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Abstract

This paper presents a new technique for almost sure asymptotic state tracking, stability and reference tracking of nonlinear
dynamic systems by remote controller over the packet erasure channel, which is an abstract model for transmission via WiFi
and the Internet. By implementing a suitable linearization method, a proper encoder and decoder are presented for tracking
the state trajectory of nonlinear systems at the end of communication link when the measurements are sent through the packet
erasure channel. Then, a controller for reference tracking of the system is designed. In the proposed technique linearization
is applied when the error between the states and an estimate of these states at the decoder increases. It is shown that the
proposed technique results in almost sure asymptotic reference tracking (and hence stability) over the packet erasure channel.
The satisfactory performance of the proposed state trajectory and reference tracking technique is illustrated by computer
simulations by applying this technique on the unicycle model, which represents the dynamic of autonomous vehicles.

Key words: Networked control systems; Internet of Things (IoT); nonlinear dynamic system; autonomous vehicles; the
unicycle model.

1 Introduction

1.1 Motivations and Background

In recent years, extensive research activity has been de-
voted to measurement and control over communication
links subject to imperfections, e.g., packet dropout, dis-
tortion due to limited bandwidth, etc. Questions of this
kind are motivated by future generation of mobile com-
munications, such as 5G and tactile Internet that are ex-
plicitly intended to meet latency requirements for con-
trol applications [1],[2]. Real - time reliable data recon-
struction at the end of communication links (state track-
ing) and stability over communication channels subject
to imperfections have been an active research direction
in recent years [3] - [31]. Fig. 1 illustrates a basic block
diagram for studying the question of real - time reliable
data reconstruction and stability subject to communica-
tion imperfections. The block diagram of Fig. 1 can cor-
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respond to real applications, such as the tactile control
of small autonomous vehicles (e.g. miniature drones).
As these vehicles are supplied with limited capacity on-
board batteries, the data from the vehicle to the remote
controller (located at the control room) must be trans-
mitted with minimum possible power; and therefore, this
data transfer is subject to imperfections (e,g., packet
dropout, distortion, etc.). While, the data from the con-
trol room to the vehicle can be transmitted with high
power; and therefore, the transmission of data from re-
mote controller to the vehicle can be considered almost
without errors and limitations, as is shown in the block
diagram of Fig. 1.
Various publications have introduced necessary and suf-
ficient conditions for reliable data reconstruction and
stability of Fig. 1, e.g., [3]-[5], [9], [10]. In most of these
references, these conditions are given in the form of a
lower bound on the capacity in terms of the rate of
change of dynamic system (measured in bits per time
step). In particular, it is already known that the eigen-
values rate condition (i.e. C ≥

∑
{i;λi(A)≥1} log |λi(A)|

where C is the Shannon capacity and λi(A)s are the
eigenvalues of the system matrix A of the linear dis-
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Fig. 1. A dynamic system over a communication channel
subject to imperfections.

crete time-invariant system) represents the minimum
capacity under which there are encoding and stabiliz-
ing schemes for reliable data reconstruction and stabil-
ity of linear time-invariant systems [3]-[7]. In this paper
in addition of reliable data reconstruction and stability,
we concerned with reference tracking. In [11] and [12],
the authors studied the optimal tracking performance of
SISO linear time-invariant systems over communication
channels subject to imperfections, e.g., packet dropout,
induced delays. The tracking performance considered in
[11] and [12] is measured by the energy of the error signal
between the plant output and the reference signal. They
present the explicit expressions for the minimal tracking
error with or without communication constraints and
show that the tracking performance depends on the non-
minimum phase zeros, unstable poles and the parame-
ters describing communication channel.

As most of important applications of networked control
systems involve nonlinear systems, we study nonlinear
networked control systems in this paper. In [9], the au-
thors considered the stability of a fully observed noise-
less nonlinear time-invariant dynamic systems subject
to unknown initial condition over the limited capacity
digital noiseless channel. This problem can be modeled
by the basic block diagram of Fig. 1 described by such
dynamic systems and the digital noiseless channel. In
[9], the authors developed the notion of topological feed-
back entropy rate for completely deterministic system
that measures the fastest rate at which the initial state
information can be generated. They found a necessary
and sufficient condition on the channel capacity for sta-
bility over the digital noiseless channel. In [10] the au-
thors considered the global asymptotic stability of a fully
observed continuous time-invariant nonlinear dynamic
systems where the measurements must be received by
controller at discrete times; and the data available to

the controller is a stream of binaries. That is, they con-
sidered the control/communication system of Fig. 1 de-
scribed by such nonlinear dynamic system over the dig-
ital noiseless channel; and they found a sufficient con-
dition for stability relating the channel capacity to pa-
rameters describing the nonlinear dynamic system. [13]
is concerned with tracking a vector of signal process gen-
erated by a family of distributed (geographically sep-
arated) nonlinear noisy dynamic subsystems over the
packet erasure channel. Nonlinear subsystems are sub-
ject to bounded external disturbances. Measurements
are also subject to bounded noises. For this system and
channel, subject to constraints on transmission rates,
cross over probabilities and the Lipschitz constants, a
simple technique is presented ensuring tracking state
trajectory with bounded mean absolute error. In [14], it
is shown that the desired estimation of a nonlinear sys-
tems with limited information is impossible for bit rates
which are lower than the so-called estimation entropy.
Furthermore, it is proved that the derived upper bound
on the estimation entropy matches the average bit rate
that guarantees the desired estimation. In [15], the au-
thors presented a necessary condition for mean square
exponential reliable data reconstruction of noiseless non-
linear dynamic systems over the real erasure channel in
terms of erasure probability and positive Lyapunov ex-
ponents. In [16], the authors also presented a necessary
condition in terms of the positive Lyapunov exponents
for the stability of nonlinear noiseless dynamic systems
over the real erasure channel. In [17], a necessary and
sufficient condition for real - time reliable data recon-
struction of noiseless nonlinear dynamic systems over
Additive White Gaussian Noise (AWGN) channel is pre-
sented. [18] presents a new technique for mean square
asymptotic reference tracking of nonlinear dynamic sys-
tems over AWGN channel. The nonlinear dynamic sys-
tem considered in [18] has periodic outputs to sinusoidal
inputs and is cascaded with a bandpass filter acting as
encoder. The authors in [19] also studied the stability
problem of nonlinear constrained systems over the real
erasure channel subject to random dropouts and delays.
In [20], the authors designed state tracker for nonlin-
ear networked control systems over the FlexRay. [21]
presents a second order sliding mode control algorithm
for a class of nonlinear systems subject to matched un-
certainties. The design objective is to reduce data trans-
mission as much as possible over a network subject to
loss, jitter and delays, while guaranteeing satisfactory
performance in terms of stability and robustness.

1.2 Paper Contributions

The above literature review reveals that the previous
works on measurement and control of nonlinear systems
over communication channels subject to imperfections
are limited to state tracking and/or stability for the dig-
ital noiseless channel ([9], [10]), AWGN channel ([17]
and [18]), the real erasure channel (e.g., [15], [19]) or the
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nonlinear Lipschitz dynamic systems (e.g., [13]). Never-
theless, recently the problem of state tracking, stability
and in particular reference tracking of autonomous ve-
hicles (miniature drones, autonomous road vehicles and
autonomous under water vehicles) becomes important.
Dynamic of these systems can be represented by the
unicycle model [29], which is more complicated to be
described by the Lipschitz systems. Also, it is custom-
ary to use WiFi for the tactile control of these vehicles,
in which this type of communication is modeled by the
packet erasure channel with feedback acknowledgment
for the miniature sized vehicles. Hence, this paper ad-
dresses the problem of state tracking, stability and in
particular reference tracking of the nonlinear systems
over the packet erasure channel with feedback acknowl-
edgment, as is shown in Fig. 2.
To the best of our knowledge, the problem of reference
tracking of nonlinear dynamic systems and in particu-
lar the unicycle model over the packet erasure channel,
which arises, for example, in the tactile control of minia-
ture drones, has not been addressed before; and for the
first time is addressed in this paper. To address this prob-
lem, we present a new technique that extends the classi-
cal linearization method [32] to the context of networked
control systems; which is another main contribution of
this paper. In the proposed technique, linearization is ap-
plied when the error between system states and an esti-
mate of these states at the decoder increases; and within
each linearized zone, the available linear networked con-
trol techniques are used. The stability of linear switch-
ing system which is resulted from linearizing the non-
linear system is shown. Subsequently, the satisfactory
performance of the proposed technique is illustrated by
computer simulations by applying this technique on the
unicycle model that represents the nonlinear dynamic
of the miniature drones, autonomous road vehicles and
autonomous under water vehicles.

1.3 Paper Organization

The paper is organized as follows. In Section 2, the prob-
lem formulation is presented. Section 3 is devoted to the
design of a proper encoder and decoder for tracking state
trajectory. Then, in Section 4, the proper controller for
reference tracking (and hence the stability) is presented.
Section 5 is devoted to simulation results. Finally, the
paper is concluded by summarizing the contributions of
the paper in Section 6.

2 Problem Formulation

Throughout, certain conventions are used: E[·] denotes
the expected value, | · | the absolute value, ‖ · ‖ the
Euclidean norm and V ′ denotes the transpose of vec-
tor/matrix V . A−1 and λi(A) denote the inverse and
eigenvalues of a square matrixA, respectively. ’

.
=’ means

’by definition is equivalent to’ and Zt
.
= (Z1, Z2, ..., Zt).

 

Fig. 2. A dynamic system controlled over the packet erasure
channel with feedback acknowledgment.

R and N denote the sets of real numbers and natural
numbers, respectively; and I is the identity matrix. Also,
X(i) denotes the ith element of the vector X and 0 de-
notes the zero vector/matrix. N+

.
= {0, 1, 2, 3, ...} and

R+ is the set of non-negative real numbers.
This paper is concerned with almost sure asymptotic
tracking of the state trajectory, stability and reference
tracking of nonlinear dynamic systems over the packet
erasure channel, as is shown in the block diagram of Fig.
2. The building blocks of Fig. 2 are described below:
Dynamic System: The dynamic system is described
by the following nonlinear discrete time system:{
Xt+1 = F (Xt, Ut)

Yt = Xt

(1)

where t ∈ N+ is the time instant, F (Xt, Ut) ∈ Rn is a
vector nonlinear function, Xt ∈ Rn is the vector of the
states of the system, Yt ∈ Rn is the observation signal
and Ut ∈ Rm is the control signal. Throughout, it is as-
sumed that the probability measure associated with the

initial state X0 with components X
(i)
0 , i = {1, 2, ..., n},

has bounded support. That is, for each i ∈ {1, 2, ..., n}
there exists a compact set [−L(i)

0 , L
(i)
0 ] ∈ R such that

Pr(X
(i)
0 ∈ [−L(i)

0 , L
(i)
0 ]) = 1. Note that X0 is unknown

for the remote decoder and controller.
Communication Channel: Communication channel
between system and controller is a limited capacity era-
sure channel with feedback acknowledgment. It is a dig-
ital channel that transmits a packet of binary data in
each channel use. The channel input and output alpha-
bets are denoted by Z and Z̃, respectively; and Zt de-
notes the channel input at time instant t ∈ N+, which is
a packet of binary data with length Rt containing infor-
mation bits. Also Z̃t denotes the corresponding channel
output. Let e denote the erasure symbol. Then,

Z̃t =

{
Zt with probability 1− α
e with probability α

(2)
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That is, this channel erases a transmitted packet with
probability α. Throughout, it is assumed that the era-
sure probability α is known a priori. In the channel con-
sidered in this paper, there are feedback acknowledg-
ments from receiver to transmitter. That is, if a trans-
mission is successful, an acknowledgment bit is sent from
receiver to transmitter indicating that the transmission
was successful. The packet erasure channel with feed-
back acknowledgment is an abstract model for the com-
monly used data transmission technologies, such as the
Internet and WiFi.
Encoder: Encoder is a causal operator denoted by Zt =
E(Yt, Z̃

t−1, U t−1) that maps the system output Yt (by
the knowledge of the past channel outputs and control
signals) to the channel input Zt, which is a string of bi-
naries with lengthRt. In the closed loop feedback system
of Fig. 2, encoder and decoder are used to compensate
the effects of the random packet dropout and distortion
due to limitation on channel capacity.
Decoder: Decoder is a causal operator denoted by X̂t =
D(Z̃t, U t−1) that maps the channel output to X̂t (the
estimate of the state variable at the decoder).
Controller: Controller has the following structure Ut =

Kt
ˆ̃Xt+Wt, whereKt is the controller gain, ˆ̃Xt = X̂t−Rt

(where Rt is the reference signal) and Wt is used for ref-
erence tracking and will be determined shortly.
The objective of this paper is to design an encoder, de-
coder and a controller that result in almost sure asymp-
totic tracking of the state trajectory, stability and refer-
ence tracking of the system (1), as defined below:

Definition 2.1 (Almost Sure Asymptotic Tracking of
the State Trajectory): Consider the block diagram of Fig.
2 described by the nonlinear dynamic system (1) over the
packet erasure channel, as described above. It is said that
the state trajectory is almost sure asymptotically tracked
if there exist an encoder and a decoder such that the fol-
lowing property holds: Pr(limt→∞ ‖Xt − X̂t‖ = 0) = 1.

Definition 2.2 (Almost Sure Asymptotic Stability):
Consider the block diagram of Fig. 2 described by the
nonlinear dynamic system (1) over the packet erasure
channel, as described above. It is said that the system
is almost sure asymptotically stable if there exist an en-
coder, decoder and a controller such that the following
property holds: Pr(limt→∞ ‖Xt‖ = 0) = 1.

Definition 2.3 (Almost Sure Asymptotic Reference
Tracking): Consider the block diagram of Fig. 2 de-
scribed by the nonlinear dynamic system (1) over the
packet erasure channel, as described above. It is said that
the system is almost sure asymptotically track the refer-
ence signal Rt ∈ Rn if there exist an encoder, decoder
and a controller such that the following property holds:
Pr(limt→∞ ‖Xt −Rt‖ = 0) = 1.

Remark 2.4 Note that the stability is a special case of
the reference tracking with Rt = 0.

3 Encoder and Decoder for Tracking the State
Trajectory

In this section, for the simplicity of presentation, we first
address the state tracking problem for the linear systems;
and then, we extend the results to the nonlinear case.
We start from the linear scalar case.

3.0.1 Linear Scalar Case

Suppose that the dynamic system is linear and scalar
(Xt ∈ R). We present an encoder, decoder and a neces-
sary and sufficient condition on the length of transmit-
ted packets R at each time instant, under which the dy-
namic system (3) in the block diagram of Fig. 2 almost
sure asymptotically track the state trajectory.{
Xt+1 = AXt +BUt, X0 ∈ [−L0, L0] ⊂ R
Yt = Xt

(3)

Encoding Scheme: At time instant t = 0, we notice that
X0 ∈ [−L0, L0]. At this time instant, the encoder and
decoder partition the interval [−L0, L0] into 2R equal
sized, non-overlapping sub-intervals and the center of
each sub-interval is chosen as the index of that interval
which are denoted by γ0, γ1, ..., γ2R−1. When the encoder
observes the initial stateX0, the index of the sub-interval
that includes X0 is encoded into R bits and transmitted
to the decoder through the packet erasure channel. If
the decoder receives this R bits successfully, it identifies
the index of the sub-interval where X0 lives in (e.g., γj0
where j0 ∈ {0, 1, ..., 2R−1}); and the value of this index

is chosen as X̂0 which is the estimate ofX0 at the decoder
(i.e., X̂0 = γj0). Therefore, the estimation error for this

case is bounded above by |X0 − X̂0| ≤ V0 = L0

2R . But if

erasure occurs, then X̂0 = 0; and therefore, |X0− X̂0| ≤
V0 = L0. Hence, the estimation error is bounded above
by

|X0 − X̂0| ≤ V0 = M0L0;

M0 =

{
1

2R , Pr(M0 = 1
2R ) = 1− α

1, Pr(M0 = 1) = α
(4)

Note that M0 is the indicator of successful transmission
or failed transmission at the time instant t = 0. Also,
note that as the encoder has access to the feedback ac-
knowledgment, it knows the value of M0 for the time
instant t = 1.
At the time instant t = 1, the encoder encodes X1 −
AX̂0−BU0. To encode this signal, the interval [−L1, L1]

is calculated as follows: |X1 − AX̂0 − BU0| = |AX0 −
AX̂0| = |A||X0 − X̂0| ≤ |A|V0 = L1. Then, similar to
the previous time instant, the encoder and decoder par-
tition the interval [−L1, L1] into 2R equal sized, non-
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overlapping sub-intervals; and the center of each sub-
interval is chosen as the index of that interval. When
the encoder observes the signal X1 − AX̂0 − BU0, the
index of the sub-interval that includes X1−AX̂0−BU0

(e.g., γj1) is encoded into R bits and transmitted to the
decoder through the packet erasure channel. Then, the
decoder constructs X̂1 as below:

X̂1 =

{
γj1 +AX̂0 +BU0, Pr(M1 = 1

2R ) = 1− α
AX̂0 +BU0, Pr(M1 = 1) = α

(5)

and therefore,

|X1 − X̂1| ≤ V1 = M1L1;

M1 =

{
1

2R , Pr(M1 = 1
2R ) = 1− α

1, Pr(M1 = 1) = α
(6)

Similarly, for time instants t > 1, the encoder encodes
Xt−AX̂t−1−BUt−1. To encode this signal the interval

[−Lt, Lt] is calculated as follows:|Xt−AX̂t−1−BUt−1| =
|AXt−1 − AX̂t−1| = |A||Xt−1 − X̂t−1| ≤ |A|Vt−1

.
=

Lt. Then, the encoder and decoder partition the inter-
val [−Lt, Lt] into 2R equal sized, non-overlapping sub-
intervals and the center of each sub-interval is chosen as
the index of that interval. When the encoder observes the
signalXt−AX̂t−1−BUt−1, the index of the sub-interval

that includes Xt−AX̂t−1−BUt−1 (e.g., γjt) is encoded
into R bits and transmitted to the decoder through the
packet erasure channel. Then, the decoder constructs X̂t

as follows: X̂t = γjt + AX̂t−1 + BUt−1, if Mt−1 = 1
2R

with the probability of Pr(Mt−1 = 1
2R ) = 1 − α; and

X̂t = AX̂t−1 +BUt−1, if Mt−1 = 1 with the probability
of Pr(Mt−1 = 1) = α. Therefore,

|Xt − X̂t| ≤ Vt = MtLt;

Mt
.
=

{
1

2R , Pr(Mt = 1
2R ) = 1− α

1, Pr(Mt = 1) = α
(7)

By following a similar procedure, as described above, the
sequence X̂0, X̂1, X̂2, ... are constructed at the decoder.
As shown in [4], the above coding scheme results in al-
most sure asymptotic tracking of the state trajectory.
This result is presented in the following proposition.

Proposition 3.1 Consider the control system of Fig.
2 described by the dynamic system (3) over the packet
erasure channel with erasure probability α and feedback
acknowledgment, as described earlier. Suppose that the
packet length R satisfies the following inequality:

(1− α)R > max{0, log2 |A|} (8)

Then, using the above encoding and decoding scheme, we
have almost sure asymptotic tracking of the state trajec-

tory in the form of X̂t → Xt, P-a.s.; or equivalently,
Pr(limt→∞ ‖Xt − X̂t‖ = 0) = 1.

Proof: See [4].

Remark 3.2 As it is shown in [4], the condition (1 −
α)R ≥ max{0, log2 |A|} is also a necessary condition
for almost sure asymptotic tracking of the state trajec-
tory. Therefore, 1

1−α max{0, log2 |A|} is the minimum bit
length for almost sure asymptotic tracking of the state
trajectory of the system (3) over the packet erasure chan-
nel.

3.0.2 Linear Vector Case

Now, suppose the dynamic system is linear andXt ∈ Rn.
Due to the space limitation, in the following we just
explain how we can extend the above coding scheme for
this case. By implementing a proper similarity transfor-
mation to the system matrix A, we can always trans-
form this matrix to the real Jordan form [5]. As a result
of this transformation, the system (3) is decomposed
into several decoupled subsystems, in which for each
subsystem, the previous encoder and decoder can be
implemented separately. Consequently, under the con-
dition (1−α)R >

∑n
i=1 max{0, log2 |λi(A)|}, it is easily

shown that almost sure tracking of the state trajectory
is achieved for this case.

3.0.3 Nonlinear Case

In this section, for the simplicity of presentation we
first consider the dynamic system (1) with Xt ∈ R. Us-
ing the linearization method [32], we extend the above
results to nonlinear systems. We present an encoder,
decoder and a sufficient condition on the length of trans-
mitted packets Rt at each time instant that guarantee
almost sure asymptotic state tracking of the family of
the equivalent linear dynamic models which is resulted
from linearizing the nonlinear dynamic system (1). As
in each linearized zone, we deal with a new linear dy-
namic system, the length of transmitted packet may be
different in different zones. Hence, we denote the length
of transmitted packet in the linearized zone j by R[j].
At the time instant t = 0, we notice thatX0 ∈ [−L0, L0];
and we fix the rate to be R̄[0]. Then, using the above

method for the linear systems, ˆ̄X0 is reconstructed.
Then, at this time instant, the encoder and decoder lin-

earize the nonlinear dynamic system at point ˆ̄X0, which
results in a state space system matrixA[0] andB[0] of the
equivalent linear model. Then, similar to the linear case,
the encoder and decoder partition the interval [−L0, L0]
into 2R[0] equal sized, non-overlapping sub-intervals and
the center of each sub-interval is chosen as the index of
that interval (γ0, γ1, ..., γ2

R[0]−1
). Subsequently, the in-

dex of the sub-interval that includes X0 (e.g., γj0 where
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j0 ∈ {0, 1, ..., 2R[0] − 1}) is encoded into R[0] bits and
transmitted to the decoder through the packet erasure
channel. If the decoder receives this R[0] bits success-
fully, it identifies the index of the sub-interval where
X0 lives in; and the value of this index is chosen as X̂0.
Therefore, the decoding error for this case is bounded
above by |X0 − X̂0| ≤ V0 = L0

2
R[0]

. But if erasure occurs,

then X̂0 = 0; and therefore, |X0 − X̂0| ≤ V0 = L0.
Hence, the decoding error can be represented as follows:

|E0|
.
= |X0 − X̂0| ≤ V0 = M0L0;

M0 =

 1

2
R[0]

, Pr(M0 = 1

2
R[0]

) = 1− α

1, Pr(M0 = 1) = α
(9)

At the time instant t = 1, the encoder encodes
X1 − A[0]X̂0 − B[0]U0. To encode this signal, the in-

terval [−L1, L1] is calculated as follows:|X1 − A[0]X̂0 −
B[0]U0| = |A[0]X0 − A[0]X̂0| = |A[0]||X0 − X̂0| ≤
|A[0]|V0 = L1. Then, encoder and decoder partition the

interval [−L1, L1] into 2R[0] equal sized, non-overlapping
sub-intervals and the center of each sub-interval is cho-
sen as the index of that interval. When the encoder ob-
serves the signal X1 −A[0]X̂0 −B[0]U0, the index of the

sub-interval that includes X1 − A[0]X̂0 − B[0]U0 (e.g.,

γj1 where j1 ∈ {0, 1, ..., 2R[0] − 1}) is encoded into R[0]

bits and transmitted to the decoder through the packet
erasure channel. Subsequently, the decoder constructs
X̂1 as follows: X̂1 = γj1 +A[0]X̂0 +B[0]U0, if M1 = 1

2
R[0]

with the probability of Pr(M1 = 1

2
R[0]

) = 1 − α; and

X̂1 = A[0]X̂0 + B[0]U0, if M1 = 1 with the probability
of Pr(M1 = 1) = α. Therefore,

|E1|
.
= |X1 − X̂1| ≤ V1 = M1L1;

M1 =

 1

2
R[0]

, Pr(M1 = 1

2
R[0]

) = 1− α

1, Pr(M1 = 1) = α
(10)

For the next step (t = 2), if |E1| ≤ |E0|, this proce-
dure, as described above, continues with the equivalent
state space matrices A[0] and B[0] and the packet length
R[0]; but if |E1| > |E0|, then the encoder linearizes the

nonlinear dynamic system at the new point X̂1 that re-
sults in the state space system matrices A[1] and B[1] of
the equivalent linear model (i.e., the system (11) with
j = 1). The encoder by sending R[1] 6= R[0] bits through
the packet erasure channel announces that a new lin-
earization is applied. Therefore, the decoder performs
the same linearization; and the rest of procedure is con-

tinued with new matrices A[1] and B[1].

Xt+1 = A[0]Xt +B[0]Ut; t ∈ [0, t1),

Xt+1 = A[1]Xt +B[1]Ut; t ∈ [t1, t2)
...

Xt+1 = A[j]Xt +B[j]Ut; t ∈ [tj , tj+1), j ∈ N+

Yt = Xt

(11)

By following a similar procedure, as described above, the
sequence X̂0, X̂1, X̂0, ... are constructed at the decoder.
The vector case (Xt ∈ Rn) can be treated similarly.
Now, we must show that the above coding scheme results
in almost sure asymptotic tracking of the state trajec-
tory. This result is shown in the following proposition.

Proposition 3.3 Consider the control system of Fig. 2
described by the dynamic system (1) over the packet era-
sure channel with erasure probability α 6= 1, as described
earlier. Suppose that 4tj

.
= tj+1 − tj (j ∈ N+)s are suf-

ficiently large (as will be explained later) and the packet
lengths Rt = R[j] (t ∈ [tj , tj+1)) satisfy the following in-
equalities:

(1− α)R[j] >

n∑
i=1

max{0, log2 |λi(A[j])|}; ∀j ∈ N+

(12)

Then, using the proposed encoding and decoding scheme,
we have almost sure asymptotic tracking of the state tra-
jectory in the form of Pr(limt→∞ ‖Xt − X̂t‖ = 0) = 1.

Proof: : For the simplicity of presentation, first consider
the scalar case. Choose any packet lengths R[j] that sat-
isfy the condition (12). For these lengths, define the ran-
dom variable Mt (t ∈ [tj , tj+1)) as follows:

Mt =

 1

2
R[j]

, Pr(Mt = 1

2
R[j]

) = 1− α

1, Pr(Mt = 1) = α
(13)

This random variable is the indicator of successful trans-
mission or failed transmission at time instant t. Using
the above encoding and decoding scheme, we have

|X0 − X̂0| ≤ V0 = M0L0

|X1 − X̂1| ≤ V1 = M1L1 = M1|A[0]|V0

...

|Xt1−1 − X̂t1−1| ≤ Vt1−1 = Mt1−1Lt1−1 =

Mt1−1|A[0]|Vt1−2 = ... = Mt1−1|A[0]...M1|A[0]|V0

6



⇒ Vt1−1 =
L0

|A[0]|

t1−1∏
t0=0

Mk|A[0]| =

L0

A[0]
(2(t1−1) 1

t1 − 1

t1−1∑
k=t0

log2(Mk|A[0]|)) (14)

|Xt1 − X̂t1 | ≤ Vt1 = Mt1Lt1 , (Lt1 = |A[1]|Vt1−1)

...

|Xt2−1 − X̂t2−1| ≤ Vt2−1 = Mt2−1Lt2−1 = Mt2−1|A[1]|

.Vt2−2 = ... = Mt2−1|A[1]|Mt2−2|A[1]|...Mt1 |A[1]|Vt1−1

⇒ Vt2−1 = Vt1−1

t2−1∏
k=t1

Mk|A[1]| =

Vt1−1(2(t2−t1) 1

t2 − t1

t2−t1∑
k=t1

log2(Mk|A[1]|)) (15)

...

|Xtj−1 − X̂tj−1| ≤ Vtj−1 = ... = Mtj−1|A[j−1]|Mtj−2

.|A[j−1]|...Mtj−1
|A[j−1]|Vtj−1−1

⇒ Vtj−1 = Vtj−1−1

tj−1∏
k=tj−1

Mk|A[j−1]| =

Vtj−1−1(2(tj−tj−1) 1

tj − tj−1

tj−tj−1∑
k=tj−1

log2(Mk|A[j−1]|))

(16)
...

where 2 < ... < j(∈ N+) and 0 � t1 � t2 � ... � tj
are time instants that the decoding error is increasing
and new linearization at these points is applied.
Now, as4tj = tj+1− tj (j ∈ N+)s are sufficiently large,
the strong law of large numbers [33] is valid (conditions
for having this assumption are given in Remark 3.4).
The strong law of large numbers states that if the ran-
dom process Mt is an i.i.d. (independent identically dis-

tributed), then 1
n

∑n−1
t=0 Mt → E[M0], P-a.s. Therefore,

for Vt1−1 by the strong law of large numbers, we have
(t0 = 0):

1

∆t0

t1−1∑
k=t0

log2(Mk|A[0]|)→ E[log2(Mt0 |A[0]|)]

= (1− α) log2(
1

2R[0]
|A[0]|) + α log2(|A[0]|) (17)

Now, as the transmitted packet length R[0] was chosen
such that

(1− α)R[0] > max{0, log2 |A[0]|}, (18)

the following inequality holds

(1− α) log2(
1

2R[0]
|A[0]|) + α log2(|A[0]|) < 0. (19)

Consequently, as ∆t0 is sufficiently large, from (19), (18)
and (14) it follows that Vt1−1 <

L0

A[0]
(and Vt1−1 → 0 as

∆t0 →∞).
Similarly, as ∆t1 = t2 − t1 is sufficiently large, from
the strong law of large numbers for the expression

1
t2−t1

∑t2−1
k=t1

log2(Mk|A[1]|), we have

1

∆t1

t2−1∑
k=t1

log2(Mk|A[1]|)→ E[log2(Mt1 |A[1]|)]

= (1− α) log2(
1

2R[1]
|A[1]|) + α log2(|A[1]|) (20)

Now, as the length R[1] was chosen such that

(1− α)R[1] > max{0, log2 |A[1]|} (21)

the following inequality holds

(1− α) log2(
1

2R[1]
|A[1]|) + α log2(|A[1]|) < 0. (22)

Consequently, as ∆t1 is sufficiently large, from (22), (21)
and (15) it follows that Vt2−1 < Vt1−1 (and Vt2−1 → 0
as ∆t1 →∞).
Recall that the strong law of large numbers [33]
states that if the random process Mt is i.i.d, then
1
n

∑n−1
t=0 Mt → E[M0], P-a.s. Having that as Mt given

in (13) is an i.i.d. process, we have

lim
∆tj−1→∞

(
1

∆tj−1

tj−1∑
k=tj−1

log2(Mk|A[j−1]|)) =

E[log2(Mtj−1
|A[j−1]|)] = (1− α) log2(

1

2R[j−1]
|A[j−1]|)

+ α log2(|A[j−1]|) (23)

Now, as the packet length R[j−1] was chosen such that

(1− α)R[j−1] > max{0, log2 |A[j−1]|} ≥ log2 |A[j−1]|
(24)

⇒ −(1− α)R[j−1] + log2 |A[j−1]| < 0

⇒ (1− α) log2

1

2R[j−1]
+ (1− α+ α) log2 |A[j−1]| < 0

we have:

(1−α) log2(
1

2R[j−1]
|A[j−1]|)+α log2(|A[j−1]|) < 0. (25)

Consequently, from (25), (23) and (16) it follows that
Vtj−1 < Vtj−1−1 (and Vtj−1 → 0 as ∆tj−1 →∞).
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Now, as we have shown that

Vt1−1 <
L0

A[0]
, Vt2−1 < Vt1−1, ...

we can conclude that

0 ≤ ... < Vtj−1 < ... < Vt3−1 < Vt2−1 < Vt1−1 <
L0

A[0]

That is, the sequence Vtj−1 ≥ 0 is a strictly decreasing
sequence; and hence, Vtj−1 → 0 as j → ∞; and there-

fore, |Xtj−1 − X̂tj−1| → 0, P-a.s., as j → ∞. Subse-

quently, we have 0 ← |Xtj−1
− X̂tj−1

| ≤ ... ≤ |Xtj−1 −
X̂tj−1| ≤ |Xtj − X̂tj | → 0, P-a.s. as j → ∞. That is,

X̂t → Xt as t→∞, P-a.s. This completes the proof for
the scalar case. For the vector case by following the sim-
ilar procedure it can be shown that state trajectory are
asymptotically tracked if the following condition holds:
(1− α)R[j] >

∑n
i=1 max{0, log2 |λi(A[j])|},∀j ∈ N+.

Remark 3.4 To make4tj sufficiently large, the follow-
ing conditions must be satisfied:
If switching between linear systems is too fast, then the
combined system may be unstable [34]. In fact, as shown
in [35] to avoid this situation, the average dwell time τa,
which is a measure of the frequency of switches, must be
greater than or equal to a critical value, denoted by τ∗a .
That is,

τa ≥ τ∗a ; τa =
t

Nt
, τ∗a =

lnh

lnλ− lnλ∗
(26)

whereNt is the number of switches that occurs in the time
interval of [0, t] and h, λ and λ∗ are defined as follows:
For all linearized models, there exist λ1 < 1 and λ2 > 1
such that the following relations hold:

‖A[j]‖ < 1 : ‖At[j]‖ ≤ hjλ
t
1

‖A[j]‖ ≥ 1 : ‖At[j]‖ ≤ hjλ
t
2 (27)

Then, h = maxj hj, λ ∈ [λ1, 1] and λ∗ ∈ [λ1, λ] is the
biggest value that satisfies the following inequality for
some c > 0:

‖Xt‖ ≤ c(λ∗)t‖X0‖. (28)

To satisfy the above condition, the sampling period must
be chosen sufficiently small.

4 Reference Tracking of Nonlinear Dynamic
Systems

Now, we extend the results to account for reference
tracking (and hence stability). To obtain the control
signal for tracking the reference signal Rt, we use the

proposed coding scheme which results in almost sure
asymptotic tracking of the state trajectory. To achieve
the reference tracking, we construct a new state space
model with the state variable X̃t = Xt −Rt, which we
make it zero. Throughout, it is assumed that the refer-
ence signals Rt and Rt+1 are known a priori at the time
instant t, which is not a restrictive assumption.
This result is presented in the following proposition.
Before that we need the following lemma.

Lemma 4.1 Let A be a stable matrix. Let Bt be a set of
matrices such that ‖Bt‖ ≤ L < ∞ and limt→∞ ‖Bt‖ =

0. Let St =
∑t−1
k=0A

t−1−kBk. Then, limt→∞ ‖St‖ = 0
(Proof: See [4]).

Proposition 4.2 For the nonlinear case, suppose that
for each linearized equivalent system, the matrix B[j] has
Pseudo inverse and there exists a matrix K[j] such that
the matrix A[j] + B[j]K[j] is a stable matrix (i.e., the
pair (A[j], B[j]) is stabilizable). Then, using the proposed

coding scheme and the controller Ut = K[j]
ˆ̃Xt + W[j],t

where W[j],t
.
= −B′[j](B[j]B

′

[j])
−1(A[j]Rt − Rt+1) and

ˆ̃Xt
.
= X̂t − Rt for each linearized system, we have al-

most sure asymptotic reference tracking, provided ∆tjs
are sufficiently large and the erasure probability α 6= 1.

Proof: For the nonlinear case, it is shown in the follow-
ing that for each equivalent linear system, the new state
space model is asymptotically stable:

X̃t+1 = Xt+1 −Rt+1, t ∈ [tj , tj+1), (29)

= A[j]Xt +B[j]Ut −Rt+1 +A[j]Rt −A[j]Rt
(30)

= A[j](Xt −Rt) +B[j]Ut +A[j]Rt −Rt+1 (31)

= A[j]X̃t +B[j]Ut +A[j]Rt −Rt+1 (32)

By choosing Ut = K[j]
ˆ̃Xt + W[j],t (where W[j],t

.
=

−B′[j](B[j]B
′

[j])
−1(A[j]Rt −Rt+1)) as the control signal

we have:

X̃t+1 = A[j]X̃t +B[j]K[j]
ˆ̃Xt −B[j]B

′

[j](B[j]B
′

[j])
−1

.(A[j]Rt −Rt+1) +A[j]Rt
−Rt+1 +B[j]K[j]X̃t −B[j]K[j]X̃t

= (A[j] +B[j]K[j])X̃t −B[j]K[j]Ẽt, t ∈ [tj , tj+1)
(33)

where Ẽt
.
= X̃t− ˆ̃Xt = Xt−Rt−(X̂t−Rt) = Xt−X̂t =

Et, ( ˆ̃Xt
.
= X̂t −Rt).

Recall that, as we have shown in Section 3, Ek(= Ẽk)s
are bounded and Ek in the jth linearized zone tends to
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Fig. 3. xt and r
[x]
t for α = 0.5.

zero as ∆tj →∞. On the other hand, from (33), we have:

X̃tj+1−1 = (A[j] +B[j]K[j])
tj+1−tj−1X̃tj

−
tj+1−2∑
k=tj

((A[j] +B[j]K[j])
tj+1−2−kB[j]K[j]Ẽk)

(34)

Hence, from Lemma 4.1, we have: ||X̃tj+1−1|| → 0, as
∆tj → ∞. This means that at each linearized zone al-
most sure asymptotic reference tracking is achieved. But,
this is not enough for the stability of switching linear
system that is resulted from linearizing the nonlinear
system. It is shown in [34] if switching between stable
linear subsystems is too fast, then the combined system
may be unstable. To avoid this situation, as is shown in
[35] and discussed in Remark 3.4, the average dwell time
τa, which is a measure of the frequency of switches, must
be greater than or equal to a critical value, denoted by
τ∗a . That is,

τa ≥ τ∗a ; τa =
t

Nt
, τ∗a =

lnh

lnλ− lnλ∗
(35)

where Nt is the number of switches that occurs in the
time interval of [0, t] and h, λ and λ∗ are defined in Re-
mark 3.4. To satisfy the above condition, the sampling
period needs to be chosen small enough. This is equiv-
alent to say that ∆tj is sufficiently large. Having this
assumption, the proof is complete.

Remark 4.3 For each linearized equivalent system, the
controller gain K[j] must be chosen so that the matrix
A[j] +B[j]K[j] is a stable matrix.
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Fig. 4. yt and r
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t for α = 0.5.
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5 Application in Remote Control of Au-
tonomous Vehicles

In this section, for the purpose of illustration, we apply
the proposed encoder, decoder and controller to the non-
linear dynamic of miniature drones, autonomous road
vehicles or autonomous under water vehicles that can
be modeled by the unicycle model [29]. The dynamic of
each miniature drones, autonomous road vehicles or au-
tonomous under water vehicles are described by a 6 de-
grees of freedom model. However, the vehicles dynamic
can be handled by local control loops, which results in a
kinematic unicycle model, as follows [29]:
ẋ(t) = v(t) cos(φ(t))

ẏ(t) = v(t) sin(φ(t))

φ̇(t) = u(t)

(36)
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where x(t), y(t) are the position vector, φ(t) the heading
angle, and the control inputs are the vehicle forward ve-
locity v(t) and the turning rate u(t). The state vector of
the system is X(t) = [x(t), y(t), φ(t)]′ and the input vec-
tor is U(t) = [v(t), u(t)]′. The discrete equivalent model
is (37), where T is the sampling period.


xt+1 = xt + Tvt cos(φt)

yt+1 = yt + Tvt sin(φt)

φt+1 = φt + Tut

(37)

where xt, yt, φt, vt and ut are the discrete equivalent
signals of x(t), y(t), φ(t), v(t) and u(t), respectively. Note
that for this model, the state vector is Xt = [xt, yt, φt]

′.
Therefore, the state space representation of the family
of the discrete time equivalent linear models is similar
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Fig. 8. xt − yt diagram for α = 0.5.
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Fig. 9. xt − yt − time diagram for α = 0.5.

to (11), with the following state space matrices:

A[j] =


1 0 − Tv[j] sin(φ[j])

0 1 Tv[j] cos(φ[j])

0 0 1

 (38)

B[j] =


T cos(φ[j]) 0

T sin(φ[j]) 0

0 T

 (39)

Now, for tracking a circle with the center located at
(5, 3) and the radius of 2, by the autonomous vehicle,

we choose Rt
.
= [r

[x]
t , r

[y]
t , r

[φ]
t ]′ = [5 + 2 cos(0.3T t), 3 +

2 sin(0.3T t), arctan

(
r
[y]
t −yt−1

r
[x]
t −xt−1

)]′ as the reference signal. For simula-

tions, we also use T = 0.01 sec, x0, y0 ∈ [−10, 10],
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φ0 ∈ [−2, 2] and α = 0.5. Fig. 3 to Fig. 9 illus-
trate the results of the simulations. Note that for
a given linearized equivalent system we choose K[j]

so that the matrix A[j] + B[j]K[j] is stable (i.e.,

K[j] =

[
−0.025 cos(φ[j]) − 0.9 sin(φ[j]) 0

0 0 − 0.1

]
). Fig. 3

to Fig. 9 illustrate that the tracking is achieved. For dif-
ferent probability of the packet dropout α we repeated
simulations in Fig. 10 to Fig. 14. Fig. 10 to Fig. 14 illus-
trate the simulation results for α = 0, α = 0.9, α = 0.95,
α = 0.99 and α = 1, respectively. They illustrate that
the performance of the proposed technique is good even
for α = 0.95. Also, as it is clear from Fig. 14 when the
communication channel is completely blocked (α = 1),
the controller is not able to force the system to track the
reference signal. The Root Sum Square Error (RSSE)
computed from the sample t = 30/T to the sample
t = 50/T (30 sec . to 50 sec .) for different probability of
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Fig. 12. xt − yt − time diagram for α = 0.95.
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Fig. 13. xt − yt − time diagram for α = 0.99.

the packet dropout α is shown in the following Table.

α RSSE

0 1.17

0.5 1.21

0.9 3.42

0.95 8.40

0.99 57.40

1 1144

One of the major assumption of the paper is that ∆tj
is sufficiently large; or equivalently, the sampling period
T is sufficiently small. To illustrate the importance of
this assumption, we repeated simulations in Fig. 15 to
Fig. 17 for different T s and α = 0.5. Fig. 9 and Fig. 15
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Fig. 15. xt − yt − time diagram for α = 0.5 and T = 0.1.

to Fig. 17 illustrate the simulation results for T = 0.01,
T = 0.1, T = 0.5 and T = 1, respectively. As is clear
from these figures by increasing T , the tracking perfor-
mance significantly reduces, as expected.
To compare the performance of the proposed technique
with the existing techniques, we apply the proposed tech-
nique and the feedback linearization control technique
of [36] (with the linearized system of (9) and (10) of [36])
to the block diagram of Fig. 2 with the unicycle model
of (37) as the dynamical system with the reference sig-

nals r
[x]
t = 0.05Tt and r

[y]
t = 0.02Tt (T = 0.01 sec)

and the following initial conditions: x0, y0 ∈ [−10, 10]
and φ0 ∈ [−2, 2]. The RSSE computed from the sample
t = 30/T to the sample t = 100/T (30 sec . to 100 sec .)
for α = 0.5, α = 0.9 and α = 0.99 when the proposed
technique is used is shown in the following Table:
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Fig. 16. xt − yt − time diagram for α = 0.5 and T = 0.5.
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Fig. 17. xt − yt − time diagram for α = 0.5 and T = 1.

α RSSE

0.5 0.68

0.9 1.03

0.99 13.84

The following table also shows the RSSE computed for
the feedback linearization control technique of [36].

α RSSE

0.5 30.23

0.9 230.75

0.99 636.06

For α = 0.9, the performances of the proposed technique
and the feedback linearization technique of [36] are illus-
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Fig. 18. xt−yt− time diagram for α = 0.9 and the proposed
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Fig. 19. xt−yt− time diagram for α = 0.9 and the feedback
linearization technique of [36].

trated in Fig. 18 and Fig. 19, respectively. From these
tables and figures, it is clear that the proposed technique
has a better performance.

6 Conclusion

In this paper a new technique for almost sure asymp-
totic state and reference tracking of nonlinear dynamic
systems, which is based on the linearization method,
was presented over the packet erasure channel with feed-
back acknowledgment. A proper encoder, decoder and
controller for tracking the state trajectory and reference
tracking of nonlinear systems at the end of communi-
cation link was presented when measurements are sent
through the packet erasure channel. In the proposed
technique, linearization is applied when the state track-
ing error increases. The satisfactory performance of the

proposed reference tracking technique was illustrated
by implementing this technique on the unicycle model
which represents the nonlinear dynamic of the minia-
ture drones, autonomous road vehicles and autonomous
under water vehicles. For future, it is interesting to ex-
tend the results to account for stochastic and uncertain
nonlinear systems. This research direction is currently
underway in our research team.
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