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Sub-optimal Control Over AWGN Communication

Network

Alireza Farhadi

Abstract

In this paper a sub-optimal control technique is proposed for a linear Gaussian system with a

few distributed interacting sub-systems. Controller of each sub-system has only access to its own

measurement and a noisy version of measurement and control vectors of other sub-systems that are

communicated through an Additive White Gaussian Noise (AWGN) communication network. The power

to be allocated to each transmitter antenna is calculated so that the received signal is the transmitted

signal plus additive white Gaussian noise. Under some conditions it is shown that the proposed sub-

optimal control technique results in bounded mean square stability. The satisfactory performance of the

proposed technique in stabilizing the dynamic system over communication channels with small noise

is illustrated by computer simulations.
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I. INTRODUCTION

A. Motivation and Background

In recent years, there has been an interest in replacing point to point wiring by wireless

communication network for exchanging information between distributed sub-systems of a dis-

tributed controlled system as point to point wiring takes space, requires regular maintenance

and it is costly. This motivates research on optimality and stability of dynamic systems over

communication channels subject to imperfections (channel noise, distortion, etc.). Some results

addressing basic problems in stability and optimality of dynamic systems over communication

channels subject to imperfections can be found in [1]-[14].

Many systems have linear dynamics and dynamic systems can be viewed as continuous

alphabet information sources with memory. Therefore, many works in the literature (e.g., [1],
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[12],[13],[14]) are dedicated to the question of optimality and stability over Additive White

Gaussian Noise (AWGN) channel, which itself is naturally a continuous alphabet channel. In

[12], the authors presented a sub-optimal decentralized control technique for bounded mean

square stability of a large scale system with cascaded clusters of sub-systems. Each sub-system

is linear and time-invariant and both sub-system and its measurement are subject to Gaussian

noise. The control signals are exchanged between sub-systems without any imperfections, but the

measurements are exchanged via an AWGN communication network. In [13], the authors pre-

sented an optimal control technique for asymptotic bounded mean square stability of a partially

observed discrete time linear Gaussian system over AWGN channel. Here, again authors assumed

that control signal is transmitted without any imperfections. In [14], the authors addressed the

continuous time version of the problem addressed in [13].

B. Paper Contributions

In this paper a sub-optimal control technique is proposed for a linear Gaussian system with a

few distributed interacting sub-systems. Controller of each sub-system has only access to its own

measurement and a noisy version of measurement as well as control vectors of other sub-systems

that are communicated by an AWGN communication network. Exchange of measurement and

control vectors via AWGN channels results in non-classical and different information pattern for

each sub-system. This is due to channel noise. As is shown in [15], the optimal stochastic solution

for this problem is a nonlinear strategy. Nevertheless, in this paper we present a sub-optimal but

linear decentralized control solution for this problem. For a distributed system with n interacting

sub-systems, this linear sub-optimal solution is obtained by solving n separated centralized LQG

problems. Solution to each separated LQG problem defines the control strategy for a sub-system

(let us say sub-system i), in which in this strategy, the noisy version of the control vectors of

other sub-systems (let us say j 6= i) communicated via AWGN channels to sub-system i are used.

Similarly, in the associated Kalman filter equation, the noisy version of the measurement vectors

of other sub-systems communicated via AWGN channels are used. The power to be allocated to

each transmitter antenna is calculated so that the received signal is the transmitted signal plus

additive white Gaussian noise. Under some conditions it is shown that the proposed sub-optimal

control technique results in bounded mean square stability. The satisfactory performance of the

proposed technique in stabilizing the dynamic system over communication channels with small

noise is illustrated by computer simulations. Non-large scale version of the system considered

in [12] includes only a cluster of sub-systems with a few distributed interacting sub-systems,
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which is exactly the kind of system considered in this paper. Note that [12] is concerned with the

case when only measurement vectors are exchanged between sub-systems via AWGN channels;

while in the problem considered in this paper, control vectors are also exchanged between sub-

systems via AWGN channels. Note also that [12] uses a coding technique to match transmitted

measurement vectors to AWGN channels. This paper also extends the results of [13] to the

cases with multiple systems and when the transmission of control vectors are also subject to

communication imperfections.

C. Paper Organization

The paper is organized as follows. In Section II, the problem formulation is presented. Section

III is devoted to the sub-optimal control technique. Section IV is devoted to the stability

result. Simulation results are given in Section V, and in Section VI the paper is concluded

by summarizing the contributions of the paper and direction for future research.

II. PROBLEM FORMULATION

Throughout, certain conventions are used. R denotes the space of real numbers, ρ(·) the

spectrum norm and =̇ means ‘by definition is equivalent to’. N(m,n) denotes the Gaussian

distribution with mean m and variance n, cov(k) denotes the covariance of the random variable

k and E [k] is the expected value. A−1 denotes the inverse of square matrix A and V ′ is the

transpose of matrix/vector V . diag(·) denotes the block diagonal matrix and In denotes the

identity matrix with dimension n× n.

This paper is concerned with the sub-optimality and stability of a linear Gaussian system

with a few distributed sub-systems over AWGN communication network. The dynamic system,

communication network and cost functional are described below:

Dynamic system: The dynamic system is a linear Gaussian system with a few, let us say n

distributed sub-systems Si, i = {1, 2, ..., n}, with the following representation:

Si :

 x
(i)
t+1 =

∑n
j=1Aijx

(j)
t +

∑n
j=1Biju

(j)
t + w

(i)
t ,

y
(i)
t = Cix

(i)
t + v

(i)
t .

(1)

Here, x(i)t ∈ Rni , u(i)t ∈ Rmi , y(i)t ∈ Rli , w(i)
t ∈ Rni , v(i)t ∈ Rli , w(i)

t i.i.d. ∼ N(0,Σ
(i)
w ), v(i)t

i.i.d. ∼ N(0,Σ
(i)
v ) and x

(i)
0 ∼ N(x̄

(i)
0 , v̄

(i)
0 ). Throughout, it is assumed that the matrices Aij ,

Bij, Ci,Σ
(i)
w , Σ

(i)
v , x̄(i)0 , v̄(i)0 are known and {x(i)0 , w

(j)
t , v

(k)
t }ni,j,k=1 are mutually independent.

Communication network: Each sub-system Si broadcasts each component of its control vector
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u
(i)
t and measurement vector y(i)t by an AWGN communication channel to all other sub-systems

(j 6= i). This network has the following representation:

z̃
(ij)
t = α(ij)z

(i)
t + nt, z̃

(ij)
t , z

(i)
t , nt ∈ R, E[z

(i)
t ]2 ≤ p(i), i, j ∈ {1, 2, ..., n}, i 6= j, (2)

where z(i)t is the channel input (a component of the control vector u(i)t or measurement vector y(i)t ),

α(ij) is the known attenuation factor in communication from sub-system Si to sub-system Sj , nt

is a Gaussian i.i.d. process with zero mean and known variance that represents the channel noise

in transmission of a component of the control or measurement vector from the ith sub-system

to the jth sub-system and z̃
(ij)
t is the corresponding channel output. p(i) ≥ 0 is the transmitter

power (power of the ith transmitter antenna). Channel noises involved in transmission of different

components of a control vector or measurement vector are independent of each other. Also,

channel noises involved in transmission of components of different control and measurement

vectors are independent of each other. Furthermore, channel noises are independent of system

noises w(i)
t s, measurement noises v(i)t s and initial states x(i)0 s.

To avoid collision in exchanging information between sub-systems, a Time Division Multiple

Access (TDMA) scheme [16] is used by allocating specific time slots to sub-systems to broadcast

their control and measurement vectors in allocated time slot without collision.

Throughout, it is assumed that the attenuation factors α(ij)s are known, but the powers

of transmitter antennas p(i)s must be determined properly so that the received signal is the

transmitted signal plus additive white Gaussian noise, as it will be explained shortly.

The controller of sub-system Si has access to its control and measurement, i.e., {u(i)t , y
(i)
t } and

also a noisy version of control signals and measurements of other sub-systems communicated

by AWGN channels. That is, the information pattern of each sub-system is the following:

I(i) = {u(i)t , y
(i)
t , ũ

(j)
t , ỹ

(j)
t }nj=1,j 6=i, (3)

where ũ(j)t and ỹ(j)t are the noisy version of the jth control signal u(j)t and the jth measurement

y
(j)
t , respectively, communicated via AWGN channels from sub-system Sj to sub-system Si.

Cost functional and objectives: The objective of this paper is to obtain control signals u(i)t ,

i = {1, 2, ..., n}, that are a sub-optimal solution of the following optimal control problem (4),

which also results in bounded mean square stability as defined in the following.

min
(u(1),u(2),...,u(n)),subject to (1) and I(i)s

J

J = lim
T→∞

1

T

T−1∑
t=0

E [||Xt||2Q + ||Ut||2R], ||Xt||2Q=̇X ′tQXt, ||Ut||2R=̇U ′tRUt,
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Xt=̇ (x
(1)′

t x
(2)′

t . . . x
(n)′

t )′ , Ut=̇ (u
(1)′

t u
(2)′

t . . . u
(n)′

t )′ ,

Q = Q′ ≥ 0, R = R′ > 0. (4)

Definition 2.1: (Bounded Mean Square Stability): Consider the discrete time linear Gaussian

system (1). This system is bounded mean square stabilizable if there exists a non-negative scalar

M , which is a function of channel noises variances, such that the following property holds:

E||Xt||2 ≤M <∞, ∀t ∈ N+=̇{0, 1, 2, ...}.

III. SUB-OPTIMAL CONTROL TECHNIQUE

In this section, a sub-optimal solution for the optimal control problem (4) is presented.

Let m(ji)
t ∈ Rlj be a vector containing the channel noises involved in transmission of the

components of the measurement vector y(j)t from sub-system Sj to sub-system Si (i.e., ỹ(j)t =

α(ji)y
(j)
t +m

(ji)
t ). Then, considering the measurements available for each sub-system, each sub-

system Si has the following representation:

Si :

 Xt+1 = AXt +BUt +Wt,

Y
(i)
t = C(i)Xt + V

(i)
t .

A =



A11 A12 . . . A1n

A21 A22 . . . A2n

.

.

.

An1 An2 . . . Ann


, B =



B11 B12 . . . B1n

B21 B22 . . . B2n

.

.

.

Bn1 Bn2 . . . Bnn


,

C(i) =



α(1i)C1 0 . . . 0 . . . 0

0 α(2i)C2 . . . 0 . . . 0

.

.

.

0 0 . . . Ci . . . 0

.

.

.

0 0 . . . 0 . . . α(ni)Cn



,

Wt=̇ (w
(1)′

t w
(2)′

t . . . w
(n)′

t )′ ,
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Y
(i)
t =̇ ( ỹ

(1)′

t ỹ
(2)′

t . . . y
(i)′

t . . . ỹ
(n)′

t )′ ,

V
(i)
t =̇ ( v

(1)′

t v
(2)′

t . . . v
(n)′

t )′ + (m
(1i)′

t m
(2i)′

t . . . 0 . . . m
(ni)′

t )′ .(5)

Now, from the standard results of Linear Quadratic Gaussian (LQG) [17] it follows that the

optimal solution of the problem (4) subject to the dynamic system (5) and under the assumptions

that the pair (A,B) is controllable, (C(i), A) is detectable and (A, Q̃
1
2 ) is stabilizable, where

Q̃=̇cov(Wt), is given as follows:

Ut = FX̂
(i)
t ,

F = −(R +B′P∞B)−1B′P∞A, P∞ = P ′∞ ≥ 0

P∞ = A′P∞A− A′P∞B(R +B′P∞B)−1B′P∞A+ Q̃.

X̂
(i)
t+1 = AX̂

(i)
t +BUt + AK

(i)
t (Y

(i)
t − C(i)X̂

(i)
t ), X̂

(i)
0 = X̄0=̇ ( x̄

(1)′

0 x̄
(2)′

0 . . . x̄
(n)′

0 )′

K
(i)
t = P̃

(i)
t C(i)′(C(i)′P̃

(i)
t C(i)′ + R̃(i))−1, R̃(i)=̇cov(V

(i)
t )

P̃
(i)
t+1 = AP̃

(i)
t A′ − AP̃ (i)

t C(i)′(C(i)P̃
(i)
t C(i)′ + R̃(i))−1C(i)P̃

(i)
t A′ + Q̃

P̃
(i)
0 = V̄0=̇cov(X0) = diag(v̄

(1)
0 v̄

(2)
0 ... v̄

(n)
0 ). (6)

Now, considering the information available at sub-system Si, the control signal u(i)t is chosen as

follows:

u
(i)
t = FiX̂

(i)
t , (F =



F1

F2

.

.

.

Fn


)

X̂
(i)
t+1 = AX̂

(i)
t +B1ũ

(1)
t + ...+Biu

(i)
t + ...+Bnũ

(n)
t + AK

(i)
t (Y

(i)
t − C(i)X̂

(i)
t ),

(B = (B1 B2 ... Bn )). (7)

Note that Fi ∈ Rmi×(n1+n2+...+nn) is a block of matrix F that corresponds to u
(i)
t . Also, Bi ∈

R(n1+n2+...+nn)×mi is a block of matrix B that corresponds to u(i)t .

Throughout, the optimal solution to the problem (4) is referred to the solution that corresponds

to the following information pattern: I(i) = {u(i)t , y
(i)
t , u

(j)
t , y

(j)
t }nj=1,j 6=i. That is, the optimal

solution corresponds to the case when the channel noises are zero and the attenuation factors

are all one (i.e., no communication imperfections). For this case, the lumped system has the
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following representation:

S :

 Xt+1 = AXt +BUt +Wt,

Yt = CXt + Vt.

C=̇



C1 0 . . . 0 . . . 0

0 C2 . . . 0 . . . 0

.

.

.

0 0 . . . Ci . . . 0

.

.

.

0 0 . . . 0 . . . Cn



,

Yt=̇ ( y
(1)′

t y
(2)′

t . . . y
(i)′

t . . . y
(n)′

t )′ ,

Vt=̇ ( v
(1)′

t v
(2)′

t . . . v
(n)′

t )′ . (8)

Now, from the standard results of LQG [17], it follows that under the assumption that the pair

(A,B) is controllable, (C,A) is detectable and (A, Q̃
1
2 ) is stabilizable, where Q̃ = cov(Wt), the

optimal solution is given by (6) provided R̃(i) in (6) is replaced by R̃=̇cov(Vt), C(i) by C and

Y
(i)
t by Yt.

Remark 3.1: The proposed control technique (7) is a sub-optimal technique because when the

variances of channel noises converge to zero and also attenuation factors to one, u(i)t s given in

(7), converge to the optimal solution, as defined above.

The communication channel between each two sub-system is an AWGN channel, as is shown

in Fig. 1. This channel is subject to the limited power of transmitter antenna (P <∞). That is,

when the power of transmitted signal (i.e., E [X2]) is less than the power of transmitter antenna

(E [X2] ≤ P ), then Y = X+Z, where Y is the output of the channel and Z is an i.i.d. Gaussian

channel noise [18]. When this constraint is violated (i.e., E [X2] > P ), then Y = X̄ + Z, where

X̄ is a distorted version of transmitted signal (i.e., X̄ is not equivalent to X and may be very

different from X). In the set up considered in this paper, there is an AWGN channel from sub-

system i to sub-system j, in which via this channel, each component of the measurement vector

y
(i)
t and each component of the control vector u(i)t must be transmitted from sub-system i to

sub-system j. Hence, to have a transmission so that the received signal is the transmitted signal

February 25, 2017 DRAFT



8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X, 

 

Z

Y 

Fig. 1. AWGN channel.

plus additive white Gaussian noise, the power of transmitter antenna must be high enough.

Remark 3.2: Following the above discussion, let y(ih)t and u(io)t be the hth component of the

measurement vector y(i)t and the oth component of the control vector u(i)t , respectively. Then,

to have a transmission so that the received signal is the transmitted signal plus additive white

Gaussian noise, the power of the ith transmitter antenna is chosen such that the following

inequality holds [18]:

p(i) ≥ sup
t∈N+=̇{0,1,2,...}

{max
h
E [y

(ih)
t ]2,max

o
E [u

(io)
t ]2}, i ∈ {1, 2, ..., n}. (9)

Remark 3.3: The power of transmitted signal must be less than the power of transmitter

antenna to have the above transmission. Hence, We choose a suitable transmitter with proper

power. Nevertheless, as the transmitter power is limited (p(i) < ∞), transmission is subject to

channel noise due to the limited transmitter power. This channel noise results in non-classical and

different information patterns; and hence, the channel noise and therefore the power constraint

(p(i) <∞) that results in channel noise are critical for the problem considered in this paper, as

we need to use non-classical design methodologies to find solution to the problem (4). Note that

when the power of transmitter is unlimited, the transmitted signal can be amplified so high that

the channel noise becomes negligible compared to transmitted signal.

IV. STABILITY RESULTS

In this section, it is shown that under some conditions the proposed sub-optimal control

technique results in bounded mean square stability as defined in Definition 2.1. Then, the power to

be allocated to each transmitter antenna is calculated so that the received signal is the transmitted
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signal plus additive white Gaussian noise.

A. Stability result

The stability of the proposed technique is shown in the following proposition.

Proposition 4.1: Consider the distributed dynamic system (1) over AWGN communication

network (2). Suppose that the control signals are given by (7), the powers of transmitter antennas

satisfy the inequality (9) and the pairs (A,B) is controllable, (C(i), A), i ∈ {1, 2, ..., n} are

detectable and (A, Q̃
1
2 ) is stabilizable. Then, the system (1) is bounded mean square stable if

the following matrix Ac is a stable matrix.

Ac =



A+BF −B1F1 −B2F2 . . . −Bn−1Fn−1 −BnFn −BnFn

β21 β22 β23 . . . β2 n−1 β2n

.

.

.

βn−1 1 βn−1 2 βn−1 3 . . . βn−1 n−1 βn−1 n

βn1 βn2 βn3 . . . βn n−1 βnn


,

β21 =
n∑

j=1,j 6=1

BjFj(1− α(j1)), β22 = A− AK(1)
∞ C(1), β23 = −B2F2(1− α(21)),

β2 n−1 = Bn−1Fn−1α
(n−1 1) −BnFn(1− α(n1)), β2n = −BnFn(1− α(n1)),

βn−1 1 =
n∑

j=1,j 6=n−1

BjFj(1− α(j n−1)), βn−1 2 = −B1F1(1− α(1 n−1)),

βn−1 3 = −B2F2(1− α(2 n−1)), βn−1 n−1 = A− AK(n−1)
∞ C(n−1) −BnFn(1− α(n n−1)),

βn−1 n = −BnFn(1− α(n n−1)), βn1 =
n−2∑
j=1

BjFj(α
(j n−1) − α(jn))

+Bn−1Fn−1(1− α(n−1 n))−BnFn(1− α(n n−1))

βn2 = B1F1α
(1n) −B1F1α

(1 n−1), βn3 = B2F2α
(2n) −B2F2α

(2 n−1),

βn n−1 = AK(n−1)
∞ C(n−1) − AK(n)

∞ C(n) −Bn−1Fn−1(1− α(n−1 n))

+BnFn(1− α(n n−1)),

βnn = A− AK(n)
∞ C(n) −Bn−1Fn−1(1− α(n−1 n)) +BnFn(1− α(n n−1)),

(10)

where K(i)
∞ =̇ limt→∞K

(i)
t is the steady state Kalman filter gain.
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Proof: Let f (ji)
t ∈ Rmj with covariance matrix Σ

(ji)
f is a vector containing the channel noises

involved in transmission of components of the vector u(j)t from sub-system Sj to sub-system Si.

Define the vector Lt as follows:

Lt=̇



Xt

E
(1)
t

.

.

.

E
(n−1)
t

E
(n−1 n)
t


, E

(n−1 n)
t =̇X̂

(n−1)
t − X̂(n)

t .

Then, from the recursive equations for Xt and X̂
(i)
t , i = {1, 2, ..., n} given in (5) and (7), we

have the following dynamic system for Lt:

Lt+1 = GtLt +Nt, (11)

Gt =



A+BF −B1F1 −B2F2 . . . −Bn−1Fn−1 −BnFn −BnFn

γ21 γ22 γ23 . . . γ2 n−1 γ2n

.

.

.

γn−1 1 γn−1 2 γn−1 3 . . . γn−1 n−1 γn−1 n

γn1 γn2 γn3 . . . γn n−1 γnn


,

γ21 =
n∑

j=1,j 6=1

BjFj(1− α(j1)), γ22 = A− AK(1)
t C(1), γ23 = −B2F2(1− α(21)),

γ2 n−1 = Bn−1Fn−1α
(n−1 1) −BnFn(1− α(n1)), γ2n = −BnFn(1− α(n1)),

γn−1 1 =
n∑

j=1,j 6=n−1

BjFj(1− α(j n−1)), γn−1 2 = −B1F1(1− α(1 n−1)),

γn−1 3 = −B2F2(1− α(2 n−1)), γn−1 n−1 = A− AK(n−1)
t C(n−1) −BnFn(1− α(n n−1)),

γn−1 n = −BnFn(1− α(n n−1)), γn1 =
n−2∑
j=1

BjFj(α
(j n−1) − α(jn))

+Bn−1Fn−1(1− α(n−1 n))−BnFn(1− α(n n−1))

γn2 = B1F1α
(1n) −B1F1α

(1 n−1), γn3 = B2F2α
(2n) −B2F2α

(2 n−1),

γn n−1 = AK
(n−1)
t C(n−1) − AK(n)

t C(n) −Bn−1Fn−1(1− α(n−1 n))

+BnFn(1− α(n n−1)),

February 25, 2017 DRAFT



11

γnn = A− AK(n)
t C(n) −Bn−1Fn−1(1− α(n−1 n)) +BnFn(1− α(n n−1)),

Nt =



Wt

−
∑n

j=1,j 6=1BjFjf
(j1)
t − AK(1)

t C(1)V
(1)
t +Wt

.

.

.

−
∑n

j=1,j 6=n−1BjFjf
(j n−1)
t − AK(n−1)

t C(n−1)V
(n−1)
t +Wt

et


,

et=̇AK
(n−1)
t C(n−1)V

(n−1)
t − AK(n)

t C(n)V
(n)
t +

n∑
j=1,j 6=n−1

BjFjf
(j n−1)
t −

n∑
j=1,j 6=n

BjFjf
(jn)
t .

(12)

The system (11) is a Gaussian system, that is, the solution of the recursive equation (11), i.e.,

Lt is a Gaussian random variable as L0 and Nt are Gaussian random variables. Also, under

the assumption that the pairs (C(i), A), i = {1, 2, ..., n} are detectable and the pair (A, Q̃
1
2 ) is

stabilizable, it follows from the standard results of Kalman filtering [17] that K(i)
t → K

(i)
∞ , where

K
(i)
∞ is the steady state Kalman filter gain. Hence, under this assumption, we have Gt → Ac.

Now, by expanding the dynamic system (11) and representation of the vector Lt as a linear

function of L0 and {Nk}t−1k=0 and then computing E [LtL
′
t], it follows that limt→∞ E [LtL

′
t] < ∞

as the matrix Ac is a stable matrix. Obviously, E [LtL
′
t] is bounded at finite times. Hence, under

the assumptions of the proposition, the Gaussian vector Lt; and therefore, Xt along with E
(1)
t ,

E
(2)
t , ..., E(n−1 n)

t are bounded in mean square sense.

Remark 4.2: i) Note that the matrix Ac as given in (10) involves steady state Kalman filter

gains K(i)
∞ = P̃

(i)
∞ C(i)′(C(i)P̃

(i)
∞ C(i)′ + R(i))−1, where P̃

(i)
∞ is the steady state solution of the

forward Riccati equation given in (6) and R̃(i) = cov(V
(i)
t ), where V (i)

t as given in (5) involves

measurement noises as well as channel noises m(ji)
t . Hence, the system matrix Ac is also affected

by the channel noises m(ji)
t . From the way we defined the vector Lt, the effects of the channel

noises f (ji)
t is also seen in the vector Nt . In the presence of channel noises f (ji)

t , the covariance

matrix of the vector Nt is obviously bigger than the covariance matrix of this matrix without

channel noises f (ji)
t . This results in the bounded mean square stability with a bigger upper bound

on E||Xt||2 when there are channel noises f (ji)
t . That is, the quality of the response for this case

is not as good as the quality of the response for the case with no channel noises f (ji)
t .

ii) If the measurement and control vectors are communicated via channels with attenuation

factors 1 (i.e., ũ(i)t = u
(i)
t + f

(ij)
t and ỹ(i)t = y

(i)
t +m

(ij)
t , j ∈ {1, 2, ..., n}, j 6= i), then the matrix
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Ac is reduced as follows:

Ac =



A+BF −B1F1 . . . −Bn−1Fn−1 −BnFn −BnFn

0 A− AK(1)
∞ C(1) . . . 0 0

.

.

.

0 0 . . . A− AK(n−1)
∞ C(n−1) 0

0 0 . . . AK
(n−1)
∞ C(n−1) − AK(n)

∞ C(n) A− AK(n)
∞ C(n)


.

Now, if the matrix K
(n−1)
∞ C(n−1) = K

(n)
∞ C(n), then the above matrix is reduced to an upper

triangular matrix; and consequently, it is a stable matrix because following the standard results

of LQG and Kalman filtering the matrices A+BF , A−AK(1)
∞ C(1), ... and A−AK(n)

∞ C(n) are

stable matrices.

iii) If measurements are communicated without any imperfections (i.e., ỹ(i)t = y
(i)
t ), then K(n−1)

∞ C(n−1)

= K
(n)
∞ C(n). Also, when channel noises in communication of measurements are small; while at-

tenuation factors in exchanging information between sub-systems are one, then ρ(K
(n−1)
∞ C(n−1)−

K
(n)
∞ C(n)) ≈ 0; and consequently, the matrix Ac given above has a quasi upper triangular

structure and hence it is a stable matrix.

iv) By multiplying the received measurement and control vectors by the inverse of attenuation

factor α(ji) involved in transmission of measurement and control vectors from sub-system Sj

to sub-system Si, we can reach to a communication network that is equivalent to an AWGN

network with attenuation factors that are all one; but with higher channel noise variance.

B. The power to be allocated to each transmitter antenna

From the inequality (9), it follows that to calculate the power of each transmitter antenna for

having a transmission so that the received signal is the transmitted signal plus additive white

Gaussian noise, it is enough to compute E [y
(i)
t y

(i)′

t ] and E [u
(i)
t u

(i)′

t ]. This is done in the following.

We first notice the following equalities

E [u
(i)
t u

(i)′

t ] = FiE [X̂
(i)
t X̂

(i)′

t ]F
′

i ,

E [y
(i)
t y

(i)′

t ] = CiE [x
(i)
t x

(i)′

t ]C
′

i + Σ(i)
v . (13)

Now, as E [X̂
(i)
t X̂

(i)′

t ] = E [XtX
′
t]−E [E

(i)
t E

(i)′

t ], to compute E [y
(i)
t y

(i)′

t ] and E [u
(i)
t u

(i)′

t ], it is enough

to compute E [XtX
′
t] and E [E

(i)
t E

(i)′

t ], i = {1, 2, ..., n}. This is done in the following.

To compute E [XtX
′
t] and E [E

(i)
t E

(i)′

t ], i = 1, 2, ..., n − 1, we use the recursive equation (11)
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which contains Xt, E
(1)
t , ..., E(n−1)

t . From this recursive equation we have the following recursive

equation for E [LtL
′
t].

E [Lt+1L
′
t+1] = GtE [LtL

′
t]G ′t + E [NtN ′t ],

E [L0L
′
0] =



V̄0 + X̄0X̄
′
0 0 . . . 0 0

V̄0 V̄0 . . . V̄0 0

.

.

.

V̄0 V̄0 . . . V̄0 0

0 0 . . . 0 0


,

E [NtN ′t ] =



Q̃ Q̃ . . . Q̃ Q̃

.

.

.

Q̃ Q̃ . . . znn z′n+1 n

0 0 . . . zn+1 n zn+1 n+1


,

zn+1 n = −AK(n−1)
t C(n−1)R̃(n−1)C(n−1)′K

(n−1)′
t A′ −

n∑
j=1,j 6=n−1

BjFjΣ
(j n−1)
f F ′jB

′
j,

zn+1 n+1 = AK
(n−1)
t C(n−1)R̃(n−1)C(n−1)′K

(n−1)′
t A′ + AK

(n)
t C(n)R̃(n)C(n)′K

(n)′

t A′

+
n−1∑
j=1

BjFjΣ
(jn)
f F ′jB

′
j +

n∑
j=1,j 6=n−1

BjFjΣ
(j n−1)
f F ′jB

′
j − AK

(n−1)
t C(n−1)ΣVC

(n)′K
(n)′

t A′

−AK(n)
t C(n)ΣVC

(n−1)′K
(n−1)′
t A′, ΣV =̇diag(Σ(1)

v Σ(2)
v ... Σ(n)

v ),

zhh(h = 2, ..., n) =
n∑

j=1,j 6=h−1

BjFjΣ
(j h−1)
f F ′jB

′
j + AK

(h−1)
t C(h−1)R̃(h−1)C(h−1)′K

(h−1)′
t A′

+Q̃. (14)

Now, from the recursive equation (14), E [LtL
′
t] and hence E [XtX

′
t] (and therefore E [x

(i)
t x

(i)′

t ],

i = {1, 2, ..., n}) and E [E
(i)
t E

(i)′

t ], i = {1, 2, ..., n− 1}, are computed.

To compute E [E
(n)
t E

(n)′

t ], we notice that E(n)
t = E

(n−1 n)
t + E

(n−1)
t ; and therefore,

E [E
(n)
t E

(n)′

t ] = E [E
(n−1 n)
t E

(n−1 n)′

t ] + E [E
(n−1 n)
t E

(n−1)′
t ]

+E [E
(n−1)
t E

(n−1 n)′

t ] + E [E
(n−1)
t E

(n−1)′
t ],

where E [E
(n−1 n)
t E

(n−1 n)′

t ], E [E
(n−1 n)
t E

(n−1)′
t ],E [E

(n−1)
t E

(n−1 n)′

t ] and E [E
(n−1)
t E

(n−1)′
t ] are com-

puted from the recursive equation (14). Consequently, using this recursive equation, the equal-

February 25, 2017 DRAFT



14

 

 

 

 

0 10 20 30 40 50
0

2000

4000

x
1

0 10 20 30 40 50
0

2000

4000

x
2

0 10 20 30 40 50
0

2000

4000

x
3

time step

Fig. 2. State trajectories without control inputs.

ity E [X̂
(i)
t X̂

(i)′

t ] = E [E
(i)
t E

(i)′

t ] − E[XtX
′
t] and the equalities (13), E [u

(i)
t u

(i)′

t ] and E [y
(i)
t y

(i)′

t ],

i = {1, 2, ..., n}, are obtained. Hence, the powers to be allocated to transmitter antennas are

calculated from (9) to have a transmission so that the received signal is the transmitted signal

plus additive white Gaussian noise.

V. SIMULATION RESULTS

In this section, the satisfactory performance of the proposed stabilizing sub-optimal control

technique for bounded mean square stability of the distributed dynamic system (1) is illustrated

using computer simulations.

For simulation study, we are concerned in this section with a distributed system with three
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Fig. 3. State trajectories of the controlled system when communication between sub-systems are perfect.

scalar interacting sub-systems of the form (1) with augmented matrices A and B given as follows:

A =

 1.1 0 0

0 1.1 0

0 0 1.1

 , B =

 0 1 1

1 0 1

1 1 0

 .

Variances of system noise and measurement noise of each sub-system are assumed to be 0.1.

The initial state of each sub-system is a random variable with mean 20 and variance 1. System

noise, measurement noise and initial state of different sub-systems are independent of each other.

System noise, measurement noise and initial state of each sub-system are also independent of each

other. Weighting matrices Q and R are set to be 10I3 and I3, respectively. C1 = C2 = C3 = 1.

The attenuation factors are set to be one.

Fig. 2 illustrates the response of this system without control inputs. As is clear from Fig. 2,

without control inputs, the distributed system is unstable. This result is expected as the matrix

A is an unstable matrix.
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To stabilize the system, we use the proposed control technique. For the ideal case of no channel

noise in exchanging measurements and control signals between sub-systems, the proposed control

technique is the optimal technique. Fig. 3 illustrates the response of the controlled system for this

case. As is clear from this figure and as expected from Proposition 4.1, the proposed technique

stabilizes the system around the origin in bounded mean square sense.

Now, suppose communication between sub-systems is noisy and subject to channel noises

with the variances of 0.1 in exchanging measurements and 1 in exchanging control signals.

Here, it is assumed that the attenuation factors are 1. For this case, maxt∈N+ E [y
(1)
t ]2 = 1.86,

maxt∈N+ E [y
(2)
t ]2 = 1.86 and maxt∈N+ E [y

(3)
t ]2 = 1.86. Also, maxt∈N+ E [u

(1)
t ]2 = maxt∈N+ E [u

(2)
t ]2

= maxt∈N+ E [u
(3)
t ]2 = 2.14; and hence, we choose the powers of transmitter antennas as follows:

p(1) = 2.14, p(2) = 2.14 and p(3) = 2.14 to have a transmission so that the received signal is

the transmitted signal plus additive white Gaussian noise. Fig.4 illustrates the response of the

system for this case. As is clear from Fig. 4 the performance of the proposed control technique

for the conditions simulated is close to the optimal performance.

Similarly, in [12] a bounded mean square stabilizing technique was proposed for a linear

Gaussian system with distributed sub-systems when only measurement vectors are exchanged

between distributed sub-systems. In [12] it is assumed that control vectors are exchanged without

any imperfections. Fig. 5 illustrates the response of the controlled technique proposed in [12]

applied to the system considered in this section when the variances of the channel noise in

exchanging measurements and control signals are 0,1 and 1, respectively. The attenuation factors

are assumed to be 1. For this case p(1) = 3.56, p(2) = 3.56 and p(3) = 3.56. As is clear from

this figure, although the transmitter powers for this case are more than those of the previous

simulation, the performance for this case is not as good as the previous simulation.

Fig. 6 illustrates the response of our proposed technique when the variances of the channel

noise in exchanging measurements and control signals are 0.1 and 10, respectively. Fig. 7

illustrates the response of the technique of [12] for the same conditions. As is clear from

these figures for the cases with large noise in exchanging control signal, the performance of

our technique is much better.

VI. CONCLUSION AND DIRECTION FOR FUTURE RESEARCH

In this paper, a sub-optimal control technique was proposed for a linear Gaussian system with

a few distributed interacting sub-systems. Controller of each sub-system has only access to its

own measurement and a noisy version of measurement and control vectors of other sub-systems
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Fig. 4. State trajectories of the controlled system when variances of channel noise in exchanging measurements and controls

are 0.1 and 1, respectively, and attenuation factors are 1.

that are communicated by an AWGN communication network. The power to be allocated to

each transmitter antenna was calculated so that the received signal is the transmitted signal

plus additive white Gaussian noise. Under some conditions, it was shown that the proposed sub-

optimal control technique results in bounded mean square stability. The satisfactory performance

of the proposed technique in stabilizing a distributed dynamic system was also illustrated by

computer simulations.

For future, it is interesting to extend these results to large scale distributed systems, which

have large number of distributed sub-systems, by presenting sub-optimal control techniques with

the following property that each controller has only access to noisy version of measurements and

control signals of neighboring sub-systems. It is also interesting to equip the proposed technique

with proper coding technique to compensate the effects of channel noise. These problems are
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Fig. 5. State trajectories of the controlled system of [12] when variances of channel noise in exchanging measurements and

controls are 0.1 and 1, respectively, and attenuation factors are 1.

left for future investigation.
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