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Abstract—This paper is concerned with a new method for
decomposing large scale systems into disjoint neighborhoods of
subsystems with specific size determined a priori for managing
communication load of a Jacobi based distributed optimal control
method. The proposed decomposition method clusters subsystems
into disjoint neighborhoods based on the strength of control
inputs interaction between subsystems. The proposed method is
a new method and uses the time response of system for decompo-
sition. Using extensive computer simulation it is illustrated that
this method finds the best decomposition.
Keywords—Decomposition, Distributed Optimal Control , Interac-
tion of Subsystems, Large Scale Systems

I. INTRODUCTION

A. Motivation and Background

Energy efficiency and quality considerations restrict the
control of large scale systems. For controlling large scale
systems, in general, there are three approaches: centralized,
decentralized and distributed methods. In centralized method
[1] there is one computing unit that produces control com-
mands for the whole system using the whole knowledge from
the system. In decentralized control [2], [3], the interaction
between subsystems is due to mutual states and controls; and
regulators do not exchange information and the interaction
between subsystems is represented as disturbance. However, in
distributed method, information is also transmitted from any
local regulator to all or a given subset of the others [4]. One
such a method is the distributed control method of [5], [6]
that is based on the Jacobi iterative optimization technique with
two-level architecture for communication between subsystems.
This method has superiority over the centralized methods in
terms of computational complexity and reliability [7], [8]. This
iterative optimization method has the following features: it
handles hard control input and state constraints, it is a convex
optimization problem and in the limit, its solution converges
to the optimal solution. Hence, it is a suitable method for
the optimal control of large scale systems, such as automated
irrigation networks and smart building, in which their control
problem can be written in the form of a convex optimization
problem [7], [9].
In [10] it is shown that the decomposition of a large scale
system into disjoint neighborhoods of subsystems in which
subsystems with strong interaction are clustered into a neigh-
borhood; and subsequently, solving an optimal control prob-
lem for each neighborhood results in a simple distributed
optimal/suboptimal control. Therefore, in distributed optimal

control methods an important issue is how to pair inputs
and outputs. To answer this question, a few decomposition
methods have been developed in the last three decades. One
developed method is Relative Gain Array (RGA) [11] that
expresses interaction based on the d.c. gain. Although RGA
is a successful method for many systems, incapability to
afford non-minimum phase systems, insensitivity to delays
and focusing on just one frequency is the weakness of this
method. Similar methods have been also developed: Nidelinski
Index(NI) [12] in 1971 and Relative Interaction Array(RIA)
[13] in 1976 were developed which are also based on d.c gain.
Later in 1977, Relative Dynamic Gain Array(RDGA) [14] was
presented that expresses how interaction varies with frequency
and demonstrates bandwidth as an alternative for pairing. This
line of research was continued through Generalized Relative
Dynamic Gains(GRDG) [15]. The main restriction of GRDG
is to cope mainly with 2×2 systems. In 1986, using graph
theory, Nested ε Decompositions [16] with neglecting vectors
smaller than ε leads to decomposition of systems. In 1998,
Scaling algorithm and Reordering algorithm [17] were pre-
sented to transform system into diagonal dominance or block
diagonal dominance form. In 2000, using controllability and
observability gramians, Hankel Interaction Index array(HIIA)
[18], for choosing control structure was presented. This work
continued by Salgado and in 2004 Participation Matrix(PM)
was presented [19]. In 2003, a method for decomposition
of large scale systems to block diagonal dominance, using a
permutation matrix was presented [20].
All of these methods are incapable of decomposing large scale
systems into disjoint neighborhoods of subsystems with pre-
specified size for each neighborhood, which is the subject of
investigation in this paper.

B. Paper Contributions

In this paper, the distributed optimal control method of
[5], [6], [9], which is based on Jacobi iteration, is used to
solve the constrained linear quadratic finite horizon optimal
control problem, in which the size of each neighborhood is
assumed to be specific a priori for managing communication
load. Hence, choosing subsystems inside of each neighborhood
is an issue. New method for decomposition of systems into
disjoint neighborhoods of subsystems with specific size is
presented. To develop this method, two new notions of Interac-
tion Strength(IS) and Strength Weight(SW) are introduced and
used to obtain the best decomposition in terms of minimum
number of iterations for convergence to the optimal solution.
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The satisfactory performance of the proposed decomposition
method is illustrated via extensive computer simulation.

C. Paper Organization

The paper is organized as follows: In Section II the
distributed optimal control method with two-level architecture
for communication is presented and the problem formulation is
given. Section III is devoted to the new method for decomposi-
tion. In this section, the new notions of Interaction Strength and
Strength Weight for decomposition are presented. Simulation
results are given in Section IV; and the paper is concluded in
Section V by summarizing the main contributions of the paper.

II. DISTRIBUTED OPTIMAL CONTROL METHOD WITH
HIERARCHICAL ARCHITECTURE FOR COMMUNICATION

In many large scale systems, dynamical behavior can be
modeled by n distributed interacting linear time invariant
subsystems of the following form [8]

Si : xi[k + 1] = Aixi[k] +Biui[k] + vi[k], (1)
i = 1, 2, ..., n, k ∈ {0, 1, 2, ..., N − 1}

where xi is the state variable of the ith subsystem, ui is the
decision variable of the ith subsystem, and

vi[k] =

n∑
j=1,j 6=i

(Mijxj [k] +Nijuj [k]) (2)

is the interacting variable that summarizes the effect of the
other subsystems on Si. For the system (1) we are interested
in solving the following Linear-Quadratic (LQ) constrained
optimal control problem (problem (3)-(4)) subject to the dy-
namics of subsystems and operational constraints: xi[k] ∈ Xi

and ui[k] ∈ Gi , where Xi is a closed convex subset of real
Euclidean space with dimension ni > 0 (i.e., Xi ⊂ Rni )
modeling the constraint set on the ith state variable, and Gi
is closed convex subset of Rmi modeling the time invariant
constraint set on the ith decision variable.

min
u
{J(x[0], u1, ..., un), xi[k] ∈ Xi, ui[k] ∈ Gi,∀i, k} (3)

J(x[0], u1, ..., un) =

n∑
i=1

N−1∑
k=0

‖ xi[k]− xdi ‖
2

Q + ‖ ui[k] ‖2R
(4)

where x[0] is the vector of initial states, xdi are the desired
values for the state variables (desired set points) and Q ≥ 0
,R > 0 are weighting matrices.

It is shown in [6] that the above LQR optimal control
problem can be written as follows:

min
(u1,...,un)

{J(u1, ..., un), ui ∈ Hi,∀i}. (5)

where J(u1, ., un) is a quadratic functional of decision vari-
ables ui ∈ RNmi and Hi is a closed convex subset of RNmi .
In the above problem it is assumed that each of n interacting
subsystems: S1, ..., Sn is equipped with a decision maker
with limited computational power for solving the optimization
problem (5).

To solve this optimization problem, the distributed op-
timization technique of [5], [6], [9] is used. To manage

the communication load, this optimization technique uses
a two-level architecture for exchanging information among
distributed decision makers. This communication architecture
involves a collection of disjoint neighborhoods of subsystems.
In each neighborhood at least one decision maker is selected
as the neighborhood cluster head such that all the subsystems
of the neighborhood and also all the subsystems of the nearest
neighboring neighborhoods are within the effective commu-
nication range of the neighborhood cluster head so that the
communication graph between cluster heads is connected. That
is, there is a communication path between a cluster head to
any other cluster heads. Within a neighborhood, subsystems
are frequently communicate with each other, whereas com-
munication between neighborhoods via cluster heads is less
frequent. Obviously, the larger the size of neighborhood is, the
larger is the communication load in exchanging information
between subsystems inside the neighborhood. That is, com-
munication load is affected by the size of neighborhoods; and
hence, communication load can be managed by the size of
neighborhoods. Without loss of generality, suppose subsystems
S1, ..., Sn are distributed into q disjoint neighborhoods, as
follows: N1 = {S1, ..., Sl1},N2 = {Sl1+1, ..., Sl2}, ... ,Nq =
{Slq−1+1, ..., Sn}. Then, the distributed optimization technique
of [5], [6] approximates the solution of the optimization
problem (5) by taking the following three steps:

• Initialization: The information exchange between
neighborhoods at outer iterate t ∈ {0, 1, 2, ..., Tε − 1}
makes it possible for subsystem Si to initialize its local
decision variables as h0

i = uti ∈ Hi,∀i ∈ {1, ..., n},
where ui ∈ Hi is chosen arbitrary at t = 0.

• Inner iterate: Between every two successive outer
iterates there are p̄ inner iterates. Subsystem Si ∈
Nr(r ∈ {1, 2, ..., q}) performs p̄ inner iterates, as
follows:
For each inner iterate p ∈ {1, 2, ..p̄ − 1}, subsystem
Si first updates its decision variable via

hp+1
i = πjh

∗
i + (1− πj)hpi , (6)

where πj are chosen subject to
πj > 0, (j = 1, ..., n),

∑l1
j=1 πj =

1, ...,
∑n
j=lq−1+1 πj = 1 and h∗i = arg minhi∈Hi

J(h0
1, ..., h

0
lr
, h0
lr−1

, hplr−1+1, ..., hi, ..., h
p
lr
, h0
lr+1, ..., h

0
n)

(note that l0 = 0, lq = n). Then, it trades its updated
decision variable hp+1

i with all other subsystems in
its neighborhood Nr.

• Outer iterate: After p̄ inner iterates, there is an outer
iterate update as follows:

ut+1
i = λih

p̄
i + (1− λi)uti, (7)

where t ∈ {0, 1, ..., Tε − 1} and λi, i = {1, 2, ..., n},
are chosen subject to λi > 0, λ1 = ... = λl1 , λl1+1 =
... = λl2 , ... , λlq−1+1 = ... = λlq (λlq = λn),
λl1 + λl2 + ... + λlq = 1. Then, three is an outer
iterate communication, in which the updated decision
variable ut+1

i are shared between all neighborhoods;
and subsequently, between all subsystems.

The above Three-step algorithm is repeated Tε times.
When Tε → ∞, then uTεi converges to the optimal so-
lution of the optimization problem [9]. Hence, uTεi =
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(uTε
′

i [0] uTε
′

i [1] ... uTε
′

i [N − 1])
′ ∈ RNmi represents the

approximated solution of the optimization problem (5).

The communication load of the above iterative optimization
technique is managed by the size of neighborhoods [8]. Hence,
the size of neighborhoods must be determined so that the
communication load is acceptable. Now, for given values for
parameters πj , λi and specific size for each neighborhood, the
question is how to find the best clustering of subsystems inside
of each neighborhood that yields to the fastest convergence
rate to the optimal solution. In other words, the objective in
this paper is to find the best clustering of subsystems inside
each neighborhood that results in the minimum number of total
iteration for convergence as defined below.

Definition 2.1: (Total Number of Iteration for Conver-
gence): For a given ε > 0, the above three-step algorithm
is terminated as soon as the following inequality holds

|J(ut1, ...., u
t
n)− J(ut−1

1 , ...., ut−1
n )| ≤ ε (8)

Note that for small values for ε, there will be very small
improvement in the approximation of the optimal solution
by the above distributed optimization algorithm; and as the
algorithm converges, the algorithm can therefore be terminated
as soon as the above inequality holds. Now, let Tε be the
smallest integer such that (8) holds. Then, Tε is referred as
the total number of iterations for convergence.

We refer to J(uTε1 , ...., uTεn ) as an approximation of the op-
timal cost and the sequence (uTε1 , ...., uTεn ) as an approximation
of the optimal solution. For a given size of neighborhoods,
πj and λi, the objective in this paper is to find the best
decomposition for system that results in the minimum value
for Tε. A method for such a decomposition is given next.

III. DECOMPOSITION OF LARGE SCALE SYSTEM BASED
ON THE RESPONSE OF SYSTEM

In the distributed optimization technique of previous sec-
tion, decision variables are exchanged between subsystems
and/or neighborhoods. Consequently, the interaction between
subsystems must be expressed in terms of decision variables
uis. To achieve this goal, the distributed system (1) is repre-
sented in the following augmented form:

x[k + 1] = Ax[k] +Bu[k], (9)

where x[k] =
(
x
′

1[k] x
′

2[k] ... x
′

n[k]
)′

and u[k] =(
u
′

1[k] u
′

2[k] ... u
′

n[k]
)′

. Subsequently, the response of the
augmented system is as follows:

x[k] = Akx[0] +

k−1∑
i=0

Ak−i−1Bu[i]. (10)

Throughout, it is assumed that the system matrix A of the
augmented system is stable. Many large scale systems, such
as automated irrigation network and smart building have stable
dynamic. As system (9) is stable, when k → ∞, then µ∞ =
limk→∞

∑k−1
i=1 A

k−1−iB exists, where µ∞ is an indicator for
interactions between subsystems in terms of decision variables.
Based on this indicator and in order to decompose system
into disjoint neighborhoods with specific size, the Interaction
Strength (IS) is defined as follows.

Definition 3.1: (Interaction Strength): Let µa be a matrix
that contains the absolute value of each element of the matrix
µ∞. The ISij that represents the interaction between the
decision variable of the jth subsystem to the ith subsystem
is defined as follows:

ISij =
µa(i, j)

maxj(µa(i, j))
,

where µa(i, j) is the element of the matrix µa located at the
ith row and the jth column.

After finding the Interaction Strength matrix, IS = [ISij ],
the Strength Weight (SW) is defined as follows.

Definition 3.2: (Strength Weight): For each pair of subsys-
tems, the SW is defined as follows:

SW (ij) = ISij + ISji , i 6= j. (11)

Similarly, for each collection of n subsystems, the SW is
defined as follows:

SW (i1, ..., in) = ISi1i2 + ISi2i1 + ...+ ISin−1in + ISinin−1
.

(i1 6= i2 6= ... 6= in)
(12)

Hence, SW represents the total amount of interactions among
a collection of subsystems.

Now, to see how using these two notions of IS and
SW, a decomposition with specific size for neighborhoods is
obtained, consider the following example.

Example 3.1: Consider a distributed system with stable
augmented form as given below:

x[k + 1] = Ax[k] +Bu[k], (13)

where the A matrix is given by
(14) (the next page) and B =
diag(0.4322, 0.5649, 0.7460, 0.3170, 0.3459, 0.4390, 0.5426,
0.3456, 0.6427, 0.3356)

Suppose that we are interested in decomposing the system
(13) into five neighborhoods of size two. To achieve this
goal, the IS matrix and SWs for each pair of subsystems are
computed. In (15) the IS matrix for system (13) is given.

Using this matrix, SWs are calculated (using Definition3.2)
from the above IS matrix. Now, by inspection of SWs, it
follows that the pair {9, 10} has the largest SW followed by
pairs {5, 6}, {3, 4}, {1, 2}, {7, 8}. Therefore, we decompose
the system (13) as follows:

N1 = {s9, s10}, N2 = {s5, s6}, N3 = {s3, s4},
N4 = {s1, s2}, N5 = {s7, s8}

Now, suppose we are interested in decomposing the system
(13) into two neighborhoods of size five. SWs for this case is
calculated by the following formula from the IS matrix.

SW (i1, ..., i5) = ISi1i2 + ISi2i1 + ...+ ISi4i5 + ISi5i4 .

(i1 6= i2 6= ... 6= i5).
(16)
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A =



0.6930 −0.6300 −0.0839 0.0832 −0.0088 −0.0188 −0.0216 0.0393 −0.0541 −0.0169
0.5931 0.6371 −0.0645 −0.0262 0.0562 0.0643 0.0633 −0.0133 −0.0652 −0.0274
0.0123 0.0514 0.5951 −0.5940 0 0 0 0 0 0
0.0269 0.0555 0.6550 0.7356 0 0 0 0 0 0.0186
0.0244 0.0481 0 0 0.5100 −0.5200 0 0 0 0.0958
0.0248 0.0505 0 0 00.5122 0.6260 0 0 0 0
0.0472 0.0236 0 0 0 0 0.6835 0.7151 0
0.0135 0.0494 0 0 0 0 −0.6000 0.612 0 0
0.0593 0.0205 0 0 0 0 0 0 0.6100 −0.6335
0.0420 0.0274 0 0.0926 0.0854 0 0 0 0.7000 0.7180


(14)

IS =



0.4331 1.0000 0.1340 0.0206 0.0850 0.0057 0.0881 0.0474 0.0276 0.0213
1.0000 0.6661 0.0694 0.1490 0.0307 0.0162 0.0350 0.0260 0.1102 0.0648
0.0781 0.0153 1.0000 0.9788 0.0017 0.0029 0.0065 0.0010 0.0418 0.0160
0.0747 0.0121 1.0000 0.2704 0.0003 0.0016 0.0047 0.0002 0.0065 0.0070
0.0150 0.0103 0.0091 0.0004 0.5664 1.0000 0.0005 0.0004 0.1294 0.0362
0.1763 0.0147 0.0378 0.0257 0.8311 1.0000 0.0136 0.0014 0.1766 0.0612
0.1333 0.0177 0.0178 0.0162 0.0040 0.0021 0.8406 1.0000 0.0085 0.0046
0.0210 0.0558 0.0071 0.0008 0.0047 0.0003 1.0000 0.3402 0.0018 0.0013
0.0622 0.0123 0.2799 0.0787 0.0709 0.1299 0.0052 0.0008 0.8298 1.0000
0.0758 0.0730 0.0944 0.0279 0.0142 0.0387 0.0096 0.0037 1.0000 0.2914


(15)

Then, by inspection, it follows that the collection
{1, 2, 3, 9, 10} has the largest SW. Hence, the system (13) is
decomposed as follows:

N1 = {s1, s2, s3, s9, s10}, N2 = {s4, s5, s6, s7, s8}

Now, suppose we are interested in decomposing the system
(13) into two neighborhoods of size four and one neighborhood
with size two. SWs for this case is calculated by the following
formula from the IS matrix.

SW (i1, ..., i4) = ISi1i2 + ISi2i1 + ...+ ISi3i4 + ISi4i3 .

(i1 6= i2 6= ... 6= i4).
(17)

Then, by inspection, it follows that the collection
{1, 2, 3, 4} has the largest SW after that {5, 6, 7, 8} has the
large value. Therefore, these two set cluster as two neighbor-
hoods and the rest {9, 10} puts in one neighborhood. Hence,
the system (13) is decomposed as follows:

N1 = {s1, s2, s3, s4}, N2 = {s5, s6, s7, s8}, N3 = {s9, s10}

IV. SIMULATION STUDY

TABLE I. COMPARISON OF Tε FOR ε = 8 FOR SEVERAL
DECOMPOSITION WITH TWO SUBSYSTEMS IN EACH NEIGHBORHOOD

Subsystems placement Numbers of iteration (Tε)

{s1, s2}, {s3, s5}, {s4, s6}, {s7, s9}, {s8, s10} 65
{s1, s2}, {s3, s4}, {s5, s6}, {s7, s8}, {s9, s10} T∗ε = 24
{s1, s9}, {s2, s5}, {s3, s10}, {s4, s7}, {s6, s8} 25
{s1, s2}, {s3, s4}, {s5, s8}, {s6, s7}, {s9, s10} 43
{s1, s10}, {s2, s9}, {s3, s8}, {s4, s7}, {s5, s6} 32

In the distributed optimization technique of Section II,
the decision variables are exchanged between subsystems and
neighborhoods. Now, as the Interaction Strength (IS) in the
proposed decomposition method of Section III is defined in

TABLE II. COMPARISON OF Tε FOR ε = 8 FOR SEVERAL
DECOMPOSITION WITH FIVE SUBSYSTEMS IN EACH NEIGHBORHOOD

Subsystems placement Numbers of iteration (Tε)

{s1, s3, s5, s7, s9}, {s2, s4, s6, s8, s10} 38
{s1, s4, s7, s9, s10}, {s2, s3, s5, s6, s8} 32
{s1, s3, s4, s5, s6}, {s2, s7, s8, s9, s10} 27
{s1, s5, s6, s9, s10}, {s2, s3, s4, s7, s8} 27
{s1, s2, s5, s6, s9}, {s3, s4, s7, s8, s10} 33
{s1, s2, s3, s5, s9}, {s4, s6, s7, s8, s10} 33
{s1, s2, s3, s9, s10}, {s4, s5, s6, s7, s8} T∗ε = 25

TABLE III. COMPARISON OF Tε FOR ε = 8 FOR SEVERAL
DECOMPOSITION WITH TWO NEIGHBORHOODS WITH FOUR SUBSYSTEMS

IN ADDITION ONE NEIGHBORHOOD WITH TWO SUBSYSTEMS

Subsystems placement Numbers of iteration (Tε)

{s1, s2, s3, s8}, {s4, s5, s6, s7}, {s9, s10} 37
{s1, s4, s7, s9}, {s2, s5, s6, s8}, {s3, s10} 49
{s1, s2, s3, s4}, {s5, s6, s8, s9}, {s7, s10} 44
{s1, s3, s9, s10}, {s2, s5, s6, s8}, {s4, s7} 44
{s1, s2, s3, s4}, {s5, s6, s7, s8}, {s9, s10} T∗ε = 15
{s1, s2, s5, s6}, {s3, s4, s7, s8}, {s9, s10} 16

terms of decision variables, this decomposition method results
in the best clustering of subsystems into disjoint neighborhoods
with specific size. For the purpose of illustration, we
apply the Jacobi based distributed optimization method
to the system (13) subject to the finite horizon quadratic
cost functional (3)-(4) with the following specifications:
N = 6, Q = 100.I, R = I, xi[k] ∈ [−12, 12], ui[k] ∈ [−8, 8],
n = 10,p̄ = 10,xi[0] = 0(i = {1, 2, ..., 10}), xd =
(3.5377, 2.8339,−2.2588,−4.8622, 3.3188,−1.3077,−3.4336,
0.3426, 3.5784, 2.7694)′.

The simulation results for the above optimization problem
are compared for different decompositions of the system (13),
as follow:
In five-neighborhood decomposition with size two, we set
λi = 1

2 ; and for each subsystem inside a neighborhood, we
set the parameter πj as πj = 1

2 . We also set ε = 8 and use
the stopping criterion of Definition 2.1. Via extensive search
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Fig. 1. Simulation Results for 5 neighborhoods with 2 subsystems

and by calculation of Tε of all pairs, it is determined that
T ∗ε = 24, for ε = 8. For ε = 8, Tεs for several of other
decompositions have been given in Table I. From this table, it
is clear that the proposed decomposition of Section III finds
the best decomposition without requiring exhausting search.

In two-neighborhood decomposition with size five, we set
λi = 1

2 ; and for each subsystem inside a neighborhood, we
set the parameter πj as πj = 1

5 . Via extensive search and
by calculation Tε of all collections of five subsystems, it is
determined that T ∗ε = 25, ε = 8. For ε = 8, Tε for several
decomposition is given in Table II. From this table it is clear
that the proposed decomposition of Section III finds the best
decomposition without requiring any frustrating effort.

Fig. 1 illustrates the value of J(ut1, ..., u
t
10), u5 and x5

for the condition simulated and five-neighborhood case. As it
is clear from this figure after T ∗ε = 24 iterations, there is no
significant improvement in the value of the cost functional;
while the value of x5 is close enough to the desired set
point. Therefore, the iterative algorithm can be terminated at
T ∗ε = 24.

Fig. 2 illustrates the value of J(ut1, ..., u
t
10), u5 and x5 for

the condition simulated and two-neighborhood case. As it is
clear from this figure after T ∗ε = 25 iterations, there is no
significant improvement in the value of the cost functional;
while the value of x5 is close enough to the desired set point.
Therefore, the iterative algorithm can be terminated at T ∗ε =
25.
Fig. 3 illustrates the value of J(ut1, ..., u

t
10), u5 and x5 for

the condition simulated and 3-neighborhood case which are
heterogeneously. As it is manifest from the figure, after T ∗ε =
15 iterations the cost function would not change and the value
of x5 reach to desired value.
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Fig. 2. Simulation Results for 2 neighborhoods with 5 subsystems
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Fig. 3. Simulation Results for 2 neighborhoods with 4 subsystems and 1
neighborhood with 2 subsystems

V. CONCLUSION

This paper presented a new method for decomposing large
scale stable systems into disjoint neighborhoods of subsystems
with specific size determined a priori for managing commu-
nication load of the Jacobi based distributed optimal control
method of [5], [6], [9]. The proposed decomposition method
clusters subsystems into disjoint neighborhoods based on the
strength of control inputs interaction between subsystems. The
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proposed method is a new method and uses the time re-
sponse of system for decomposition. Using extensive computer
simulation it was illustrated that this method finds the best
decomposition. For future, it is interesting to extend the results
of this paper to unstable systems.
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