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Abstract—This paper shows that innovation encoder,
the Kalman filter decoder and certainty equivalent con-
troller are still good choices for stability and tracking of
linear Gaussian systems over Additive White Gaussian
Noise (AWGN) channel in the presence of intermittent
deterministic noiseless feedback channel. When feedback
channel is described by a deterministic switch, for both
stable and unstable systems, an innovation encoder, the
Kalman filter decoder and a certainty equivalent controller
are presented for stability and tracking over AWGN
channel provided channel input power constraint is not
violated and the system is controllable. Then, it is illus-
trated that when feedback channel is frequently available,
performance of the system is similar to the optimal
performance which corresponds to the case of full time
availability of noiseless feedback channel.

I. INTRODUCTION

One of the issues that has begun to emerge in a
number of applications is how to track state trajectory
of a dynamic system at a remote controller and control it
over a communication channel subject to imperfections
(e.g., transmission noise). Some examples of systems
that are required to be tracked and controlled over
communication channels subject to imperfections are
smart drilling system and smart oil well. Some results
addressing basic problems in tracking and/or stability of
dynamic systems over communication channels subject
to imperfections can be found in [1]-[12].

Dynamic systems can be viewed as continuous
alphabet sources with memory. Consequently, many
works in the literature (e.g., [1],[10], [11],[12]) in-
cluding this paper are dedicated to the question of
stability and tracking over Additive White Gaussian
Noise (AWGN) channel, which itself is naturally a
continuous alphabet channel. In [10] the authors con-
sidered the problem of stability and tracking of partially
observed discrete time linear Gaussian systems over
AWGN channel and for the quadratic cost functional,
they showed that an innovation encoder that exploits
noiseless feedback channel full time, the Kalman filter
decoder and a certainty equivalent controller minimize
the quadratic cost functional (with the optimal cost of
Jopt) and results in real time reliable data reconstruction
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Fig. 1. Linear Gaussian system over AWGN channel.

up to a given distortion level (i.e., tracking) and stability.
[11] includes the fully observed version of the results
of [10] and [12] presents the continuous time fully
observed version of [10].

As the availability of noiseless feedback channel
may not be possible full time, it is more desirable
to use noiseless feedback channel that is available
intermittently. Therefore, this paper aims to investigate
if innovation encoder, the Kalman filter decoder and
certainty equivalent controller are still good choices for
stability and tracking of linear Gaussian systems over
AWGN channel in the presence of noiseless feedback
channel that is available intermittently.

To address this question, when feedback channel is
described by a deterministic switch, for both stable and
unstable systems, an innovation encoder, the Kalman
filter decoder and a certainty equivalent controller are
presented for stability and tracking over AWGN channel
provided channel input power constraint is not violated
and the system is controllable. Then, it is illustrated
that when feedback channel is frequently available,
performance of the system is similar to the optimal
performance which corresponds to the case of full time
availability of noiseless feedback channel [10].

The paper is organized as follows. In Section II,
the problem formulation is presented. In Section III,
an innovation encoder, the Kalman filter decoder and a
certainty equivalent controller are presented for stability
and tracking when feedback channel is described by a
deterministic switch. Section IV is devoted to simulation
studies, and in Section V the paper is concluded by
summarizing the contributions of the paper.



II. PROBLEM FORMULATION

Throughout, the following conventions are used.
R denotes the space of real numbers, I the identity
matrix, || · || the Euclidean norm and =̇ means ‘by
definition is equivalent to’. yt=̇(y0, y1, ..., yt), N(m,n)
denotes the Gaussian distribution with mean m and
variance n, var(k) denotes the variance of the random
variable k and E[k] is the expected value. trac(A)
denotes the trace of square matrix A, A−1 the inverse
of square matrix A, V ′ the transpose of matrix/vector
V and fk̃|k denotes the conditional density function.

This paper investigates if innovation encoder, the
Kalman filter decoder and certainty equivalent control
are still good choices for stability and tracking of
linear Gaussian systems over AWGN channel in the
presence of intermittent deterministic feedback channel
as described in the block diagram of Fig. 1. This block
diagram with full time availability of feedback channel
has been considered in several research papers, such
as [10], [12], [11]. This block diagram can describe
the tele-operation problem of micro vehicles, such as
micro Unmanned Aerial Vehicles (UAVs) and micro
Autonomous Underwater Vehicles (AUVs). These
micro vehicles are supplied with limited capacity
batteries. Consequently, the communication from these
vehicles to base station where controller is located is
subject to imperfections, which are modeled in the
block diagram of Fig. 1 by AWGN channel. However,
as the base station can be equipped with high capacity
power supplies, the communication from controller to
these vehicles can be assumed without imperfections.

The building blocks of the block diagram of Fig. 1
are described now:

Dynamic System: The dynamic system is the
following partially observed linear Gaussian system{

xt+1 = Axt +Hut +Bwt,
yt = Cxt +Dvt,

(1)

where xt ∈ Rn, ut ∈ Ro, wt ∈ Rq , yt ∈ R, vt ∈ Rl,
A ∈ Rn×n, H ∈ Rn×o, B ∈ Rn×q , C ∈ R1×n, and
D ∈ R1×l. wt i.i.d. ∼ N(0, I), vt i.i.d. ∼ N(0, I),
x0 ∼ N(x̄0, Q0), and wt, vt, x0 are mutually
independent.

Encoder: Encoder is innovation encoder that transmits
an error between message yt and an estimate of the
reconstruction of yt at the end of communication.
That is, if E(·) denotes the encoder operation, then
zt = E(yt, ut−1, k̂t−1)= αtkt, where kt = yt − yet and
αt ∈ R. Note that yet is an estimate of yt and k̂t is the
feedback channel signal that is available at the encoder.
ut is the control signal.

Communication Channel: The communication
channel is the Additive White Gaussian Noise
(AWGN) channel with input zt and output z̃t such
that z̃t = zt + w̃t, where w̃t i.i.d. ∼ N(0, wc) is the
channel noise. w̃t is independent of wt, vt, x0. This
channel is subject to channel input power constraint of
E||zt||2 ≤ p.

Decoder: Decoder is the Kalman filter (i.e., the
minimum mean square error estimator) with input
k̃t−1 (k̃t = γtz̃t, γt ∈ R) and ut−1, and output x̂dt|t−1,
where x̂dt|t−1 is the mean square state estimation at
time instant t given (k̃t−1, ut−1). Note that k̃t is the
feedback channel signal.

Controller: Controller is a certainty equivalent
controller of the following form: ut = Kx̂dt|t−1, where
K ∈ Ro×n is the controller gain. Note that in this
paper it is assumed that the encoder cannot estimate
x̂dt|t−1 by observing the control signal ut over time
(for example, K ′K is not invertible).

Intermittent Deterministic Feedback Channel:
Feedback channel is described by a switch, in which
its schedule for being on or off is known a priori
for both the encoder and decoder. The full time
availability of noiseless feedback channel requires
that the transmission of feedback channel signal k̃t is
done with high power full time. In the block diagram
of Fig. 1, the control signal ut is also transmitted
with high power. Hence, the availability of noiseless
feedback channel full time results in significant power
consumption at the receiver. Therefore, it is more
desirable to transmit the feedback channel signal with
high power only at specific time instants that are known
for both the encoder and decoder to avoid wasting
the receiver power supply. This motivates the use of
intermittent deterministic feedback channel.

The objective of this paper is to investigate if
innovation encoder, the Kalman filter decoder and
certainty equivalent controller are still good choices
for stability and tracking of the block diagram of Fig.
1, as described as follows.

Definition 2.1: (Tracking): Consider the block dia-
gram of Fig. 1 described by the dynamic system (1).
The system (1) is tractable if and only if there exist
an innovation encoder and the Kalman filter decoder
that result in real-time reliable data reconstruction up
to the given distortion level D̄ ≥ 0, as follows:
E||yt − ỹt||2 ≤ D̄, where ỹt is the reconstruction of
yt at the end of communication.

Definition 2.2: (Stability): Consider the block dia-
gram of Fig. 1 described by the dynamic system (1).
The system (1) is stabilizable if and only if there exist
an innovation encoder, the Kalman filter decoder and a
certainty equivalent controller that result in stability of
the dynamic system in the following form

lim
T→∞

1

T

T−1∑
t=0

E||xt||2Q <∞

by minimizing the following cost functional

J = lim
T→∞

1

T

T−1∑
t=0

E(||xt||2Q + ||ut||2R),

Q = Q′ ≥ 0, R = R′ > 0. (2)



III. INTERMITTENT DETERMINISTIC
FEEDBACK CHANNEL

Consider the block diagram of Fig. 1 described
by the intermittent deterministic feedback channel, as
described earlier. In this section, it is assumed that in
the first M time instants, there is noiseless feedback
channel; but in the next N−M time instants (N ≥M ),
feedback channel is not available. Similarly, in time
instants N + 1, N + 2, ..., N +M , noiseless feedback
channel is available; but in time instants N+M+1, ...,
2N , feedback channel is not available; and so on and so
forth. Under this assumption, in this section, we present
an innovation encoder, the Kalman filter decoder and a
certainty equivalent controller that result in stability and
tracking, as defined earlier.
Innovation Encoder: For those time instants that feed-
back channel is available, the encoder has the following
description.

kt = yt − E[yt|k̃nN , k̃nN+1, ..., k̃t−1, u
t−1],

t ∈ {nN, nN + 1, ..., nN +M},
n = {0, 1, 2, 3, ...}

= C(xt − x̂et|t−1) +Dvt,

x̂et|t−1 = E[xt|k̃nN , k̃nN+1, ..., k̃t−1, u
t−1]

zt = αtkt.

Therefore, the dynamic system that is seen by the
encoder with the measurement ȳt = k̃t + αtγtCx̂

e
t|t−1

(αt and γt will be defined shortly) is the following
dynamic system.{

xt+1 = Axt +Hut +Bwt,
ȳt = αtγtCxt + αtγtDvt + γtw̃t.

(3)

Hence, from the standard results of Kalman filtering
[13] it follows for t ∈ {nN, nN + 1, ..., nN +M − 1}
that

x̂et+1|t = Ax̂et|t−1 +Hut +A∆e
t k̃t, x̂e0|−1 = x̄0, (4)

∆e
t = P et|t−1αtγtC

′(α2
tγ

2
tCP

e
t|t−1C

′

+α2
tγ

2
tDD

′ + γ2
twc)

−1

P et+1|t = AP et|t−1A
′ −A∆e

tαtγtCP
e
t|t−1A

′

+BB′, P e0|−1 = Q0. (5)

But, for those time instants that feedback channel is
not available, the encoder uses an open loop estimation.
That is,

kt = yt − E[yt|ynN+M , ynM+M+1, ..., yt−1, u
t−1],

t ∈ {nN +M, ..., nN +N}
= C(xt − x̂et|t−1) +Dvt,

x̂et|t−1 = E[xt|ynN+M , ..., yt−1, u
t−1].

zt = αtkt.

Hence, for t ∈ {nN +M, ..., nN +N −1} we have the
following recursive equations.

x̂et+1|t = Ax̂et|t−1 +Hut (6)

P et+1|t =̇ E[x̃et+1|tx̃
e′

t+1|t] = AP et|t−1A
′ +BB′

x̃et+1|t = Ax̃et|t−1 +Bwt (x̃et|t−1 = xt − x̂et|t−1)

. (7)

Remark 3.1: Note that for n ≥ 1, the initial condi-
tion for the recursive equation (4), i.e., x̂nN |nN−1 is the
estimate of the state that is obtained from the recursive
equation (6) for t = nN − 1. Also, the initial condition
for the recursive equation (6), i.e., x̂nN+M |nN+M−1 is
the estimate of the state that is obtained from the recur-
sive equation (4) for t = nN + M − 1. Consequently,
for n ≥ 1, the initial condition for the recursive equa-
tion (5), i.e., P enN |nN−1 is the mean square estimation
error that is obtained from the recursive equation (7)
for t = nN − 1. Also, the initial condition for the
recursive equation (7) is the mean square estimation
error that is obtained from the recursive equation (5)
for t = nN +M − 1.

The Kalman Filter Decoder: As for all time instants
we have k̃t = αtγtkt + γtw̃t= αtγtC(xt − x̂et|t−1) +
αtγtDvt+γtw̃t, the dynamic system that is seen by the
decoder is the following{
xt+1 = Axt +Hut +Bwt,

k̃t = αtγtC(xt − x̂et|t−1) + αtγtDvt + γtw̃t.
(8)

Note that as the feedback channel is deterministic,
x̂et|t−1 is known to the decoder for all time instants.
Consequently, the dynamic system with the measure-
ment k̄t=̇k̃t + αtγtCx̂

e
t|t−1 that is seen by the decoder

is the following{
xt+1 = Axt +Hut +Bwt,
k̄t = αtγtCxt + αtγtDvt + γtw̃t.

(9)

Therefore, from the standard results of Kalman filtering
[13] it follows that

x̂dt+1|t = Ax̂dt|t−1 +Hut +A∆d
t (k̃t + αtγtCx̂

e
t|t−1

−αtγtCx̂dt|t−1)

= Ax̂dt|t−1 +Hut +A∆d
t (αtγtCx̃

d
t|t−1

+αtγtDvt + γtw̃t), x̂d0|−1 = x̄0

∆d
t = P dt|t−1αtγtC

′(α2
tγ

2
tCP

d
t|t−1C

′

+α2
tγ

2
tDD

′ + γ2
twc)

−1

P dt+1|t = AP dt|t−1A
′ −A∆d

tαtγtCP
d
t|t−1A

′ +BB′,

P d0|−1 = Q0 (10)

x̃dt+1|t = (A−A∆d
tαtγtC)x̃dt|t−1 −A∆d

tαtγtDvt

−A∆d
t γtw̃t +Bwt (x̃dt|t−1 = xt − x̂dt|t−1).

(11)

Determination of αt and γt: αt and γt are determined
from the Shannon source-channel matching principle
which requires that the message to reconstructed mes-
sage behaves like the rate distortion minimizing stochas-
tic kernel. In the block diagram of Fig. 1, let kt be the
message and k̃t the reconstructed message. Then, as
k̃t = αtγtkt+γtw̃t, we have fk̃t|kt ∼ N(αtγtkt, γ

2
twc).

On the other hand, for Gaussian random variable kt



with mean square error distortion measure, the rate
distortion minimizing stochastic kernel is f∗

k̃t|kt
∼

N(ηtkt, ηtD̄), where D̄(≤ ψt) is the given distortion
level, ψt = var(kt) and ηt = 1 − D̄

ψt
[14]. Now,

to fulfill the requirement of Shannon source-channel
matching principle, αt and γt must be defined such that
fk̃t|kt = f∗

k̃t|kt
resulting in

αt =

√
ηtwc
D̄

, γt =

√
ηtD̄

wc
, D̄ ≤ ψt. (12)

Now, we have the following proposition for tracking
using the proposed coding technique.

Proposition 3.2: Consider the block diagram of Fig.
1 described by the intermittent deterministic feedback
channel and the proposed coding technique with αt and
γt as given in (12). Suppose that the channel input
power constraint is not violated. Then, we have real-
time tracking as follows: E||yt − ỹt||2 = D̄, where
ỹt = k̃t + Cx̂et|t−1.

Proof: Using the proposed coding technique we have
the following equalities:

E||kt − k̃t||2 = E||(1− αtγt)kt − γtw̃t||2

= E|| D̄
ψt
kt − γtw̃t||2

= E[
D̄2

ψ2
t

k2
t + γ2

t w̃
2
t − 2

D̄

ψt
γtktw̃t]

=
D̄2

ψ2
t

E[k2
t ] + γ2

tE[w̃2
t ] + 0 = D̄.

Now, as E||yt − ỹt||2 = E||kt − k̃t||2, we have
E||yt − ỹt||2 = D̄. This completes the proof.

Under the assumption that the channel input power
constraint is not violated, from the descriptions for
encoding error and decoding error (11) and the standard
results of Kalman filtering, it follows that the proposed
coding technique is stable even for unstable matrix A.
Note that by stability of coding technique we mean that
the mean square encoding estimation error E||x̃et|t−1||

2

and mean square decoding estimation error E||x̃dt|t−1||
2

are asymptotically bounded.
Now, using the proposed coding technique and under

the assumptions that the channel input power constraint
is not violated, the static controller gain K of the cer-
tainty equivalent controller ut = Kx̂dt|t−1 is determined
by minimizing the cost functional (2). To achieve this
goal we notice that the dynamic system that is seen in
the controller side is the system (9). Now, to determine
the static controller gain K, we apply the separation
principle [13]. That is, we rewrite the cost functional
(2) as follows

J = lim
T→∞

1

T
E[

T−1∑
t=0

(xt − x̂dt|t−1 + x̂dt|t−1)′

.Q(xt − x̂dt|t−1 + x̂dt|t−1) + u′tRut]

= lim
T→∞

1

T
E[

T−1∑
t=0

(x̃dt|t−1 + x̂dt|t−1)′

.Q(x̃dt|t−1 + x̂dt|t−1) + u′tRut]. (13)

Now, as the estimation error is orthogonal to the
observation space, that is, E[x̃d

′

t|t−1x̂
d
t|t−1] = 0 and

E[x̂d
′

t|t−1x̃
d
t|t−1] = 0, we have the following equalities

J = lim
T→∞

1

T
E[

T−1∑
t=0

x̃d
′

t|t−1Qx̃
d
t|t−1 + x̂d

′

t|t−1Qx̂
d
t|t−1

+u′tRut]

= lim
T→∞

1

T

T−1∑
t=0

trac(QP dt|t−1) + J̄ ,

J̄=̇ lim
T→∞

1

T
E[

T−1∑
t=0

x̂d
′

t|t−1Qx̂
d
t|t−1 + u′tRut].

(14)

From the equality (14) it is evident that the control input
ut = Kx̂dt|t−1 that minimizes the cost functional (2) is
the one that minimizes the cost functional J̄ as P dt|t−1
is independent of the control input. From the standard
results of stochastic linear quadratic regulator [13] it
follows that under the assumption that the pair (A,H)
is controllable, the control input that minimizes the cost
J̄ subject to (10) is given by

ut = Kx̂dt|t−1

K = −(R+H ′P∞H)−1H ′P∞A, (15)

where P∞ = P
′

∞ > 0 is the solution of the following
Algebraic Riccati equation.

P∞ = A′P∞A−A′P∞H(R+H ′P∞H)−1H ′P∞A

+Q.

Remark 3.3: From the standard results of stochastic
linear quadratic regulator [13] it follows that A+HK
is a stable matrix.

Now, by substituting ut = Kx̂dt|t−1 in the cost func-
tional (2) the minimum cost functional is calculated as
follows.

J∗ = lim
T→∞

1

T
{E[

T−1∑
t=0

trac(QP dt|t−1)]

+E[trac(P0(Q0 + x̄0x̄
′

0)

+

T−1∑
t=0

trac(Pt+1Γt)]}, (16)

where Pt is the solution of the following backward in
time Riccati equation.

Pt+1 = A′PtA−A′PtH(R+H ′PtH)−1H ′PtA

+Q, PT = 0,

and

Γt =̇ E[A∆d
t k̃tk̃

′

t∆
d′

t A
′].

Now, in the following proposition we show that using
the proposed coding technique and controller the system
(1) in the block diagram of Fig. 1 is stable.



Proposition 3.4: Consider the block diagram of Fig.
1 described by the dynamic system (1). Suppose that the
pair (A,H) is controllable and the channel input power
constraint is not violated. Then, using the proposed
coding technique and controller the system (1) in the
block diagram of Fig. 1 is stable.
Proof: Under the action of the proposed controller, the
dynamic system has the following representation

xt+1 = Axt +Hut +Bwt

= Axt +HKx̂dt|t−1 +Bwt

= (A+HK)xt −HKx̃dt|t−1 +Bwt.(17)

Now, as the matrix A + HK is stable and
limt→∞E||x̃dt|t−1||

2 < ∞, from the dynamic system
(17) it follows that limt→∞E||xt||2Q < ∞. This in-
equality results in the stability of the following form
limT→∞

1
T

∑T−1
t=0 E||xt||2Q <∞.

IV. SIMULATION RESULTS

In this section, the sub-optimality of the proposed
coding technique and controller are illustrated by
computer simulations.

Consider the block diagram of Fig. 1 described
by AWGN channel, the proposed coding technique
and controller and a scalar dynamic system with
the following specification: wc = 1, p = 30,
x0 ∼ N(10, 1), H = B = C = D = 1. For unstable
dynamic system, we set A = 1.2 but for stable
dynamic, we set A = 0.8. For simulation study, we
also set D̄ = 0.5, Q = R = 1 and N = 10.

Fig. 2 illustrates the trade-off between J∗ and M
when the block diagram of Fig. 1 is described by the
stable dynamic system with N = 10. As clear from
this figure for all M ∈ {1, 2, ..., 10}, the difference
between J∗ and Jopt = J∗

∣∣∣
M=N

is negligible. This
indicates that for the condition simulated, almost noting
is lost in terms of performance if feedback channel is
used intermittently. Fig. 3 also illustrates the trade-off
between J∗ and M when the block diagram of Fig.
1 is described by the unstable dynamic system. Note
that for the unstable dynamic system Jopt = 6.68. For
this case, it is observed for M ≤ 6 that the proposed
coding technique and controller is not able to stabilize
the unstable dynamic system as the channel input
power constraint is violated. But for 7 ≤M ≤ N = 10
that the channel input power constraint is not violated,
the stability is achieved using the proposed coding
technique and controller, in which as shown in Fig.
3, the difference between J∗ and Jopt for different
M ∈ {7, 8, 9, 10} is very small and as M goes to N
this difference becomes smaller. This indicates that
when the channel input power constraint is not violated,
the proposed coding technique and controller are able
to stabilize the system and when the feedback channel
is available frequently (and hence the channel input
power constraint is not violated), almost nothing is lost
in terms of performance. This result is expected as the
controller (15) has the same structure as the optimal
controller of [10] with the same static controller gain.
Also, the recursive equation (10) is exactly the same

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

M

J
*

Fig. 2. Trade-off between J∗ and M for stable system.

 

7 7.5 8 8.5 9 9.5 10
0

2

4

6

8

10

M
J
*

Fig. 3. Trade-off between J∗ and M for unstable system.

as the recursive equation of [10] for the decoder output.

For unstable system, Fig. 4 illustrates the power of
the signal to be transmitted by AWGN channel (i.e.,
αtkt) for M = 1. As this power violates the channel
input power constraint, a distorted version of the signal
αtkt is received by the decoder. As shown in Fig. 5, as
a result of this violation, the proposed coding technique
and controller are not able to stabilize the system. Fig.
6 illustrates the power of the signal αtkt for M = 9. As
this power is within the channel input power constraint,
the proposed coding technique and controller as shown
in Fig. 7 are able to stabilize the system in bounded
mean square sense around the origin.

V. CONCLUSION

In this paper when deterministic noiseless feedback
channel is available intermittently, for both stable and
unstable systems, an innovation encoder, the Kalman
filter decoder and a certainty equivalent controller were
presented for stability and tracking of linear Gaussian
systems over AWGN channel provided channel input
power constraint is not violated and the system is
controllable. Then, it was illustrated that when feedback
channel is frequently available, performance of the
system is similar to the optimal performance which cor-
responds to the case of full time availability of noiseless
feedback channel. Therefore, it is concluded that for
both stable and unstable linear Gaussian systems, when
deterministic feedback channel is available frequently
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Fig. 4. Power of the signal to be transmitted by AWGN channel for
unstable system and M = 1.
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Fig. 5. State trajectory for unstable system and M = 1.

and the system is controllable, innovation encoder, the
Kalman filter decoder and certainty equivalent controller
are good choices for stability and tracking over AWGN
channel.
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