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Abstract

This paper is concerned with the stability of linear time invariant dynamic systems over the packet

erasure channel subject to minimum bit rate constraint when encoder and decoder are unaware of

control signal. This assumption results in co-designing encoder, decoder and controller. Encoder, decoder,

controller and conditions relating transmission rate to packet erasure probability and eigenvalues of the

system matrix A are presented for almost sure asymptotic stability of linear time invariant dynamic

systems over the packet erasure channel with feedback acknowledgment. When the eigenvalues of the

system matrix A are real valued, it is shown that the obtained condition for stability is tight. Simulation

result illustrates the satisfactory performance of the proposed encoder, decoder and controller for almost

sure asymptotic stability.

Index Terms

Networked control system, almost sure stability, packet erasure channel.

I. INTRODUCTION

A. Motivation and Background

One of the issues that has begun to emerge in a number of applications is how to stabilize a

dynamic system over a communication channel subject to imperfections (e.g., packet dropout,

limited bit rate). Some examples of systems that are required to be stabilized over communi-

cation channels subject to imperfections are automated oil drilling system, smart oil well and

coordination system of autonomous vehicles. One scenario for the latter example is the problem
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of coordination of an autonomous road vehicle using a set of cameras installed along the road.

This cameras provide information on the position and orientation of autonomous vehicle with

respect to the road and other vehicles for the on board controller of autonomous vehicle. Using

the received information from the road, the on board controller is able to properly coordinates

autonomous vehicle. Similar scenario is the coordination of unmanned aerial vehicles using

off board sensors. In these scenarios, the information from cameras/sensors, which are not co-

located with the controlled system, must be transmitted to the on board controller via (obviously)

wireless links, in which this type of transmission is in general subject to imperfections.

Some results addressing basic problems in the stability of dynamic systems over communi-

cation channels subject to imperfections can be found in [1]-[13]. In the literature (e.g., [11]),

under the assumptions that there exist noiseless feedback acknowledgments from receiver to

encoder; and encoder and decoder are aware of control signal, a controller and a differential

coding technique are presented for almost sure asymptotic stability of linear dynamic systems

over the packet erasure channel with erasure probability α. It is also shown that under the above

assumptions, the following condition

Ri >
1

1− α
max{0, log2 |λi(A)|}, i = 1, 2, ..., n, (1)

where Ri bits is a component of the transmission rate R = R1 +R2 + ...+Rn that corresponds

to the ith eigenvalue λi(A) of the system matrix A ∈ Rn×n, is a sufficient condition for almost

sure asymptotic stability. That is, the stability of linear time invariant dynamic systems over the

packet erasure channel with feedback acknowledgment is possible by implementing the rates Ris

that satisfy the condition (1) in the coding technique of [11]. Furthermore, using data processing

inequality [14], independent of the choice of encoder, decoder and controller, it is shown that

(1 − α)R ≥
∑

i;|λi(A)|>1 log2 |λi(A)|, known as the eigenvalues rate condition, is a necessary

condition for almost sure asymptotic stability of linear dynamic systems over the packet erasure

channel. Obviously, there is a small gap between necessary condition and sufficient condition

for almost sure asymptotic stability because the eigenvalues rate condition does not imply the

stronger condition (1). For illustration, suppose A =

(
5 −1

6 0

)
and α = 0.3. Then, from the

eigenvalues rate condition we have R ≥ 3.69 and hence the smallest acceptable rate is R = 4 bits.

But, from the stronger condition (1), we have R1 > 2.26 and R2 > 1.42 and hence the smallest

rates for stability are R1 = 3 bits and R2 = 2 bits giving R = 5 bits as the smallest transmission

rate for stability. Nevertheless, for those cases that the eigenvalues rate condition implies the

stronger condition (1), we can conclude that the eigenvalues rate condition is a necessary and



sufficient condition for almost sure asymptotic stability under the above assumptions; and hence,

the condition (1) determines the minimum required transmission rate for stability. Because for

many cases, the eigenvalues rate condition implies the stronger condition (1), throughout we

are concerned with the cases where the eigenvalues rate condition and the condition (1) are

equivalent.

For linear systems, the availability of control signal for both encoder and decoder simplifies

the design of communication part (encoder and decoder) and controller because under this

assumption the design of communication part and controller can be done separately [11]-[13];

instead of co-designing encoder, decoder and controller, which is obviously more difficult to

do. But, in the discussed scenarios (the coordination of autonomous vehicles) encoder does not

necessarily have access to control signal since sensors (and hence encoder) are not co-located with

the controlled system which is directly affected by control signal. This motivates us to address a

basic problem that can be associated with the discussed sensations where encoder and decoder are

unaware of control signal. Moreover, the class of linear dynamic systems is an important class of

systems. Many systems have linear dynamics. Also, nonlinear smooth dynamics, which includes

a large number of real world nonlinear systems, can be approximated around working points by

linear dynamics. The packet erasure channel with feedback acknowledgment is also an abstract

model for the commonly used wireless information technologies, such as mobile communication,

WiFi and Zigbi. The latter technology is subject to limited power consumption; and hence, its

transmission is subject to limited bit rate constraint. Limitation in the power consumption of Zigbi

modules also results in limitation in computational power of Zigbi module; because computation

significantly consumes power; and hence, the implemented coding algorithm in Zigbi module

must be as simple as possible to prolong the life time of Zigbi module. In addition, one of the

desired stability criteria for the stability of dynamic systems is almost sure stability criterion.

These motivate us to address the problem of almost sure stability of linear dynamic systems

over the packet erasure channel with feedback acknowledgment when encoder and decoder are

unaware of control signal, as shown in the block diagram of Fig. 1.

B. Paper Contributions

This paper extends the available results in almost sure asymptotic stability of linear dynamic

systems over the packet erasure channel subject to minimum bit rate constraint by relaxing the

assumption of the availability of control signal for encoder and decoder. Under these assumptions,

an encoder, decoder and a controller are co-designed for linear dynamic systems over the packet
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Fig. 1. A basic problem in control over communication.

erasure channel with feedback acknowledgment that results in almost sure asymptotic stability

provided a condition relating transmission rate to packet erasure probability and eigenvalues of

the system matrix A holds. When the eigenvalues of the system are real valued it is shown

that the obtained condition is a necessary and sufficient condition for stability under the relaxed

assumption; and hence, it is tight.

C. Paper Organization

The paper is organized as follows: In Section II the problem formulation is given. Section III is

devoted to the stability result. In this section, an encoder, decoder, controller and a tight condition

for almost sure asymptotic stability are presented. Simulation results are given in Section IV;

and the paper is concluded in Section V by summarizing the main contributions of the paper.

II. PROBLEM FORMULATION

Throughout, certain conventions are used: | · | denotes the absolute value, log2(·) denotes

the logarithm of base 2 and ‘=̇’ means ‘by definition is equivalent to’. E[·] denotes the ex-

pected value, R the set of real numbers and diag(·) denotes the diagonal/block diagonal matrix.

Z̃t=̇(Z̃0, Z̃1, ..., Z̃t). || · || denotes the Euclidean norm and In the identity matrix with dimension

n.

This paper is concerned with a basic problem in the stability of dynamic systems over

communication channels subject to imperfections, as shown in the block diagram of Fig. 1.



The building blocks of Fig. 1 are described below.

Dynamic System: The dynamic system is described by the following fully observed linear time

invariant system:

Xt+1 = AXt +BUt, X0 = ξ, Yt = Xt, t ∈ N+=̇{0, 1, 2, 3, ...}, (2)

where Xt ∈ Rn is the state of the system, Yt is the observation signal, the random variable ξ

is the value of initial state, which is unknown for controller, and Ut ∈ Rm is the control signal.

Throughout, it is assumed that the probability measure associated with the initial state X0 with

components X(i)
0 , i = {1, 2, ..., n}, has bounded support. That is, for each i ∈ {1, 2, ..., n} there

exists a compact set [−L(i)
0 , L

(i)
0 ] ∈ R such that Pr(X

(i)
0 ∈ [−L(i)

0 , L
(i)
0 ]) = 1. It is also assumed

that the pair (A,B) is controllable.

Communication Channel:Communication channel between system and controller is the packet

erasure channel with feedback acknowledgment. It is a digital channel that transmits a packet of

binary data in each channel use. Let Zt denote the channel input at time instant t ∈ N+, which

is a packet of binary data containing information bits. Let also Z̃t denote the corresponding

channel output. Also, let e denote the erasure symbol. Then,

Z̃t =

 Zt with probability 1− α

e with probability α

That is, this channel erases a transmitted packet with probability α. Throughout, it is assumed

that the erasure probability α is known a priori.

In the channel considered in this paper, there are feedback acknowledgments from receiver to

encoder. That is, if a transmission is successful, an acknowledgment bit is sent from receiver

to encoder indicating that the transmission was successful. The packet erasure channel with

feedback acknowledgment is an abstract model for the commonly used data transmission tech-

nologies, such as the Internet, WiFi, mobile communication and Zigbi.

In the closed loop feedback system of Fig. 1, encoder and decoder are used to compensate

the effects of random packet dropout.

Encoder: Encoder is a causal operator denoted by Zt = E(Yt, Z̃
t−1) that maps the system output

Yt (by the knowledge of channel outputs) to channel input Zt, which is a string of binaries with

length R.

Decoder: Decoder is a causal operator denoted by X̂t = D(Z̃t) that maps the channel output to

X̂t (the estimate of the state variable at decoder).



Controller: Controller has the following structure Ut = KX̂t, where K is the static controller

gain.

The objective of this paper is to design an encoder, decoder and a controller that result in

almost sure asymptotic stability of the system (2) defined in the following, by transmitting the

minimum required bits.

Definition 2.1: (Almost Sure Asymptotic stability). Consider the block diagram of Fig. 1

described by the linear dynamic system (2) over the packet erasure channel, as described above.

It is said that the system is almost sure asymptotic stabilizable if there exist an encoder, decoder

and a controller such that the following property holds:

Pr( lim
t→∞

Xt = 0) = 1.

III. STABILITY RESULT

In this section, we first address the stability question for the scalar system and then we extend

the results to the vector case.

A. Scalar Case

In this section, we suppose that the dynamic system (2) is scalar and we present an encoder,

decoder, controller and a necessary and sufficient condition on the length of transmitted packets

R at each time instant, under which the dynamic system (2) in the block diagram of Fig. 1 is

almost sure asymptotic stable.

Encoding and Decoding Technique: At time instant t = 0, we notice that X0 ∈ [−L0, L0]. At

this time instant, the encoder partitions the interval [−L0, L0] into 2R equal sized, non-overlapping

sub-intervals and the center of each sub-interval is chosen as the index of that interval. Upon

observing the initial state X0, the index of the sub-interval that includes X0 is encoded into R

bits and transmitted to the decoder through the packet erasure channel. If the decoder receives

this R bits successfully, it identifies the index of the sub-interval where X0 lives in; and the value

of this index is chosen as X̂0 (the estimate of X0 at receiver). Therefore, the estimation error

for this case is bounded above by |X0 − X̂0| ≤ V0 = L0

2R
. But if erasure occurs, then X̂0 = 0;

and therefore, |X0 − X̂0| ≤ V0 = L0.

At time instant t = 1, X1 = AX0+BKX̂0. Let E0=̇X0−X̂0, then X1 = (A+BK)X0−BKE0 ∈
[−L1, L1], where

L1 = |A+BK|L0 + |BK|M0L0, M0 =

 1
2R
, Pr(M0 = 1

2R
) = 1− α

1, Pr(M0 = 1) = α.
(3)



Note that M0 is the indicator of successful transmission or failed transmission at time instant

t = 0. As the encoder has access to the feedback acknowledgment of the time instant t = 0, it

knows the value of M0 at time instant t = 1.

Similar to the previous time instant, at time instant t = 1, the encoder partitions the interval

[−L1, L1] into 2R equal sized, non-overlapping sub-intervals and the center of each sub-interval

is chosen as the index of that interval. Upon observing X1, the index of the sub-interval that

includes X1 is encoded into R bits and transmitted to the decoder through the packet erasure

channel. Similarly, if these R bits are received successfully, the decoder identifies the index of

the sub-interval that contains X1 and the value of this index is chosen as X̂1. Therefore, the

estimation error for this case is bounded above by |E1|=̇|X1 − X̂1| ≤ V1 = L1

2R
. But if erasure

occurs, then X̂1 = 0; and therefore |E1| = |X1 − X̂1| ≤ V1 = L1.

By following a similar procedure, as described above, the sequence X̂0, X̂1, X̂2, ... are constructed

at the decoder.

Now, we must show that using the above coding technique there exists a controller that results

in almost sure asymptotic stability. This result is shown in the following proposition.

Proposition 3.1: Consider the control system of Fig. 1 described by the dynamic system (2)

over the packet erasure channel with erasure probability α, as described earlier. Suppose that

the transmission rate R satisfies the following inequality:

(1− α)R > max{0, log2 |A|}. (4)

Then, using the proposed encoding and decoding technique and Ut = −A
B
X̂t, we have almost

sure asymptotic stability of the form Xt → 0, P-a.s.; or equivalently, Pr(limt→∞Xt = 0) = 1.

Proof: Choose any rate R that satisfies the condition (4). For this rate, define the random variable

Mt as follows:

Mt =

 1
2R
, Pr(Mt = 1

2R
) = 1− α

1, Pr(Mt = 1) = α.
(5)

This random variable is the indicator of successful transmission or failed transmission at time

instant t. Therefore, it is independent of the other variables Mt′ , t′(∈ N+) 6= t. It is also clear

from (5) that the process {Mt}t∈N+ is identically distributed. So, the random process {Mt}t∈N+

is an i.i.d. process.

Using the above encoding and decoding technique and controller Ut = KX̂t, we have

Xt+1 = (A+BK)Xt −BKEt, (Et=̇Xt − X̂t), X0 ∈ [−L0, L0],



and hence

|X1| ≤ |A+BK|L0 + |BK|M0L0=̇L1

|X2| ≤ |A+BK|L1 + |BK|M1L1=̇L2

.

.

.

|Xt| ≤ |A+BK|Lt−1 + |BK|Mt−1Lt−1=̇Lt.

From the recursive equation Lt = (|A+BK|+ |BK|Mt−1)Lt−1, which defines an upper bound

on |Xt|, it follows that

Lt = L0

t−1∏
j=0

(|A+BK|+ |BK|Mj) = L02
t( 1

t

∑t−1
j=0 log2(|A+BK|+|BK|Mj)). (6)

From the definition that we have for the i.i.d. process Mj , for the i.i.d. process |A + BK| +
|BK|Mj , we also have

|A+BK|+ |BK|Mj =

 |A+BK|+ |BK|
2R

, with probability 1− α

|A+BK|+ |BK|, with probability α.

Therefore, from the strong law of large numbers [15], we have

lim
t→∞

1

t

t−1∑
j=0

log2(|A+BK|+ |BK|Mj) = E[log2(|A+BK|+ |BK|M0)]

= (1− α) log2(|A+BK|+ |BK|
2R

) + α log2(|A+BK|+ |BK|). (7)

Now, if the rate R is chosen such that the following inequality holds

(1− α) log2(|A+BK|+ |BK|
2R

) + α log2(|A+BK|+ |BK|) < 0; (8)

then from (7) and (6) it follows that Lt → 0, as t → ∞, P-a.s.; and hence, Xt → 0, P-a.s.

For the stabilizing gain K = −A
B

, the condition (8) is reduced to the condition (4). Hence,

using the proposed encoding and decoding technique with rate R satisfying the condition (4)

and controller Ut = −A
B
X̂t, the system is almost sure asymptotically stable.

We have the following corollary as a result of the above proposition and ([11], Proposition 3.3).

Corollary 3.2: The condition (4) is a necessary and sufficient condition for almost sure

asymptotic stability of the scalar version of the dynamic system (2) over the packet erasure

channel as shown in the block diagram of Fig. 1.



Proof: From the above proposition it follows that the condition (4) is a sufficient condition under

which there exist an encoder, decoder and a controller for almost sure asymptotic stability of the

scalar version of the dynamic system (2) over the packet erasure channel. On the other hand, as

shown in ([11], Proposition 3.3), independent of the choice of encoder, decoder and controller,

the condition (4) is a necessary condition for almost sure asymptotic stability of linear scalar

dynamic systems over the packet erasure channel. Hence, the condition (4) is a necessary and

sufficient condition.

Remark 3.3: Using the proposed encoding and decoding technique and the controller Ut =

−A
B
X̂t and by setting the transmission rate R as the smallest integer that is greater than or

equivalent to 1
1−α max{0, log2 |λi(A)|}, almost sure asymptotic stability by transmitting the

minimum required bits is achieved.

As the encoder and decoder are unaware of control signal, unlike [11], to have almost sure

asymptotic stability by transmitting with the minimum required bits, the design of communication

part (encoder and decoder) and controller cannot be done separately; and encoder, decoder and

controller must be co-designed. Under the assumption that encoder and decoder are aware of

control signal, in the design of communication part, without loss of generality, we can assume

that Ut = 0 as encoder by the knowledge of control signal can exclude the effects of control signal

from encoded message; and subsequently, decoder by including the effects of control signal to

the reconstructed message, reconstructs the state variable of the controlled system. Using this

approach, a differential coding technique, which transmits the quantized version of the error

between message and an estimate of the reconstructed message at decoder, is presented in [11]

for almost sure asymptotic tracking of the form X̂t → Xt, P-a.s., with minimum transmission

rate. On the other hand, under the separation design approach, in the design of controller, we can

assume X̂t = Xt. That is, under the separation design approach, controller is designed without

considering communication imperfections; and consequently, any gain K such that |A+BK| < 1

results in almost sure asymptotic stability by transmitting with minimum required bits. However,

under the co-design approach, as it is clear from the inequality (8), the design of controller

affects the design of communication part such that the static controller gain K must be chosen

as K = −A
B

to have stability by transmitting with the minimum required bits using controller

Ut = KX̂t and the proposed encoding and decoding technique. For partially observed continuous

and discrete time linear dynamic systems over Additive White Gaussian Noise (AWGN) channel,

under the assumption that encoder and decoder are aware of control signal, the separation design



approach also results in desired tracking and stability [12],[13].

B. Vector Case

Now, suppose Xt ∈ Rn, the system matrix A has distinct real eigenvalues, real multiple

eigenvalues and distinct complex conjugate eigenvalues. Suppose also that the matrix B is

invertible. Hence, there always exists an invertible real similarity transformation matrix Φ ∈ Rn×n

such that ΦAΦ−1=̇Γ = diag(J1, J2, ..., Jm) [16]. Where each Ji, i = 1, 2, ...,m, is a Jordan block.

The Jordan block associated with a real eigenvalue λi(A) with multiplicity di is

λi(A) a 0 . . . 0 0

0 λi(A) b . . . 0 0

.

.

.

0 0 0 . . . λi(A) c

0 0 0 . . . 0 λi(A)


where a, b, c ∈ {0, 1} depending on the rank of matrix (λi(A)In−A). The Jordan block associated

with the complex conjugate pair of eigenvalues λi(A) = σ ±
√
−1ω (ω 6= 0) is

(
σ ω

−ω σ

)
.

Now, consider the following similarity transformation Zt = ΦXt. Under this transformation,

the system (2) is transformed to the following system

Zt+1 = ΓZt + ΦBUt. (9)

Let Ut = (ΦB)−1Vt, where Vt = (V
(1)
t V

(2)
t . . . V

(n)
t )′ ∈ Rn is the control vector of

the transformed system (9), which has the following equivalent representation:

Zt+1 = ΓZt + Vt. (10)

System (10) consists of m independent sub-systems of the following form Z
(i)
t+1 = JiZ

(i)
t +V

(i)
t ,

i = {1, 2, ...,m}. Therefore, to show that the vector Zt converges to zero, almost surely, it is

enough to show that each independent sub-system is asymptotically stable, almost surely.

Note that as Zt = ΦXt, where Φ is an invertible matrix, almost sure asymptotic stability of Zt

implies almost sure asymptotic stability of Xt and vice versa. Hence, by addressing the almost

sure stability question of Zt, we address the stability question of Xt. Note also that at time

instant t = 0, using the transformation ΦX0 the encoder and decoder can compute the boxes



[−H(j)
0 , H

(j)
0 ], j = {1, 2, ..., n} that contain the components of the vector Z0.

For the vector case, at each time instant t, upon observing Xt, the encoder computes Zt = ΦXt

and the encoding and decoding technique of Section III-A is applied to each component of the

vector Zt by defining upper bounds on each component of the vector Zt. When the encoder en-

codes all the components of the vector Zt, it transmits a packet with length R = R1+R2+...+Rn

bits to the decoder through the packet erasure channel; and the decoder reconstructs each

component of the vector Zt following the decoding technique of Section III-A and outputs

Ẑt, which is the reconstruction of Zt at the end of communication.

Having that, in the following propositions, we design control vector Vt; and we present

sufficient conditions on each component of the transmission rate to have almost sure asymptotic

stability of Zt; and hence, almost sure asymptotic stability of Xt by applying Ut = (ΦB)−1Vt.

We start from the case of Ji = λi(A), where λi(A) is a real distinct eigenvalue.

Proposition 3.4: Consider the control system of Fig. 1 described by the dynamic system (11)

over the packet erasure channel with erasure probability α, as described earlier.

Z
(j)
t+1 = JiZ

(j)
t + V

(j)
t , Z

(j)
t , V

(j)
t ∈ R, Ji = λi(A). (11)

Suppose that the rate Rj satisfies the following inequality (1 − α)Rj > max{0, log2 |λi(A)|}.
Then, by implementing the control signal V (j)

t = −λi(A)Ẑ
(j)
t , we have almost sure asymptotic

stability of the form Z
(j)
t → 0, P-a.s.

Proof: The proof follows along the same lines of the proof of Proposition 3.1.

Now, we extend the above result when Ji corresponds to real eigenvalues with multiplic-

ity di > 1. In the following proposition, without loss of generality, we suppose that Ji =(
λi(A) 1

0 λi(A)

)
and we design control vector and present a sufficient condition on transmis-

sion rates for almost sure asymptotic stability.

Proposition 3.5: Consider the control system of Fig. 1 described by the dynamic system (12)

over the packet erasure channel with erasure probability α, as described earlier.(
Z

(j)
t+1

Z
(j+1)
t+1

)
=

(
λi(A) 1

0 λi(A)

)(
Z

(j)
t

Z
(j+1)
t

)
+

(
V

(j)
t

V
(j+1)
t

)
. (12)

Suppose that the rate Rj = Rj+1 satisfy the following inequality

(1− α)Rj > max{0, log2 |λi(A)|}. (13)

Then, by implementing the control signals V (j)
t = −λi(A)Ẑ

(j)
t −Ẑ

(j+1)
t and V (j+1)

t = −λi(A)Ẑ
(j+1)
t ,

we have almost sure asymptotic stability of the form Z
(j)
t → 0, P-a.s. and Z(j+1)

t → 0, P-a.s.



Proof: From the dynamic system (12) for V (j)
t = −λi(A)Ẑ

(j)
t −Ẑ

(j+1)
t and V (j+1)

t = −λi(A)Ẑ
(j+1)
t

it follows that Z(j+1)
t+1 = λi(A)Z

(j+1)
t − λi(A)Ẑ

(j+1)
t = λi(A)E

(j+1)
t , where E

(j+1)
t =̇Z

(j+1)
t −

Ẑ
(j+1)
t . Now, for this dynamic system along the same lines of the proof of Proposition 3.1, it is

shown that Z(j+1)
t → 0, P-a.s. as Rj+1 = Rj >

1
1−α max{0, log2 |λi(A)|}.

For the dynamic system (12) for Z(j)
t we have

Z
(j)
t+1 = λi(A)Z

(j)
t + Z

(j+1)
t − λi(A)Ẑ

(j)
t − Ẑ

(j+1)
t

= λi(A)E
(j)
t + E

(j+1)
t , E

(j)
t =̇Z

(j)
t − Ẑ

(j)
t . (14)

Now, let L(j)
t be an upper bound on |Z(j)

t |, that is, |Z(j)
t | ≤ L

(j)
t . Then, from the dynamic system

(14) L(j)
t is calculated as follows

|Z(j)
0 | ≤ H

(j)
0 = L

(j)
0

|Z(j)
1 | ≤ |λi(A)||E(j)

0 |+ |E
(j+1)
0 | ≤ |λi(A)|M0H

(j)
0 +M0H

(j+1)
0 = L

(j)
1

|Z(j)
2 | ≤ |λi(A)||E(j)

1 |+ |E
(j+1)
1 | ≤ |λi(A)|M1L

(j)
1 +M1L

(j+1)
1 = L

(j)
2

.

.

.

|Z(j)
t | ≤ |λi(A)||E(j)

t−1|+ |E
(j+1)
t−1 | ≤ |λi(A)|Mt−1L

(j)
t−1 +Mt−1L

(j+1)
t−1 = L

(j)
t .

Note that Mt is an i.i.d. stochastic process with the following description

Mt =

 1

2Rj
, Pr(Mt = 1

2Rj
) = 1− α

1, Pr(Mt = 1) = α.

From the above analysis it follows that(
L
(j)
t

L
(j+1)
t

)
= Mt−1

(
|λi(A)| 1

0 |λi(A)|

)(
L
(j)
t−1

L
(j+1)
t−1

)
,

(
L
(j)
0

L
(j+1)
0

)
=

(
H

(j)
0

H
(j+1)
0

)
. (15)

Now, by expanding the dynamic model (15) it follows that(
L
(j)
t

L
(j+1)
t

)
= (

t−1∏
j=0

Mj)

(
|λi(A)|t t|λi(A)|t−1

0 |λi(A)|t

)(
H

(j)
0

H
(j+1)
0

)
. (16)

Now, in the following, we show that all the components of the following matrix(
(
∏t−1

j=0Mj)|λi(A)|t (
∏t−1

j=0Mj)t|λi(A)|t−1

0 (
∏t−1

j=0Mj)|λi(A)|t

)
(17)



converge to zero, P-a.s.

As the condition (13) holds, for the component (
∏t−1

j=0Mj)|λi(A)|t along the same lines of

the proof of Proposition 3.1from the strong law of large numbers, it follows that

lim
t→∞

(
t−1∏
j=0

Mj)|λi(A)|t → 0, P-a.s.

For the other component, we have the following

(
t−1∏
j=0

Mj)(t|λi(A)|t−1) = t

t−1∏
j=0

Mj|λi(A)| = t2log2
∏t−1

j=0Mj |λi(A)|

= t2
∑t−1

j=0 log2(Mj |λi(A)|)

= t2t(
1
t

∑t−1
j=0 log2Mj |λi(A)|).

Now, as the condition (13) holds, from the strong law of large numbers it follows that

lim
t→∞

1

t

t−1∑
j=0

log2(Mj|λi(A)|) = E[log2(Mj|λi(A)|)] = (1− α) log2

|λi(A)|
2Rj

+ α log2 |λi(A)|

= (1− α) log2 |λi(A)| − (1− α)Rj + α log2 |λi(A)|

= log2 |λi(A)| − (1− α)Rj=̇γ < 0.

Hence, by applying the rule of Hopital-Bernouli for limits it follows that

lim
t→∞

(
t−1∏
j=0

Mj)(t|λi(A)|t−1) = lim
t→∞

t

2−γt
= lim

t→∞

1

(ln 2)2−γt
= 0.

Hence, from the above analysis it follows that the matrix (17) converges to zero, P-a.s.; and

therefore, from (16) it follows that L(j)
t → 0 and L(j+1)

t → 0, P-a.s. This completes the proof as

L
(j)
t and L(j+1)

t are upper bounds for |Z(j)
t | and |Z(j+1)

t |, respectively.

We have the following corollary as a result of the above propositions.

Corollary 3.6: Consider the dynamic system (2) and suppose that the eigenvalues of the

matrix A are real valued. Then, the obtained conditions in Propositions 3.4 and 3.5 together is

a necessary and sufficient condition for almost sure asymptotic stability of the system (2) over

the packet erasure channel as shown in the block diagram of Fig. 1.

Proof: From ([11], Proposition 3.3) it follows that this condition is a necessary condition for

almost sure asymptotic stability. From this result combined with the result of Propositions 3.4

and 3.5 it follows that this condition is a necessary and sufficient condition for almost sure

asymptotic stability. That is, it is tight.



Now, in the following proposition, we are concerned with the Jordan block Ji that corresponds

to the complex conjugate pair of eigenvalues σ +
√
−1ω, ω 6= 0.

Proposition 3.7: Consider the control system of Fig. 1 described by the dynamic system (18)

over the packet erasure channel with erasure probability α, as described earlier.(
Z

(j)
t+1

Z
(j+1)
t+1

)
=

(
σ ω

−ω σ

)(
Z

(j)
t

Z
(j+1)
t

)
+

(
V

(j)
t

V
(j+1)
t

)
. (18)

Suppose that the rate Rj = Rj+1 satisfy the following inequality

(1− α)Rj > max{0, log2(|σ|+ |ω|)}. (19)

Then, by implementing the control signals V (j)
t = −σẐ(j)

t − ωẐ
(j+1)
t and V

(j+1)
t = ωẐ

(j)
t −

σẐ
(j+1)
t , we have almost sure asymptotic stability of the form Z

(j)
t → 0, P-a.s. and Z(j+1)

t → 0,

P-a.s.

Proof: From the dynamic system (18) for V (j)
t = −σẐ(j)

t −ωẐ
(j+1)
t and V (j+1)

t = ωẐ
(j)
t −σẐ

(j+1)
t ,

it follows that

Z
(j)
t = σE

(j)
t + ωE

(j+1)
t (20)

Z
(j+1)
t = −ωE(j)

t + σE
(j+1)
t . (21)

Now, from the dynamic systems (20) and (21) the upper bounds L(j)
t and L

(j+1)
t on |Z(j)

t | and

|Z(j+1)
t | are calculated as follows

|Z(j)
0 | ≤ H

(j)
0 = L

(j)
0

|Z(j)
1 | ≤ |σ||E(j)

0 |+ |ω||E
(j+1)
0 | ≤ |σ|M0H

(j)
0 + |ω|M0H

(j+1)
0 = L

(j)
1

|Z(j)
2 | ≤ |σ||E(j)

1 |+ |ω||E
(j+1)
1 | ≤ |σ|M1L

(j)
1 + |ω|M1L

(j+1)
1 = L

(j)
2

.

.

.

|Z(j)
t | ≤ |σ||E(j)

t−1|+ |ω||E
(j+1)
t−1 | ≤ |σ|Mt−1L

(j)
t−1 + |ω|Mt−1L

(j+1)
t−1 = L

(j)
t .



|Z(j+1)
0 | ≤ H

(j+1)
0 = L

(j+1)
0

|Z(j+1)
1 | ≤ |ω||E(j)

0 |+ |σ||E
(j+1)
0 | ≤ |ω|M0H

(j)
0 + |σ|M0H

(j+1)
0 = L

(j+1)
1

|Z(j+1)
2 | ≤ |ω||E(j)

1 |+ |σ||E
(j+1)
1 | ≤ |ω|M1L

(j)
1 + |σ|M1L

(j+1)
1 = L

(j+1)
2

.

.

.

|Z(j+1)
t | ≤ |ω||E(j)

t−1|+ |σ||E
(j+1)
t−1 | ≤ |ω|Mt−1L

(j)
t−1 + |σ|Mt−1L

(j+1)
t−1 = L

(j+1)
t .

From the above analysis it follows that(
L
(j)
t

L
(j+1)
t

)
= Mt−1

(
|σ| |ω|

|ω| |σ|

)(
L
(j)
t−1

L
(j+1)
t−1

)
,

(
L
(j)
0

L
(j+1)
0

)
=

(
H

(j)
0

H
(j+1)
0

)
. (22)

Now, as the matrix

(
|σ| |ω|

|ω| |σ|

)
has two real distinct eigenvalues |σ| − |ω| and |σ| + |ω|, by

applying a similarity transformation of the following form(
Q

(j)
t

Q
(j+1)
t

)
= Φ

(
L
(j)
t

L
(j+1)
t

)
,

the dynamic system (22) can be transformed to the following system(
Q

(j)
t

Q
(j+1)
t

)
= Mt−1

(
|σ| − |ω| 0

0 |σ|+ |ω|

)(
Q

(j)
t−1

Q
(j+1)
t−1

)
.

Now, along the same lines of the proof of Proposition 3.1 it follows that Q(j)
t → 0 and Q(j+1)

t →
0, P-a.s.; and hence, L(j)

t and L(j+1)
t converge to zero, P-a.s., as (1−α)Rj > max{0, log2(|σ|+

|ω|)}(Rj = Rj+1). This completes the proof.

Remark 3.8: From ([11], Proposition 3.3), under the assumption of Rj = Rj+1, it follows

for the system (18) that Rj = Rj+1 ≥ 1
1−α max{0, log2

√
σ2 + ω2} is a necessary condition

for almost sure asymptotic stability. From Proposition 3.7 it also follows that the condition

Rj = Rj+1 > max 1
1−α{0, log2(|σ| + |ω|)} is a sufficient condition for almost sure asymptotic

stability. Hence, there is a small gap for this case between necessary condition and sufficient

condition; because |σ|+ |ω| =
√
|σ|2 + |ω|2 + 2|σ||ω| ≥

√
σ2 + ω2.

Remark 3.9: If the linear dynamics is an approximation, that is, there is uncertainty in the

linear dynamic model (2), then as it is shown in [17], almost sure asymptotic stability of the

system over the packet erasure channel is not possible.
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Fig. 2. The state trajectories of the system (23) for the rates R1 = R2 = 3 bits and R3 = R4 = 2 bits.

IV. SIMULATION RESULTS

For the purpose of illustration, in this section we consider the closed loop feedback system

of Fig. 1 described by the packet erasure channel with erasure probability α = 0.45 and the

following dynamic system

Xt+1 =


0 1 0 0

0 0 1 0

0 0 0 1

−16 27.3136 −19.3136 6.8284

Xt + Ut, X
(j)
0 ∈ [−1, 1], j = 1, 2, 3, 4,

Yt = Xt, Ut =


U

(1)
t

U
(2)
t

U
(3)
t

U
(4)
t

 , Xt =


X

(1)
t

X
(2)
t

X
(3)
t

X
(4)
t

 . (23)

In the dynamic system (23) the system matrix has four eigenvalues:
√

2 ±
√
−1
√

2, 2, 2; and

hence, this system without implementing a stabilizing controller is unstable. Note that in this

system, the initial state X0 = (X
(1)
0 X

(2)
0 X

(3)
0 X

(4)
0 )′ is unknown for the decoder and

controller.

To stabilize this system, we use the proposed encoder, decoder and controller of the previous



section with rates R1 = R2 = 3 bits and R3 = R4 = 2 bits; and we notice that for the system

(23) we have

Φ =


−16.3622 27.6313 −15.441 2.8619

−16.0947 16.176 −4.1529 0.0457

315.1528 −388.468 195.8491 −41.3902

32.4076 −39.1373 19.5672 −4.0539

 ,

H
(1)
0 = 60, H

(2)
0 = 36, H

(3)
0 = 900, H

(4)
0 = 91.

Note that the upper bounds H(j)
0 s on |Z(j)

0 | are obtained by varying X
(j)
0 , j = 1, 2, 3, 4, in the

interval [−1, 1] and computing Z(j)
0 using the following equation Z(j)

0 = ΦX0. Fig. 2 illustrates

the state trajectories of the system (23) and Fig. 3 illustrates the control trajectories when the

proposed encoder, decoder and controller are used with rates R1 = R2 = 3 bits and R3 = R4 = 2

bits. As is clear from Fig. 2, using the proposed encoder, decoder and controller, the system

(23) is almost sure asymptotically stable. This result is expected as the conditions (13) and (19)

hold.

Fig. 4 illustrates the state trajectories of the system (23) when the proposed encoder, decoder

and controller with rates R1 = R2 = 2 bits and R3 = R4 = 2 bits are used. As is clear from

Fig. 4 the proposed encoder, decoder and controller with these rates are not able to stabilize the

system. We can expect this result as the condition (19) does not hold for this case.

V. CONCLUSION

This paper was concerned with the stability of linear time invariant dynamic systems over the

packet erasure channel subject to minimum bit rate constraint when encoder and decoder are

unaware of control signal. Under this assumption, an encoder, decoder and a controller were

co-designed for linear time invariant dynamic systems over the packet erasure channel with

feedback acknowledgment that results in almost sure asymptotic stability if a condition relating

transmission rate to packet erasure probability and eigenvalues of the system matrix A holds.

When the eigenvalues of the system are real valued, it was shown that the obtained sufficient

condition is tight. Simulation result illustrated the satisfactory performance of the proposed

encoder, decoder and controller for almost sure asymptotic stability.

For linear dynamic systems, the availability of control signal for both encoder and decoder

simplifies the design of communication part (encoder and decoder) and controller because under

this assumption, the design of communication part and controller can be done separately; and
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Fig. 3. The control trajectories for the rates R1 = R2 = 3 bits and R3 = R4 = 2 bits.

a differential coding technique and a certainty equivalent controller with any stabilizing gain

results in stability with minimum required transmission rate [11]-[13]. But, as shown in this

paper when encoder and decoder are unaware of control signal, the design of communication

and control parts are more complicated because the separation approach [11]-[13] does not work

and we have to co-design communication and control parts. Thus, the main difference between

the problem solved in this paper and similar problem addressed in [11]-[13] is that encoder and

decoder are unaware of control signal and hence the approach used in this paper is based on

co-designing communication and control parts; instead of separation design approach used in

[11]-[13] which works only if encoder and decoder are aware of control signal.

As discussed, the results of this paper are particularly useful in the development of networked

control systems with geographically separated sensors from the controlled system. Examples

of such systems are the scenarios discussed in this paper for the coordination of autonomous

vehicles. These vehicles have nonlinear smooth dynamics; and therefore, for future research,

their dynamics can be linearized around working points and the results of this paper can be

applied to address the stability problem associated with the coordination system of autonomous

vehicles. For future, it is also interesting to address the stability problem of the block diagram of

Fig. 1 described by nonlinear dynamic systems. These problems are left for future investigation.
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