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Abstract

This paper presents an action functional, sample path op-
timization techrique, for formulating and solving nonlinear
discrete-time stochastic H® estimation problems. These
H® problems are formulated as minimax dynamic games
in which the maximizing players are stochastic square
summable disturbances, while the minimizing players are
the state estimates. Certain action functionals are defined
which play the role of information state and its adjoint in
converting the minimax game into a fully observable game.
Subsequently, a verification theorem is derived.
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1 Introduction

Since the publication of Zames[1] seminal paper on H*
optimization, several approaches have been proposed
to extend the techniques of robust design, with respect
to unknown disturbances and unmodeled dynamics, to
nonlinear stochastic as well as deterministic systems.
This generalization leads to a minimax formulation in
which the exogenous inputs or disturbances are the
maximizing players and the controllers or estimators
are the minimizing players. Previous work is formed in
[2, 3, 4, 5, 6, 7, 8]. Unfortunately, little work is done
in formulating and analyzing stochastic minimax par-
tially observable problems.

The difficulty is encountered in identifying the infor-
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mation state. However, under the so-called matching
condition which implies that square summable distur-
bances and color noises are entering the dynamics and
observation through the same channel, then an appli-
cation of certain results from Large Deviation yields an
equivalent problem with an exponential pay-off, known
as risk-sensitive problem [9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20]. Thus, risk-sensitive measures and large
deviations theory offers an indirect method for solving
stochastic minimax games under the matching condi-
tion. However, since the matching condition, is a rather
severe requirement for any typical system to satisfy,
one would like to rémove the matching condition by
providing a direct and more general approach in ana-
lyzing minimax stochastic dynamic games.

This paper introduces an information state approach
in formulating and analyzing stochastic minimax esti-
mation problems, without imposing the matching con-
dition. The adjoint of the information state is also
introduced and recursions are derived using dynamic
programming. :

2 The Minimax Estimation Problem

1

2.1 Dynamics
Let (Q, F, P") be a basis probability space on which

the state process zjg | g {zn}.o and the observation

Process Yo, x| = {yn}f:o are defined as follows.

(1

Th+1 = f'y,w(ksxk)‘}(kvwk)) Tg € Rn:

@)

in which xg Q- R, ow: [0,N -1] xQ = R v
[0, N]x0 — R4 5 [0, N~1]xQ = DY §: [0, N]xt —

a _ a
D%, Here wio v—1) = {waths vo.ng = {vn}, are

Y = hé,v(kyxk16k1vk)) Yo S §Rd:
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finite-dimensional independent sequences of random

. A N-1 Y N
variables, and Mo.N-1] = {’yn}n=0, 5[0,N| = {bn}n=0
are square summable disturbances. Assumptions on
the vectors fy . , hse ensuring unique weak solutions
are given under Assumptions 2.1

Notation 2.1 Let g(‘,{n = ofxg,yp;k = 0,1,...,n}
and Y8, = alyi;k = 0,1,...,n} denole the sigma-
algebras generated by the complete and incomplete data,
respectively, and denote by {Gox}. {Moxt, k € [0, N]
their complete filtration with respect to (€, F,P¥).

Let H be o Hilbert space with norm || - ||g aend let
{Zox},k € |0, N] denote o complete filtration with re-
spect to (3, F,PY); define the Banach space of stochas-
tic processes as follows. '

& ([0, m];H) 2 {¢[o,m] = {%;0 <n< m};
¢:[0,m] x ¥ — H such that dn s an Zop
measurable random variable on  [0,m] with

E{ kgongbkﬂ’}, <oo, 1<p<oo}.

For ¢ & &5([k,m]; H) the norm is defined by ||¢||z.p =

(s Bl

Assumption 2.1 (i) X is o compact subsel of
R and D" = R*, D% = R [fii) yo = 0 € B9,
rg s unknoum deterministic (or rondom with
distribution dli(z) such that zo € L*{(Q)). (i)
po: R > (—00,0],pp € C(R").{and if o is random
then [ |Py|dlL(z) < oc). (i) wyg N_y = {wp}l_J isan
R™ _valued independent sequence of random variables
with density {¢w, (w)};'f;ul. () vio,n) 2 {ue L, is an
R _valued independent sequence of random variables
with strictly positive density {vs, (v)}o. and mutu-
ally independent zq, if zo is assumed to be a random
variable (vi) foqu: [0, N —1] xR x D7 x R™ — " 45
a Borel measurable function such that fy (-, 2, v, w) =
fulz,w) +  of,x)y, and three exists ¢ >
0 such that o(k,z)o'(k,x) > I, xcy,Vk € [OLN-1),z €
R, where Ir denotes an k x k identily map. (viii)
Bsw ¢ [OLN] x RB* x DY x R" - R¢ is o Borel
measurable function such that hsn(-,z,8,v) =
ho(,z,8)  + (-, z)d, and threre exists ¢ >
0 such thatn(k,z)n (k,z) > Iy x cg,¥k € |0, N}, €
R™. (iz) There are inverse maps foo @ [0,N — 1] x
R™ x R % DY and hsy : [0, N] x RE x R* x DPsuch
that wy = fyzlk Trs1, %6, 7%), Yk € [O,N — 1],
which is  differentioble in the second wvariable
for each k, and vy = hsy(k,yr, 20, 6), VE €
[0, N]. (z) The matriz-velued  functions
Hso(kyz,66,0) 2 Lhou(ks, 66, 0)lomen, VE €

- A ~
[O= NJy Hé.v(k,'xs 5-'&') Uk) = %hé.y(k: yv lfk, 6)|y=yka E

[0, N1. are non-singular. fzi) A< [0,N -1 xR"x X —
[0,00),5 : N x R* — [0,00) are Borel measurable,
M€ L(0,N —1];R) and k € &(|N, N} R) .

Definition 2.1 The set of admissible estimations and
disturbances are defined as follows.

Ron-g 2 {a: CJO,N] x @ — X CRE {ik), s

progressively measurable with respect to {Mox}. k €

[0, N—1] and EV{ Zii_ol Hi"kmgan} < oo} DP[’),N—ll =

{‘y [0, N — 1] x Q@ — DY =R™ {4} is progressively

measurable with respect to {Gox}, k € [0, N — 1} and
N-

B { T35 Illg | < oo}

Under Assumptions 2.1 (i)-(xi) it can be shown that
the recursions (1), (2) have unique weak solutions.

2.2 Pay-Off Functional

For each sample path y(-,w) € £2([0, N|;®?) and for
each sample path z(-,w) € £2([0, N]; R™) corresponding
to admissible («,d) € 'DEB,N_I] X 'DfU’N_1]~and 0 €
R", the real-valued pay-off functional J§ y(&,7,8} is
defined by

i a
Jo n(Eo.n-11 Yo.N—13 S0, v—1]) = E¥ {P(Io) +
N-1

> Atk 7k, 2e) - %IMH?» - %”‘5*”3”}}' ®

k=0

where E¥ = FE,, » denotes expectation with respect to
the distribution of the processes (wo n..1, Vjo,N—1])
For (&,7*,6°) € Ko,y x€5([0, N—1}; R™) x5 (10, N -
1]; #4) define

JEn(@) 2 JE nla, 67 =

N-1
sup E“{p(xo) + [/\(k, Tk, B2)
(1,6)eDfo'Nvu)<D[}',‘N_1] k=0
Yz L2
Sl = 5110kl ] }- @)

The estimation problem is to determine £* € Xjq n—y)
which impacts

Hon(@)y = inf  JEn(E,478%), (5)

F€Alo,N-1)

subject to the constraints (1), (2).

This problem will be formulated using an action func-
tional as follows.

Definition 2.2 For each sample path of the complete
date (y(-,w),z(-,w)) € (0, N};RY) x £2([1, N|; R?),
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generated by some admissible (7, 48) € DH], Mot ¥ ’Dfﬂ, N
and zo € R", the sample path pay-off functional with
respect Lo T(y, ), Yo, w—1] 5 defined by

N-1
K n(,2,9) £ Buo{p@o) + 3 [N zi,80)
k=0

—%“G_l(k, zi) ($k+1 — fulk, Tk,wk)) [

2l ) (v — ol 2,2 )] (6)

For o given & € A:'Ig,Nﬁll, let v*(,w)z*(,w) €
(B2([0, N — 1D); RY) x (£3([1, N]); R") denote the most
likely sample path associated with the pay-off functional
I8 n(#,2,y) defined by

(yﬁ),N—l]! J~'f‘u,N]) € arg

sup sup Ig,N*l("fvmay) (?)
yEL2([0,NER™) x€€2([0, N~1);R")

Then
] ay & 9 N .
Jo pld) = sup sup I§ v (2,2, 7)
ye2([0,N~1};R") ze£2([0,N-1];R")
= Eyn sup sup {po(.’ro)

ye£2(10,N -1];R9) zeL2{[0,N];}")
N-1

+ ; [/\(k, Tx, Eg) — %jﬂn ll"_l(k=zk)($k+1 _

Sulbon,0)) o b ) = 3 [ 117 )
(s = hole, 20,00 ) Wadu()de] . ®

We shall call Ig, (&, x,y) the action functionel associ-
ated with (1), (2) and (y*(-,w),z*(w)) € E(0, N —
1j;R9) x £2([1, N|;R™) the most likely semple paths
associated with the observed and unobserved process,
respectively, obtained by mazimizing the action func-
tional.

2.3 Sample Path Information State and Adjoint
In this section we introduce the sample path informa-
tion state and its adjoint which we shall use to re-cast
the partially observed minimax dynamic game (1), (2},
JE 5(&,7,96) into a fully observed dynamic game.

Definition 2.3 For A £ {a € a1 > 0,05 > 0}
define the spaces

Be 2 {p € C(R™);p(z) < —anlizllfm + a2, o € A}’

B2 {pe COip(@) < —aullelfn + az,for ac Al

Cy(R™) 2 {p € OB ) |p(z)| < k, for some k> 0}.

Define the sup pairing on the product space B x Cp(R"™)
by

< m ¢ >sup§ s;g)ﬂ {Tr(x) —+ C(:J:)}, x € B,( € Cp(R™).

For each n € [0, N] define the operators ™8 . B -
B,T?: Cy(R™) > Co(R7) by

%@, 1)x’(z) = sup {An,2,2) -
TER™

) [ o™ ) (2 = 2, 0)) e ()
_% /s;ed [l (n, ) (y — hy(n, m))”%dqpvn (v)dv
+1r9(:c)}. ©)

The adjoint is defined by
T2, y¥%(z) £ sup {/\('n,:c,.:?:) -
5 L o703 (z = fol2,0)) e )
- fm 0, 2) (y = holn, 2)) [t (W)
@

Finally, with respect to the sup pairing < -,- >sup the
above operators satisfy

< Te’*ﬂ,C >sup=< W:;TBC >supy YW EB(E Cyp(R™).

(10)

For some 0 < # < 8*, and for each fixed observation
path y(-,w) € £2([0, N];R?) and given a fixed state z,
let (o € R™,v € D?('],m},é € Dfﬂ,m]) be the restrictions
of (zp € R", =~ € ‘DH),N—I]’ J e 'D[&O’N_l]) which
generate a trajectory which at time m is ¢, = z.
Define the information state 7% () € B by

7 (2) 2 sup

m—1
megz(lﬂrﬂ"‘—l];ﬁﬁ) Ew’"{p(IU) + kz:; [

. 1 1 s
M, zx, ) = llo™ (K, 36 (xes = Sl n, w0)) e

_%Hﬁfl(k,ﬂik)(yk - hv(k73kyvk))|@gd] (T = z}. (11)

This is the cost-to-go from stage k = m to stage k = 0,
in which z,, = z is optimal.

Theorem 2.1 Consider a fized sample path y(-,w) €
E(0,N;RY), 0 < 0 < 0%, and & € A n_1- The
information state 79,(-) € B satisfies the following re-
cursion.

Wren(z) = Te'*(f:m_h ym—l)ﬁgr;—l(z)a
78(2) = po(z)ym € 1, N]. (12)
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Proof. Follows from Dynamic programming.

Next, we consider the adjoint information state. For
some 0 < # < 8*, and for each fixed observation path
y{-w) € ([0, N};R?) and given a fixed state z, let
(@0 € R,y € D?m,N—l]’ls € Dfm_N_H) be the restric-
tions of (xp € R*, Y€ Dpy_y, I € ’DFD}N;,]) which
generate a trajectory which at time m is z,, = 2.
Define the state ¢&,(-) € Co(R"™) by -

N-1
Fa¥
O sup Eyw Ak, zi, 2x)
m(2) eee2(im+1,N|;R") {gl[ e

— gl (5, ) (s = ful ) ) o

2l k) (g ol 2, ) e

|m = z} (13)
This is the cost-te-go from stage k = m tostage k = N,

in which z,, = z is optimal.

Theorem 2.2 Consider a fized sample path y(-,w) €
£(0,N;RY),0< 0 < 6", and 2 € X[nN 1) The state
(8. € Cu(R™) satisfies the following recursion.

Cﬁ,(z) = Te(imvym)cg-a+1(z)1 gf\r(z) =0
mel0,N-1]. {14)

Proof. Follows from Dynamic programming.

3 An Information State Stochastic Minimax
Game

Next, we dsicuss the invariant property of the pay-off
as a functional of the information state and its ad_]omt
with respect to the suppairing. -

Corollary 3.1 Coensider a fired sample paih y(-,w) €
22([0 N] Rd) 0<8<P, andz ¢ X{UN 1]-
Then the following time-invariant property holds.

<AN Psup=< Tm, Cm _>sup=< 70,60 > sup,
YTm € B, (m € Cs(R™),m € [0, N]. " (15)
Proof. Follows from (12),(13).

3.1 Representation of the Pay-Off Functional
and Deterministic Optimization

For a fixed observation sample path y = y(-,w) € -

€2([0,N — 1];R9) and state sample path z(-,w) €
£2([0, NJ;®™) generated by an admissible (v,4) €

DE),N 1 % 'DON %o € R™ and & € )?[O,N—l]y the ex-

tremal of the action functional with respect to zp; n) €
£2(]1, N]; ®®) is given by

IgN(iay:I*) = sup sup
' EL?{[0,m—1];8") z€L2([m,m];7")
N-1
sup Ew,u{ﬁ(ffn) + Z [)\(k,l‘k,ik)
€63 ([m+1,N|;R™) o

1
~5llo™ e 2i) (a1 = fulk, 24,00) ) e
_'%”T]_l(kszk)(yk _hu(k,xk,vk))ngz.i]}. (16)
Using the definitions of mm (-}, Gn(-) we deduce
{Nm(:tm) + Cm(xm)}y

ye 22({01N - 1];%‘1)?37" € ’?[O,N—l]- (17)

- Ig,N(isyaz*) = sup
z&L3([m,m];R™)

Consequently, we have the following result.

Theorem 3.1 For# ¢ ?3’[0,1\;_1], (Ve Band(8() €

" Cy{R™), k € [0, N] the pay-off functional has the follow-

ing representation

. Loox _an O
JOE,N('T) = Ig,N(-r!y ' & ) =

sup { < AN Zsup } =
yEE({0,N—1}; R}

sup { < M, C-m. >sup } =
yef{[0,.N-1};R%)

F([osg! i w){ < 70,60 > sup } m € [0, N{18)
yE

Moreover, the new optimization proble'r;z with respect to
the admissible states & € Ajp y_1) 15 defined as follows.

.]0 n(®* ) = inf sup { < TN sup }
X yE!’

SUbJeCt to ’IT ( ) Ts(mm—laym—l)ﬁ — (z)l
#§(2) = pp, m & {1, N]. " (19)

Proof. Follow from definition(2.2} and Corollary fol-
lows from theorem ( 2.1).

Remark 3.1 Notice that the stochastic optimization
problem is reduced to a completely observable optimiza-
tion problem, because the pay-off functional is expressed
in term of the information states «,¢.

Definition 3.1 Let i'[k,m] denote the set of state esti-
mators defined on the interval [k, m] which are adapted

to the o— algebra a{ﬂf; k<j< m}.
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For & € By n_y) (€9, &% = plk, 7)., vk € [O,N ~ 1])
the new optimization problem is defined as follows.

ey A
Jg,N('T )=

inf sup { < AN Psup }

FEX |y, N —1] yELE([0,N —1];7)
subject to mp,(2) = T?(&m1, Ym—1)7-1(2),

wb{z) = po, me[1,N]. (20)

Let 7%, = = be the state obtained from the recursion
(12), using the optimal strategy (Z*, y*) during the in-
terval 0 < k < m — 1, and for n%(-) € B,m € [0, N],
define

WoE(r, m) e sup

8
{ < Ty >su,,;:rrf,1 = ar}, (21)
ye2(lm,N—1};R4)

The value function associated with (20) is

N . ;
Wor,m)=  inf WEHr m) =
BEA ], No1)
inf" sup { < ﬂ'?v > sup;
2E€X N 1) yEE ([m, N—1];]4)
=, — ). (22)

By Theorem 3.1 we deduce the following theorem.

Theorem 3.2 (Dynamic programming equation) For
each 78, ()} € B, ¢S () € Co(R™),m € [0, N], the value
function WP() satisfies the following dynamic pro-
" grumming equation (recursion).

Wi, k)= inf sup
EEXm, m} yEL2([m,m);RY)

(wo@ . gmk+ 1)}, kelo,N -1,

W(r, N) =< 7 >gp . (23)

Proof.Similar to [20}.

4 Explicit Solution for Linear Systems

in this section, we consider linear systems and a
quadratic pay-off functional to derive solutions to
the information state equation, and then to solve the
resulting minimax game to deduce in the optimal
estimator. :
The system dynamics are

Tyl = AxTr + kv + Diwy (24)

yi = Crzy + meby + Nywg (25)

and the pay-off functional is:

1 A _

T = E"{'é(icn — &o)Fy5 H(zo — o)’

N-1 1
+ Z[ﬁ(xk - &) Qu(zx — Ex)

k=0

1 2 1 2
—ggllell” = 55ilél1%}, (26)
Where (B 1) = (ByY) 2 0,Q, = QL > 0,Vk € [0, N—

il,we N(0,2,),v € N(0,Z,),E, 20,Z, >0
The information state solution is:

1
Al —%zLszk FoDet b (20)
Where P,T',4 are given by some recursion equations,
The Pay-off is now given by ngN = sup;,, T (zN)
Thus

zy =arg sup Jo n(E) = Py'Ty.
EnyeRn !

(28)

Then the completely observable problem is linear
quadratic. Thus, we can use Dynamic programming
to obtain the explicit expression for the optimal esti-
mator.
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