1, . . .}. This can be used
whenever the ambiguity in the states of system is only due to the ambiguity in the initial state.
Hence, it is possible to guarantee reliable estimation by focusing on reconstruction of the initial
state at the receiver and sending them to the transmitter throughout all communication steps.
For scalar systems, we can describe this coding scheme, in general, as follows. At every time slot
i, fi = T1(i)(x0 − x̂0|i−1) is transmitted (for simplicity we assume x̂0|−1 = 0). Upon receiving vi,
x̂0|i = x̂0|i−1 + R1(i)vi is computed and sent back to the transmitter, where

(
T1(i), R1(i)

)
are the

gains associated to the first class of encoder-decoder that would be defined in different encoding
designs. Furthermore, the decoder obtains x̂k|bmkc as the input of controller at every time instant
kTs.
(2) The encoders that map (xb i

m
c, v

i−1, ζ i−1)→ fi and decoders which maps (uk−1, vbmkc, ζbmkc)→
x̂k|bmkc. For scalar systems, we can describe this coding scheme as follows. In contrast with the first
class, in this case, at every time slot i, fi = T2(i)(xb i

m
c − x̂b i

m
c|i−1) is transmitted (for simplicity

we assume x̂0|−1 = 0). Upon receiving vi, x̂b i+1
m
c|i is computed as follows and sent back to the

transmitter.

x̂b i
m
c|i = x̂b i

m
c|i−1 +R2(i)vi, (8)

x̂b i+1
m
c|i = Ab

i+1
m
c−b i

m
cx̂b i

m
c|i +

b i+1
m
c−1∑

j=b i
m
c

Ab
i+1
m
c−1−jBuj, (9)

where
(
T2(i), R2(i)

)
are the gains associated to the second class of encoder-decoder that would

be defined in different encoding designs. In what follows, we discuss different cases and obtain
sufficient conditions for stability of each case.

(A) Scalar discrete-time system without process noise over AWGN channel:

For achieving the sufficient condition in this case, we have incorporated Schalkwijk-Kailath (S-K)
scheme based on Maximum Likelihood (ML) estimation. It should be noted that for the similar
system model with m = 1, [12] have also incorporated S-K coding scheme based on Minimum
Mean Square Error (MMSE) estimation in their achievability proof.

Remark 2. Using ML estimator in this problem provides the opportunity of designing an en-
coder/decoder which is not sensitive to the Probability Density Function (PDF) of the initial state.
Generally, all the proposed coding structures in this paper are applicable to a bounded variance
initial state with arbitrary PDF.

Theorem 2. Control/communication system of Fig. 1 consisting of scalar discrete-time plant
(1) without process noise and discrete-time AWGN channel (3) with capacity C is asymptotically
stabilizable in the mean square sense if ln(|A|) < mC = m

2
ln(1 + P

N0/2
).
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Proof: It is possible to prove this theorem using both classes of coding scheme. However, for
simplicity, we employ the first class to obtain a sufficient condition. Based on the encoder-decoder
design in [33] and defining the parameter α as

α = exp(C) = (1 +
P

N0/2
)
1
2 , (10)

the encoder-decoder gains are chosen as follows:

(T1(i), R1(i)) =

 (α, α−1) if i = 0,(
αi(α2 − 1)

1
2 , α−i (α2−1)

1
2

α2

)
if i ≥ 1.

The recursive solution is given by [33]:

x̂0|i ∼ N(x0,
N0/2

(α2)i+1
), (11)

where x̂0|i is ML estimate of x0 given {v0, v1, . . . , vi} and x0 − x̂0|i is only a function of channel
noise nj, j ∈ {0, 1, . . . , i} [33]. The average transmit power of this scheme is

Pav = lim
N→∞

Pav(N) = lim
N→∞

1

N
E[α2(x− x̂0|−1)2 +

N−1∑
i=1

(αi(α2 − 1)
1
2 )2(x− x̂0|i−1)2]. (12)

Assuming bounded variance for x0 and E[x2
0] = Ψ, we have the following relations:

Pav(N) =
α2Ψ

N
+
N − 1

N

N0

2
(α2 − 1), (13)

hence, asymptotically Pav = P and the channel power constraint is satisfied. The decoder should
estimate xk given v0, . . . , vbmkc at time instant kTs. Solving differential equation (1) (under the
assumption of G = 0) leads to:

xk = Akx0 +
k−1∑
j=1

Ak−1−jBuj, (14)

where the sequence {uj, 0 ≤ j ≤ k − 1} is a function of v0, . . . , vbmkc and is available at the
receiver. Hence, we finally arrive at the desired estimate as follows:

x̂k|bmkc = Akx̂0|bmkc +
k−1∑
j=0

Ak−1−jBuj. (15)

Using equations (14) and (15), we define ek|bmkc as ek|bmkc , xk − x̂k|v0,...,vbmkc . Taking the expec-
tation yields:

E[e2
k|bmkc] = A2kE[(x0 − x̂0|bmkc)

2]. (16)

If we choose control gain for system (1) as Gk = −A
B

, then using equation (11) results in:

E[x2
k+1] = A2E[e2

k|bmkc] = A2(k+1) N0/2

α2(bmkc+1)
. (17)
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Hence, system (1) is stable if limk→∞
|A|k
αbmkc → 0 or equivalently if ln(|A|) < m ln(α).

By substituting equation α = exp(C) in the above condition, we obtain the sufficient condition
for stability as ln(|A|) < mc = m

2
ln(1 + P

N0/2
). Consequently, the tightness of sufficient condition

for this case (i.e., A) is proven. �

(B) Scalar discrete-time system without process noise over AWGN fading channel:

We address the control/communication system consisting of AWGN fading channel with noiseless
feedback which is more common for wireless channels. We present the results in the following
theorem.

Theorem 3. Control/communication system of Fig. 1 consisting of scalar discrete-time plant
(1) without process noise and discrete-time AWGN fading channel (2) with channel capacity C
is asymptotically stabilizable (in the sense that E[x2

k+1|ζbmkc] converges to zero almost surely) if

ln(|A|) < mC = m
2
Eζi(ln(1 +

ζ2i P

N0/2
)).

Proof: As the system has no process noise, we can design an encoder of the first class. Based on
the encoder/decoder design in [34], we propose the following parameters for designing the encoder
and decoder:

(T1(i), R1(i)) =


(ρ,− b(ζ0)

ρa(ζ0)
) if i = 0,(

ρ
i−1∏
k=0

a(ζk),− b(ζi)

ρ
∏i

k=0 a(ζk)

)
if i ≥ 1,

where ρ which is a constant number, should be selected such that E[f 2
0 ] < P . It is proven that if

E[f 2
0 ] < P , the average input power is not larger than P [34]. Note that the channel state ζi is

available and used at the receiver side at time i to compute x̂0|i, while it is used at the transmitter
side with one delay to send fi+1. Hence, the recursion of f is:

fi+1 = a(ζi)fi + b(ζi)vi,

vi = ζifi + ni.
(18)

The parameters a(ζi) and b(ζi) are chosen as follows:

a(ζi) =

√
(
P

N0/2
)ζ2
i + 1, b(ζi) = −

P
N0/2

ζi√
( P
N0/2

)ζ2
i + 1

.

Equation (18) and the same steps in [34] concludes that channel input satisfies power constraint
Pav ≤ P and:

(x0 − x̂0|bmkc|ζbmkc, x0) ∼ N((

bmkc∏
k=0

a(ζk))
−2x0, (

bmkc∏
k=0

a(ζk))
−2
σ2
f

ρ2
)

where σ2
f < (bmkc+ 1)P . As explained earlier, by choosing control gain Gk = −A

B
, we have,

E[x2
k+1|ζbmkc] ≤

A2(k+1)

ρ2(
bmkc∏
l=0

a(ζl))2

( ρ2ψ0

(
bmkc∏
l=0

a(ζl))2

+ (bmkc+ 1)P
)
.

Therefore, the sufficient condition for the stability can be presented as limk→∞
A2(k+1)

ρ2(
∏bmkc

l=0 a(ζl))2
(bmkc+

1)P
a.s
= 0. Note that limk→∞

1
bmkc+1

∑bmkc
l=0 ln(a(ζl))

a.s
= ln(ā) (using the law of large number), where

9



ā is defined as ā ,
∏s

l=1 a(ζl)
γl . Hence, if ln(|A|) < m ln(ā) = m

2
Eζi(ln(1 +

ζ2i P

N0/2
)) = mC, the

aforementioned condition is satisfied and the system is stable. �

(C) Scalar discrete-time system with process noise over AWGN channel:

For this case, the system ambiguity is due to both initial state and process noise; hence, the system
cannot be stable if we only transmit information about initial state over the channel. Therefore,
the coding scheme of second class is applied to this case.

Theorem 4. Control/communication system of Fig. 1 consisting of scalar discrete-time plant (1)
and discrete-time AWGN channel (3) with capacity C is bounded asymptotically stabilizable in the
mean square sense if ln(|A|) < mC = m

2
ln(1 + P

N0/2
).

Proof: We design an encoder of the second class through adjusting parameters as follows:

(T2(i), R2(i)) =

 (α, α−1) if i = 0(
d(i)(α2 − 1)

1
2 , d(i)−1 (α2−1)

1
2

α2

)
if i ≥ 1

(19)

where α is the same as in (10) and d(i) is chosen such that the average power remains the same
as in (13), i.e.,

d(i) =

√
N0/2√

E[(xb i
m
c − x̂b i

m
c|i−1)2]

. (20)

From differential equation (1), we have

xb i+1
m
c = Ab

i+1
m
c−b i

m
cxb i

m
c +

b i+1
m
c−1∑

j=b i
m
c

Ab
i+1
m
c−1−jBuj +

b i+1
m
c−1∑

j=b i
m
c

Ab
i+1
m
c−1−jGwj. (21)

Combining (8), (9), and (19) leads to the following equation for i ≥ 1 :

x̂b i+1
m
c|i =Ab

i+1
m
c−b i

m
c(x̂b i

m
c|i−1 + d(i)−1 (α2 − 1)

1
2

α2
{(α2 − 1)

1
2d(i)(xb i

m
c − x̂b i

m
c|i−1) + ni})

+

b i+1
m
c−1∑

j=b i
m
c

Ab
i+1
m
c−1−jBuj. (22)

Subtracting (22) from (21) results in the following differential equation:

eb i+1
m
c|i =

Ab
i+1
m
c−b i

m
c

α2
eb i

m
c|i−1 − d(i)−1Ab

i+1
m
c−b i

m
c (α

2 − 1)
1
2

α2
ni +

b i+1
m
c−1∑

j=b i
m
c

Ab
i+1
m
c−1−jGwj.

eb 1
m
c|0 = Ab

1
m
cn0

α
+

b 1
m
c−1∑

j=0

Ab
1
m
c−1−jGwj (23)

It is clear from the above equation that eb i
m
c|i−1 is independent of ni and wj, for j ∈ {b i

m
c, . . . , b i+1

m
c−

1}. Furthermore, given the assumption that channel and process noise are independent, E[e2
b i+1

m
c|i]

10
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Figure 2: The more realistic control/communication system over AWGN channel

is calculated as follows:

E[e2
b i+1

m
c|i] = (

Ab
i+1
m
c−b i

m
c

α2
)2E[e2

b i
m
c|i−1

] + d(i)−2(A2)b
i+1
m
c−b i

m
c (α

2 − 1)

α4

N0

2
+

b i+1
m
c−1∑

j=b i
m
c

(A2)b
i+1
m
c−1−jG2,

E[e2
b 1
m
c|0] = A2b 1

m
c N0

2α2
+

b 1
m
c−1∑

j=0

(A2)b
1
m
c−1−jG2 (24)

By substituting (20) in (24), we finally arrive at the following equations for E[e2
b i+1

m
c|i] and i ≥ 1:

E[e2
b i+1

m
c|i] = (

Ab
i+1
m
c−b i

m
c

α
)2E[e2

b i
m
c|i−1

] +

b i+1
m
c−1∑

j=b i
m
c

(A2)b
i+1
m
c−1−jG2.

Clearly, if ln(|A|) < m ln(α) = m
2

ln(1 + P
N0/2

) = mC, then E[e2
b i
m
c|i] is asymptotically bounded.

Under this conditon and by choosing controller gain as Gk = −A
B

, E[x2
k+1] is asymptotically

bounded, since

lim
k→∞

E[x2
k+1] = lim

k→∞
(A2)k+1−b bmkc

m
cE[e2

b bmkc
m
c|bmkc

] +
k∑

j=b bmkc
m
c

(A2)k−jG2 <∞. (25)

Hence, the system is stable in the mean square sense. This completes the proof. �

(D) Scalar discrete-time system over AWGN channel with noisy links:

As mentioned earlier, this important case is one of key contributions of this paper which is achieved
through proper adoption of the second coding scheme. It is important to note that in reality,
some level of noise exists in the feedback link between transmitter and receiver and also in the
link between the controller and actuator as shown in Fig. 2. The following theorem is about the
sufficient condition for the stability in such scenarios.

Theorem 5. Control/communication system of Fig. 2 consisting of scalar discrete-time plant (1)
and discrete-time AWGN channel (3) with capacity C is bounded asymptotically stabilizable in the
mean square sense if ln(|A|) < mC = m

2
ln(1 + P

N0/2
).

Proof: Assume that nfi and nck in Fig. 2 are white Gaussian noise with variances Nf and Nc,
respectively. We assume that the receiver side has access to the output sequence of controller (i.e.,

11



νk−1) where uk = νk+nck . Furthermore, transmitter has noisy access to x̂b i+1
m
c|i. Using the encoder

and decoder from the second class with parameters (19) and d(i) =

√
N0/2√

E[(xb i
m c
−x̂b i

m c|i−1
)2]+Nf

, keeps

the average power the same as (13). Subsequently, we can show that E[e2
k|bmkc] still converges but

now to a higher bound. Considering noisy links, we have the following relations:

x̂b i+1
m
c|i = Ab

i+1
m
c−b i

m
cx̂b i

m
c|i +

b i+1
m
c−1∑

j=b i
m
c

Ab
i+1
m
c−1−jBνj. (26)

Using (8), (19), and subtracting (x̂b i+1
m
c|i) from xb i+1

m
c leads to the following equation for i ≥ 1:

xb i+1
m
c−x̂b i+1

m
c|i = Ab

i+1
m
c−b i

m
c(xb i

m
c − x̂b i

m
c|i−1 − d(i)−1 (α2 − 1)

1
2

α2
vi)

+

b i+1
m
c−1∑

j=b i
m
c

Ab
i+1
m
c−1−jB(uj − νj) +

b i+1
m
c−1∑

j=b i
m
c

Ab
i+1
m
c−1−jGwj. (27)

Note that although the receiver sends back x̂b i
m
c|i−1 to the transmitter, but the transmitter receives

it as x̂b i
m
c|i−1 + nfi−1

. Therefore, fi = T2(i)(xb i
m
c − x̂b i

m
c|i−1 − nfi−1

), and (27) can be rewritten as

follows for i ≥ 1:

eb i+1
m
c|i =

Ab
i+1
m
c−b i

m
c

α2
eb i

m
c|i−1 − Ab

i+1
m
c−b i

m
c(
α2 − 1

α2
nfi−1

+ d(i)−1 (α2 − 1)
1
2

α2
ni)

+

b i+1
m
c−1∑

j=b i
m
c

Ab
i+1
m
c−1−jBncj +

b i+1
m
c−1∑

j=b i
m
c

Ab
i+1
m
c−1−jGwj, (28)

where eb 1
m
c|0 = Ab

1
m
c n0

α
+
∑b 1

m
c−1

j=0 A(b 1
m
c−1−j)(Bncj +Gwj). Note that E[eb i

m
c|i−1nfi−1

] = 0. There-

fore, the error variance is satisfied in the following differential equation for i ≥ 1:

E[e2
b i+1

m
c|i] =

A2(b i+1
m
c−b i

m
c)

α2
E[e2

b i
m
c|i−1

] + (A2(b i+1
m
c−b i

m
c) − A2(b i+1

m
c−b i

m
c)

α2
)Nf

+

b i+1
m
c−1∑

j=b i
m
c

A2(b i+1
m
c−1−j)B2Nc +

b i+1
m
c−1∑

j=b i
m
c

A2(b i+1
m
c−1−j)G2, (29)

where E[e2
b 1
m
c|0] = A2b 1

m
c N0

2α2 +
∑b 1

m
c−1

j=0 A2(b 1
m
c−1−j)(B2Nc+G

2). Consequently, if the communication

and control signals are sent back through noisy feedback, as long as ln(|A|) < m ln(α) = mC, the
value of E[e2

b i
m
c|i] is asymptotically bounded and by choosing proper controller gain (similar to

what is explained in scenario C), the system is stable in the bounded asymptotic sense . �
As noted earlier, transmission of signals through finite number of quantization bits is a practical
approach. It is easy to observe that modeling white quantization error as additive Gaussian noise,
leads to the same results.

Remark 3. In the presence of noisy channel feedback, the stability is still achievable under con-
dition ln(|A|) < m ln(α) = mC with the difference that the variance of state signal converges to a
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higher level rather than the case of perfect feedback. When the noise variances of communication
feedback and controller-actuator links tend to zero, the results are the same as the previous values
obtained in the case (C). In the same scenarios, asymptotic stability can be achieved in the systems
without process noise.

4. Extension to the vector case

So far, we have treated the scalar systems. Extensions of the results to the vector cases are
obtained through the Time Division Multiplexing (TDM), as described in the following. The
results for discrete-time multi-dimension plant over AWGN channel are given in the following
theorem.

Theorem 6. Control/communication system of Fig. 2 consisting of discrete-time plant (1) and
discrete-time AWGN channel (3) is bounded asymptotically stabilizable (or asymptotically sta-
bilizable in the special case of Nf = 0, NC = 0, and G = 0) in the mean square sense if∑
{j;|λj(A)|>1} ln |λj(A)| < mC = m

2
ln(1 + P

N0/2
), where m is the mismatch factor.

Proof: We can extend our results to multi-dimensional systems using TDM approach. This
approach is also used in [35] to extend their one-dimensional results to n-dimensional systems. We
explain such extension in more detail.
The stable part ofA has no effect on the stability condition, consequently, without loss of generality,
we assume that all eigenvalues of A are outside the unit circle [3].
For A ∈ Rd×d there exists a real-valued non-singular matrix Φ and a real-valued matrix Γ such
that ΦAΦ−1 = Γ = diag[J1, . . . , Jn]; where Jl, l = 1, . . . , n, is a Jordan block with geometric
multiplicity dl while eigenvalues of Γ and A are the same.
We define H = diag[H1, . . . , Hn] where Hl is associated with one of the Jordan blocks Jl. For
Jordan block associated with real eigenvalues, Hl = Idl and for λj = ρ̄(cos(θ)± j sin(θ)), we have

Hl = [r(θ)−1, . . . , r(θ)−1] where r(θ) ,
[ cos(θ) sin(θ)

cos(θ) − sin(θ)

]
. It is shown in [3] that Γ and any power of

the matrix H commute (i.e., HkΓH−k = Γ). Consequently, a new variable zk = HkΦxk is defined
to rewrite the equation (1) as:

zk+1 = HΓzk + ũk + w̃k

uk = B+(Hk+1Φ)−1ũk;

w̃k = Hk+1ΦGwk;

w̃k ∼ N(0d, Q̃k),

(30)

where w̃k is the white noise. In addition, since the magnitude of eigenvalues of H is equal to one,
Q̃k = Hk+1ΦG(Hk+1ΦG)tr is bounded (i.e. Q̃k ≤ Q̄).
Note that HΓ is an upper triangular matrix with real-valued eigenvalues, whose magnitudes are the
same as the magnitude of the corresponding eigenvalues of Γ defined by λj, j ∈ {1, 2, . . . , d}. With-
out loss of generality, we assume these eigenvalues are positive and based on Jordan properties, they
are ordered as |λ1| ≤ . . . ≤ |λd|. Given that H tΦ is an invertible matrix, stability of zk and xk are
equivalent. Hence, it is adequate to prove that condition

∑
{j;|λj(A)|>1} ln |λj(A)| < m

2
ln(1 + P

N0/2
)

is a sufficient condition for stability of system (30).We prove this theorem in two parts.
Part 1: As mentioned earlier, in the case of (Nf = 0, Nc = 0, and G = 0), the whole ambiguity

in the system only depends on the initial state. In this case, one can design an encoder-decoder
of the first class. Note that since z0 ∈ Rd, we can consider z0 as d scalar random variables.
Therefore, it is sufficient that for each element of z0, the encoder-decoder used for the scalar
case (A) is adopted. In order to apply such encoding/decoding scheme, we change the channel
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into d parallel channels using a basic TDM approach. In fact, we sequentially assign qj TDM
time intervals to the jth dimension of z0 where j ∈ {1, 2, . . . , d}. Therefore, a total number of
q = q1 + ...+ qd TDM intervals is used for transmission of z0 over a period of qTc.
It should be noted that z

(j)
0 − ẑ

(j)
0|q−1, j ∈ {1, . . . , d} is only a function of channel noise ni, i ∈

{
∑j−1

t=1 qt, . . . ,
∑j

t=1 qt−1} since, up to time q−1, z
(j)
0 is only transmitted during these qj intervals.

Therefore, z
(j)
0 −ẑ

(j)
0|q−1 and z

(`)
0 −ẑ

(`)
0|q−1 for j 6= ` are the function of white Gaussian noise in different

time intervals which results in their independency. Therefore, by definition ez0|q−1 , z0 − ẑ0|q−1,

and we can write ez0|q−1 ∼ N(0d,
N0

2
diag( 1

α2q1
, . . . , 1

α2qd
)).

The error covariance matrix of zk is subsequently calculated as follows:

ezk|bmkc , zk − ẑk|bmkc = (HΓ)k(z0 − ẑ0|bmkc)

E[ezk|bmkc(e
z
k|bmkc)

tr] = (HΓ)kD((HΓ)k)tr, (31)

whereD is defined as a diagonal matrix whose the jth element is equal toDjj = N0

2
1

(α2)b(bmkc+1)/qcqj+bj(bmkc) ,

where bj(i) , min{(mod(i+ 1, q)−
∑j−1

t=1 bt(i)), qj}.
Note that choosing controller gain as Gk = −(HΓ) for the system (30) results in ũk = −HΓzk|bmkc
and therfeor, zk+1 = HΓzk + ũk = HΓezk|bmkc, and therefore, by Definition 1, the system (30) is

asymptotically stable in mean square sense if trace{E[ezk|bmkc(e
z
k|bmkc)

tr]} converges to zero.
In addition, note that from the above equation we have,

trace(E[ezk|bmkc(e
z
k|bmkc)

tr]) = trace((HΓ)kD
1
2 ((HΓ)kD

1
2 )tr). (32)

Therefore, for stability purposes, it is enough to find a condition under which the right hand side of
the above equation tends to zero. In the above equation, (HΓ)kD

1
2 is an upper triangular matrix

with eigenvalues

λ{(HΓ)k}j
N0/2

αb(bmkc+1)/qcqj+bj(bmkc) = |λj|k
N0/2

αb(bmkc+1)/qcqj+bj(bmkc)

along its diagonal. It can be shown that if all eigenvalues go to zero, then (HΓ)kD
1
2 goes to the zero

matrix (See Appendix A). Hence, If
|λj |

α(qj/q)m
< 1 or equivalently (ln |λj| < m(qj/q) lnα) for every

j ∈ {1, 2, . . . , d}, all eigenvalues go to zero; and hence, limk→∞ trace(E[ezk|bmkc(e
z
k|bmkc)

tr]) = 0.
Therefore, in the special case of Nf = 0, Nc = 0, and G = 0, the sufficient condition for asymptotic
stability is (ln |λj| < m(qj/q) lnα) for every j ∈ {1, 2, . . . , d}.

Part 2: In this part, we consider the effect of process noise, feedback channel noise and the
noise in the controller-actuator link. Similar to the scalar case, we should design an encoder-
decoder of the second class for bounded asymptotic stability in the mean square sense. In the first
step, we view z0 as d scalar variables and apply the coding scheme in case (D) for each element of

the vector z0 for finite time slots. In fact, we sequentially transmit z
(j)
0 for qj intervals for every j,

j ∈ {1, 2, . . . , d}. Therefore, by writing the equations (28) and (29) for A = 1, B = 0 and G = 0,
it is proven that after q = q1 + . . . + qd time intervals, each element of the error vector ez0|q−1

is only a function of channel noise and the noise of channel feedback in its corresponding time
intervals. Therefore, Due to the whiteness assumption of the noise, the error covariance matrix
E[(ez0|q−1)(ez0|q−1)tr] = P(N0/2) is diagonal where P(χ) is defined as a diagonal matrix whose jth

element and j ∈ {1, 2, . . . , d} is determined based on equation (29) as follows:

{P(χ)}jj =
1

α2qj
χ+

qj−2∑
`=0

(
1

α2
)qj−2−`(1− 1

α2
)Nf , (33)
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where α is the same as in (10). Subsequently, the receiver calculates the following equation and
sends it back to the transmitter.

ẑb q
m
c|q−1 = HΓb

q
m
cẑ0|q−1 +

b q
m
c−1∑

l=0

(HΓ)b
q
m
c−l−1(ũl − ncl).

The error covariance matrix is obtained at the transmitter side as follows:

E[(ezb q
m
c|q−1)(ezb q

m
c|q−1)tr] = (HΓb

q
m
c)P(

N0

2
)(HΓb

q
m
c)tr +

b q
m
c−1∑

l=0

(HΓ)b
q
m
c−l−1(Q̃l +Nc)(HΓb

q
m
c−l−1)tr.

At time instant tq, t = 1, 2, . . ., we assume that ẑb tq
m
c|tq−1 and E[(ezb tq

m
c|tq−1

)(ezb tq
m
c|tq−1

)tr] are avail-

able at the transmitter. Since E[(ezb tq
m
c|tq−1

)(ezb tq
m
c|tq−1

)tr] is a Hermitian positive semi-definite ma-

trix, it is possible to decompose it into the product of an upper triangular matrix and its conjugate
transpose, i.e., E[(ezb tq

m
c|tq−1

)(ezb tq
m
c|tq−1

)tr] = ΩtΩ
tr
t .

Then, we consider the new variable z̃ such that:

z̃b tq
m
c , Ω−1

t zb tq
m
c

ez̃b tq
m
c|tq−1

, z̃b tq
m
c − ˆ̃zb tq

m
c|tq−1 = Ω−1

t ezb tq
m
c|tq−1

,

where its covariance matrix is the identity matrix, i.e., E{(ez̃b tq
m
c|tq−1

)(ez̃b tq
m
c|tq−1

)tr} = Id.

Subsequently, the following communication scheme is used at tq ≤ i ≤ (t+ 1)q − 1. During these
q intervals, we assign qj TDM time intervals to the jth element of z̃b tq

m
c, j ∈ {1, 2, . . . , d}. Assume

that tq +
∑J−1

l=1 ql ≤ i ≤ tq + (
∑J

l=1 ql) − 1, such that at this interval (the ith interval), the Jth
element of z̃b tq

m
c is transmitted. The transmission and estimation process at this time interval is

as follows:

• Given ˆ̃zb tq
m
c|i−1, transmitter sends fi = (α2 − 1)

1
2d(i)(z̃

(J)

b tq
m
c − ˆ̃z

(J)

b tq
m
c|i−1 − nfi−1

), where d(i) is

the multiplying factor described as:

d(i) =

√
N0/2√

E[(z̃
(J)

b tq
m
c − ˆ̃z

(J)

b tq
m
c|i−1)2] +Nf

, (34)

• Upon receiving vi = fi + ni, the receiver updates the estimation as:

ˆ̃z
(J)

b tq
m
c|i = ˆ̃z

(J)

b tq
m
c|i−1 + d(i)−1 (α2−1)

1
2

α2 vi,

ˆ̃z
(j)

b tq
m
c|i = ˆ̃z

(j)

b tq
m
c|i−1 for j 6= J,

(35)

and sends it to the transmitter. Note that at time i = (t + 1)q − 1, the receiver sends
ẑb (t+1)q

m
c|i to the transmitter through the feedback link and the transmitter obtains the value

of E[(ez
b (t+1)q

m
c|(t+1)q−1

)(ez
b (t+1)q

m
c|(t+1)q−1

)tr].

15



The recursion relations for q intervals is solved to obtain E[(ez̃b tq
m
c|(t+1)q−1

)(ez̃b tq
m
c|(t+1)q−1

)tr] = P(1).

Therefore, E[(ezb tq
m
c|(t+1)q−1

)(ezb tq
m
c|(t+1)q−1

)tr] = ΩtP(1)Ωtr
t , and subsequently:

E{(ez
b (t+1)q

m
c|(t+1)q−1

)ez
b (t+1)q

m
c|(t+1)q−1

)tr} = Ωt+1Ωtr
t+1

= (HΓ)b
(t+1)q

m
c−b tq

m
cΩtP(1)Ωtr

t ((HΓ)b
(t+1)q

m
c−b tq

m
c)tr+

b (t+1)q
m
c−1∑

l=b tq
m
c

HΓb
(t+1)q

m
c−l−1(Q̃l +Nc)(HΓb

(t+1)q
m
c−l−1)tr. (36)

The second term in (36) is a bounded, Hermitian positive definite matrix. Therefore, there is an

upper triangular matrix ∆̄ such that {
∑b (t+1)q

m
c−1

l=b tq
m
c HΓb

(t+1)q
m
c−l−1(Q̃l + Nc)(HΓb

(t+1)q
m
c−l−1)tr}ij ≤

{∆̄∆̄tr}ij for every i, j ∈ {1, 2, . . . , d}. We introduce Ω̄k+1 as:

Ω̄t+1 , (HΓ)b
(t+1)q

m
c−b tq

m
cΩ̄tP(1)

1
2 + ∆̄, Ω̄1 = Ω1. (37)

Now, if |λj|
q
m < αqj for every j or equivalently (ln(|λj|) < mqj

q
ln(α)), then Ω̄t is bounded (see

Appendix B). Hence, E{(ezb tq
m
c|tq−1

)tr(ezb tq
m
c|tq−1

)} ≤ trace{Ω̄tΩ̄
tr
t } <∞.

Therefore, under this condition and by choosing controller gain as Gk = −(HΓ) for system (30),
E[(zk)

tr(zk)] is also bounded.
So far, we have concluded that the sufficient condition for bounded asymptotic stability (or

asymptotic stability in the special case of Nf = 0, NC = 0, and G = 0) is (ln |λj| < mqj
q

ln(α)),

j = {1, 2, . . . , d}. We now calculate the average transmission power to relate the derived condition
to the channel capacity. Using equation (12), the average power for transmission equals to:

Pav =
d∑
j=1

qj
q

(Pav)j =
d∑
j=1

qj
q

N0

2
(α2 − 1) =

N0

2
(α2 − 1), (38)

where (Pav)j is the average power used for transmission of jth element. Substituting the value
of α in (38) results in Pav = P . On the other hand, for stability purposes, it is enough to have
(ln(|λj| < mqj

q
ln(α)) for every j ∈ {1, 2, . . . , d} or equivalently:

d∑
j=1

ln |λj| < m

d∑
j=1

qj
q

lnα = m ln(α) =
m

2
ln(1 +

P

N0/2
). (39)

Under this condition, we are able to choose qj such that (ln |λj| < mqj
q

ln(α)) for every j, j ∈
{1, 2, . . . , d}. Since stable eigenvalues have no effect on this condition, in general when there are
some stable eigenvalues,

∑d
{j=1,|λj |>1} ln |λj| < m

2
ln(1 + P

N0/2
) = mC is the sufficient condition for

asymptotic and bounded asymptotic stability of the system (1) in the mean square sense. This
completes the proof of Theorem 6. �

Corollary 1. For extending the results of Theorem 3 to the vector case, we should follow the
similar steps explained in the part 1 of Theorem 6 with only the difference that instead of using
encoder/decoder of case (A), we should use the encoder/decoder of case B. It should be noted that
for this case, the stability condition is in the sense of lim

k→∞
E[(xk)

tr(xk)|ζbmkc]
a.s
= 0.
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Proof: Let we define a diagonal matrix M (i) whose elements for j ∈ {1, . . . , d} are obtained as:

{M (i)}jj =

( b i+1
q
c−1∏

t=0

∑j
k=1 qk−1∏

l=
∑j−1

k=1 qk

(
a(ζtq+l)

)−2
)∑j

k=1 bk(i)−1∏
l=

∑j−1
k=1 bk(i)

(
a(ζb i+1

q
cq+l)

)−2
.

In fact, {M (i)}jj is obtained as the product of the parameters
(
a(ζ`)

)−2
where ` belongs to the

set of time intervals up to time instant i in which z
(j)
0 is transmitted .

Based on the proof of Theorem 3, after q time intervals, each component of ez0|q−1 −M (q − 1)z0

is a linear function of the channel noise whose coefficient are dependent on CSI. Therefore,
ez0|q−1 − M (q − 1)z0 has a conditional normal distribution N(0d,S (q − 1)) where S (i) is a

diagonal matrix whose jth element is satisfied the inequality {S (i)}jj ≤ {M (i)}jj
(
b i+1

q
cqj+bj(i)

)
P

ρ2
.

Therefore, for this case of control/communication system, the covariance of matrix ezk|bmkc with

respect to ζbmkc is obtained as (31) if we define D = M (bmkc)E[z0z0
tr]M (bmkc) + S (bmkc).

Hence, the system is stable in the sense of limk→∞ trace(E[ezk|bmkc(e
z
k|bmkc)

tr|ζbmkc]) a.s
= 0, if the

matrices (HΓ)kM (bmkc) and (HΓ)kS (bmkc) 1
2 converge to zero matrix almost surely. By com-

puting the eigenvalues of both matrices and based on Appendix A, it is concluded that if for every

j ∈ {1, . . . , d}, we have limk→∞ |λj|(
∏b bmkc+1

q
c−1

t=0

∏∑j
k=1 qk−1

l=
∑j−1

k=1 qk
a(ζtq+l))

1
k
a.s
< 1, the both matrices con-

verge to zero almost surely. Based on the law of large number, this condition is equivalent to
|λj| < m(qj/q)E[a(ζi)] = m(qj/q)C for j ∈ {1, . . . , d}. As previously explained, under condition∑d
{j=1,|λj |>1} ln |λj| < mC, there are coefficients qj and j ∈ {1, . . . , d} such that the inequalities

|λj| < m(qj/q)E[a(ζi)] = m(qj/q)C and j ∈ {1, . . . , d} are satisfied. Note that using this encoding
scheme, we have, (Pav)j ≤ P which results in Pav ≤ P . This completes the proof. �

Remark 4. In this paper, it is proved that
∑d
{j=1,|λj |>1} ln |λj| < mC is the necessary and suf-

ficient condition on the stability of dynamic systems in different scenarios. Therefore, using the
proposed scheme, we are able to stabilize the system in the case of Ts < Tc (m < 1) by increasing
the channel capacity which is equivalent to increasing the average transmitted power. Hence, the
channel bandwidth (channel symbol rate) alone is not a limiting factor in achieving the stability.

5. Conclusion

In this paper, we presented the necessary and sufficient conditions for stability of discrete-
time linear control noisy systems over discrete-time AWGN and AWGN fading channels, when
plant sample rate and communication channel symbol rate are not necessarily the same. We also
analyzed the stability of system in the presence of process noise, controller-actuator noisy link,
and communication feedback noisy link. It was shown that the eigenvalues rate condition is still
a tight bound for stability under these conditions. For future, we try to extend the results to
nonlinear systems.

Appendix A. Zero convergence condition for (HΓ)kD
1
2

Due to space limitation, without loss of generality, we show these properties for the case of

HΓ =

[
|λ1| 1
0 |λ2|

]
. We should calculate the elements of matrix (HΓ)k:

(HΓ)k =

[
|λ1|k {(HΓ)k}12

0 |λ2|k
]
,
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where {(HΓ)k}12 , k ≥ 2 is obtained as follows:

{(HΓ)k}12 = |λ1|k−1 + |λ2|{(HΓ)k−1}12 =
k∑
j=1

|λ2|(k−j)|λ1|j−1 = |λ2|k−1 1− (|λ1|/|λ2|)k

1− |λ1|/|λ2|
. (A.1)

Therefore, as |λ1| < |λ2|, {(HΓ)k}12 = C̄|λ2|k−1 for large k, where C̄ is a constant.

Now, we consider the (HΓ)kD
1
2 matrix, where D

1
2 is a diagonal matrix such that {D 1

2}jj =
N0

2
1

αb(bmkc+1)/qcqj+bj(bmkc) , j = 1, 2. Hence, for large k, we have:

(HΓ)kD
1
2 =

N0

2

 |λ1|(k)
αb(bmkc+1)/qcq1+b1(bmkc)

|λ2|k−1C̄

αb(bmkc+1)/qcq2+b2(bmkc)

0 |λ2|(k)
αb(bmkc+1)/qcq2+b2(bmkc)

 .
As a result, if N0

2

|λj |(k)

αb(bmkc+1)/qcqj+bj(bmkc) , which is the eigenvalue of the matrix (HΓ)kD
1
2 , goes to zero

for j = 1, 2, then the matrix (HΓ)kD
1
2 will go to the zero matrix.

Note that if |λ1| = |λ2|, then {(HΓ)k}12 = k|λ2|k−1, which leads to the similar results.

Appendix B. Bounded condition for Ω̄t

Assume Ω̄t+1 , (HΓ)b
(t+1)q

m
c−b tq

m
cΩ̄tP(1)

1
2 + ∆̄. By recursion relations we have:

Ω̄t = (HΓ)b
tq
m
c−b q

m
cΩ1P(1)

t−1
2 +

t−1∑
l=1

(HΓ)b
tq
m
c−b (l+1)q

m
c∆̄P(1)

t−1−l
2 , (B.1)

We outline the proof of this property for the case in Appendix A. Note that (HΓ)b
tq
m
c−b q

m
cΩ1P(1)

t−1
2

equals to the following matrix for large t:[
{Ω1}11|λ1|r(0){P(1)}

t−1
2

11 ({Ω1}12|λ1|r(0)+{Ω1}22C̄|λ2|r(0)−1){P(1)}
t−1
2

22

0 {Ω1}22|λ2|r(0){P(1)}
t−1
2

22

]
,

where r(l) , b tq
m
c − b (l+1)q

m
c. On the other hand, the second term in (B.1) is obtained as follows:[∑t−1

l=1{∆̄}11|λ1|
r(l){P(1)}

t−1−l
2

11

∑t−1
l=1 ({∆̄}12|λ1|r(l)+{∆̄}22C̄|λ2|r(l)−1){P(1)}

t−1−l
2

22

0
∑t−1

l=1{∆̄}22|λ2|
r(l){P(1)}

t−1−l
2

22

]
.

Note that {P(1)}jj = 1

α2qj
+
∑qj−2

`=0 ( 1
α2 )qj−2−`(1 − 1

α2 )Nf , r(l) = b tq
m
c − b (l+1)q

m
c, and |λ1| < |λ2|,

therefore, it is easy to verify that if |λj|
q
m < αqj or equivalently ln(|λj|) < m

qj
q

ln(α) (for j = 1, 2),

both the first and the second terms in (B.1) are bounded. Hence, Ω̄t is asymptotically bounded.
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