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Robust Entropy Rate for Uncertain Sources:
Applications to Communication and Control
Systems

Charalambos D. Charalambous and Alireza Farhadi

Abstract—In this paper the notion of robust entropy and The objective of this paper is to extend the notion of
subsequently, robust entropy rate for a family of discrete entropy and subsequently entropy rate to the case when
time uncertain sources is introduced. When the uncertainty {pare is uncertainty in the source. The robust entropy is

is described by a relative entropy constraint between the defined th . f the Sh t
set of uncertain source densities and a given nominal source 9€1IN€d as the maximum of the shannon entropy over a

density, the solution to this robust notion of information is family of sources belonging to an uncertainty set. The
presented and its connection with other notions of entropy explicit solution to the robust entropy is presented when
definitions, such as, Renyi entropy and Tsallis entropy is the uncertainty is described by a constraint on the relative
presented. Then, the robust entropy rate is calculated for 1) - aniropy petween the set of uncertain source densities and
Uncertain sources corresponding to a partially observed Gauss th di inal d v Sub 1
Markov process, 2) Sources with uncertain frequency response, e correspgn Ing nomlna. SOUFC? en.S| y- su sequen y:
and 3) Uncertain sources corresponding to a partially observed the connection between this solution with other entropies
controlled Gauss Markov Process. Finally, an application is shown. Then, for different families of uncertain source
of the robust entropy rate in networked control systems densities, the robust entropy rate is calculated and an
Is presented by defining necessary conditions for uniform appjication of the robust entropy rate in stabilizability and
asymptotic stabilizability and observability. . .
observability of networked control systems is presented.

. INTRODUCTION This paper is organized as follows. In Section Il, the robust

The entropy and entropy rate are information theoreti€"tropy and the robust entropy rate are defined. The solution
measures. They have applications in physics, probabilif the robust entropy and its connection to other kinds of
and statistics, communication theory and economics. THAropy are presented. In Section IIl, for different families

importance of entropy in communication theory was firsPf uncertain sources, the robust entropy rate is calculated.
introduced by Shannon in terms of Shannon first codinfinally in Section 1V, an application of robust entropy
theorem. Then, the application of entropy rate in joinfate in stabilizability and observability of networked control

source channel coding theorem, the AEP and etc. is shoi¥stem is presented.

[1]. Il. PROBLEM FORMULATION, SOLUTION AND
Let f(y) represent the Probability Density Function (PDF) CONNECTIONS
: ) ;
corresponding to a random variabfec 7. The Shannon ) ot p genote the space of density functions defined
entropy is defined byifs(f) = — [ f(y)In f(y)dy (f € on R?. In real world situation, the source is not entirely

Ly). In addition to tEe Shannon entropy, there are thRnown. This introduces some degree of uncertainty in
Renyi, defined byHr = ﬁ In [ f*(y)dy, fora > 0, and source density around a nominal fixed source densgity.
a # 1 (f* € L) [2], and Tsallis entropy [3] defined by Let the true source density(y), belongs to the uncertainty

Hr(f) = L (J f*(y)dy — 1). Tsallis entropy gives us as setDsy C D. Then we have the following definition for
special case the Shannon entropy, in particulaf/ aéf) = robust entropy and subsequently for robust entropy rate.
lim, .1 Hr(f), and sincedr(f) = %{e(lfa)HR(f)_l}, Definition 2.1: Let Y be a random variable (or a se-

qguence of R.V's.) andf(y) the corresponding density

by expanding the exponential terei! )7z (/) and taking : \ )
associated with the uncertain source such fi{a) € Dgy .

the limit asa — 1, we getHg(f) = lim,—1 Hr(f) =

lima_1 Hg(f). Then the robust entropy df is defined by
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provided the limit exists. Corollary 2.6: Let Y = (Yp,..., Y1) be a sequence
Remark 2.2:For the case without uncertaintiPf; =  with lengthT' of source symbols with uncertain joint density
{g}), the robust entropy and robust entropy rate are reducéahction f(y) € Dsy, y € R7¢ and R, — TR..
to the Shannon entropy and entropy rate. The robust entropy rate is given by
. . . 1 *,8™
A. Relative Entropy Uncertainty Set Hyopust (V) = Tlgnoo T Hglgﬁst( o5,
Throughout this section we consider an uncertain set TR st )
defined by Hrobijst(f ’ ) = mznszo[sTRc + (1 + 8)
= A TR *,8*
A .In T dy| = HE B <), (10
Dov £ {f € D H(flg) < R}, ©) [ st 2 ). a0
where H(.|.) is the relative entropy and?. € [0,00) is and
. . . . N 2= y = — s
Lemma 2.3:[4] Given a fixed nominal density(y) and [aly)™=dy

the uncertainty seDg;, the robust entropy is given by
where the minimizings* > 0 in (10) and (11) is the unique

Hyopust () = solution of H(f**"|g) = TR..
s . : 1 gTR. *,8% H
minssolsRe + (14 5) ln/g(y)mdy] Remark 2.7:Clearly, limy oo 7 H, o, (f*7), i the
= solution of the following robust entropy rate
A R *,8"
— (& 9 1
Hy st (F77) ) lim sup —Hg(f). (12)
and T—=00 ( teD; L H(flg)<R.} L ,
. Example 2.8:[4] From Corollary 2.6 it follows that,
P () = 9(y) T (5) if the nominal source density(y) is T'd-dimensional
fg(y)mdy’ Gaussian density function with meanand covariancé'y,
where the minimizings* > 0 in (4) and (5) is the unique VR € [0, 00),
solution of H(f**"|g) = R.. 1 rr, ey dy 145 d
Remark 2.4:The above solution for the robust entropy T robust (/7)== 2 In( )+ 2 In(2me)

is related to the Renyi and consequently to the Tsallis

entropies as follows. Lett = ——; then

1
—IndetT 13
= +2T ndetly, (13)

where s > 0 is the unique solution of the following

R, *,8%\ __ . & . .
Hygse () = mmaé[o-,l){ 1 aRc + HR(g)}- (6)  nonlinear equation

i d. 1 d
Moreover, it can be shown that R, — - In( is) n z (14)
minaE[O,l)HR(g) < Hﬁ)rimst(f*’s )
«
< g Rt Hrlg), ¢ €[0,1). In this section, the robust entropy rate is calculated for
(7) 1) Uncertain sources corresponding to a partially observed
Corollary 2.5: [5] SupposeR. < H(h|g), whereh(y) is Gauss Markov process, 2) Sources with uncertain frequency

Ill. ROBUST ENTROPY RATE CALCULATION

a uniform Probability Mass Function (PMF) (e.g.(y) = response, and 3) Uncertain sources corresponding to a
Zf\ilh(yi)é(yi)ﬁ(yi) = +; and §(.) is a delta mea- partially observed controlled Gauss Markov process.

sure). Wheng(y) and consequentlyf(y) correspond to

g ) , A. Partially Observed Gauss Markov Process
PMF's, that is, g(y) = 31, g(y:)d(y) and f(y) = Y

Zf_\fl F(y:)8(y:), then (4) and (5) are reduced to In this section, the uncertainty is described by a constraint
b " . on the relative entropy between the set of uncertain sources
H, 6wt (f77) = ming>o[sRc+ (1 +5) and the corresponding nominal source via
M
s 1
> g(y) ], (®) Dsy = {f € D =H(flg) < Rc}, (15)
=1
wheref(y) andg(y) are PDF’s corresponding to a sequence
‘s gly;) ™ . with length 7" of the symbols produced by uncertain and
o) = S 1<i< M, (9 nominal sources, respectively.

Now, consider a nominal density induced by a partially
where the minimizings* > 0 in (8) and (9) is the unique observed Gauss Markov nominal source described via
solution of H(f** |g) = R..

Next, the robust entropy rate is computed as a direct Xip = AXi+BW:, Xo,
consequence of Lemma 2.3. Y, = CX;+DV;, te Ny 2 {0,1,2,...}, (16)
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where X, € R®” denotes the unobserved procegs,c R
is the observed proces®, € R™, V, € R!, W, is i.i.d.
~ N(O,Ime), Viisiid. ~ N(O>]l><l)a Xo ~ N(.’I?O,VO),
and { Xy, V;, W, } are mutually independent,c \/,.. Here
it is assumed that({, A) is detectable(A, (BB'")z) is
stabilizable andD # 0.
The objective is to calculate the robust entropy rate. We X
shall need the following lemmas.
Lemma 3.1:[4] Let Y : Q x V. — R?, be a stationary Fig. 1. Source with additive uncertainty
Gaussian process with power spectral density(e™).

Let Z, 2 Y, — E[Y,|[Y* Y], Y'"! = {Yp,...Yi1},
A A L . .
Ay = Cov(Zy) and assumel,, = lim;_.. A; exists.  Corollary 3.5: [4] For the scalar case with = 0, after

Then an application of Szego limit formula [6] and Cholskysolving V. from (19) we obtain
decomposition [7] implies that

1. 1+s 1 9

1 (" , Hrobust(Y) = =-In + = In(2weD

Indet Are = —/ Indet Sy (e’*)dw pust (V) 2 ( ) 2 ( )
2 J_n + max{0,In |A[}. (22)

1
= lim —1 r 17 . . .
Theo T ndet Ly, (A7) B. Uncertain Sources in Frequency Domain
wherel'y 2 Cov[(Yo, Y1,..., Yr_1)']. Let 5(1) 2 {z;2 €C,|z| <1} and H*™ be the space of

Note that in Lemma 3.1, the required stationary conditiogcalar bounded, analytic functions ofc 3(1). This space
can be relaxed as long &s, or limy_,« 7 Indet I'y €xXist  andowed with the norni|. ||« defined by||H(e/*)||s 2

and they finite. _ SUP_ < yer [H(e)|, (2 = €*) is a Banach space. Sup-
Lemma 3.2:[7] For the nominal source model (16),  pose the uncertain source is obtained by passing a stationary
Ay = CV . C" + DD, (18) Gaussian random process : Q@ x N, — R, with known

) ) N o ) power spectral densit§x (e/*), through an uncertain linear
where V,, is unique positive semi-definite solution of thefjjter H(z). H(z) belongs to the additive uncertainty model

following Algebraic Riccati-equation (See Fig. 1)
Vi = AVoA'" — AV, C"[CVaC'" 4 DD HeDy 2
'CvooAtT + BBM‘. (19) ~€ ad — 3 ]
Next, in the following Proposition, using Example 2.8, {H € H®; H(z) = H(z) + A(z)W (2); H(z),

Lemma 3.1 and Lemma 3.2, we calculate the robust entropy  f(z) A(z2), W (z) € H>, H(z), W (z) are fixed,
rate for the family of uncertain sources which corresponds .
to the nominal source model (16) and the relative entropy 2 (2) is unknown and|Alfo, < 1}7 (23)

uncertainty set (15). : . :
Y (19) where H(z) is the nominal source transfer function based

Proposition 3.3: The robust entropy rate of an uncertain X i belief
source with corresponding nominal source model (16) is O Previous experience or belief, addz) V(=) represents
the uncertainty part of the source. Clearly, this additive

Hropust (V) = d In( 1+ 3) +Hs(Y), uncertainty model implieﬂ(gjw)—H(ejw)\_ < \W(ejw)|,
2 s Yw € [—m,n] and thus the size of uncertainty is controlled
Hs(Y) = d In(27e) + lln det Ao, by the fixed transfer functiofii’(z). 3
2 2 20) Since X is a Gaussian random process di¢) is linear

transformation}” is a Gaussian random process. Moreover,
wheres > 0 is the unique solution of (14)\ is given by since X is stationary andH(z) € H®, Sy (e?v) =
(18), andH s () is the Shannon entropy rate of the nominal H (¢7*)|>Sx (e/*), consequently from [7], the entropy rate
source model (16). is given by

Remark 3.4:From (14), it follows that, the casi. — 0 1 1
corresponds te — +oo. Letting s — +oo in (20), we Hs(Y) = §1n(27re) + 47/ In Sy (e7*)dw. (24)

obtain 21 -
Hrovust(V) = Hs (D). (21) Consequently, the robust entropy rate is defined by

That is, the robust entrppy rate is eqqal_to the Shannon Hrobust (V) = — In(2me)

entropy rate of the nominal source. This is the result that 2

we expected, si_nce the caBeg — 0 corresponds to the case +i sup / In Sy(ejw)dw_ (25)

without uncertainty. AT gep,, ) —x
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Next, from analysis done in [4], the solution of (25) is given Y,

by i Plant (Source) * Encoder
Hrat () = 3 Wn(2ne) + 1= [ (1)
W (e7)2)Sx (7 ) duw. (26) T

C. Partially Observed Controlled Gauss Markov Process U, Ch;;:“e‘l):;ith

In this section, it is assumed that the uncertainty set is the
relative entropy set (15). The nominal model is defined via

a partially observed controlled Gauss Markov source given g 7 :
b t
’ Controller Decoder
X1 = AXy+BU;, U,=-KY,
Y, = CX,+DV, teN,, (27)

whereK is stabilizing matrix (e.g.A— BK has eigenvalues Fig. 2. Networked control system

within the unit circle), X; € R™ denotes the unobserved

processY; € R is the observed procesE; € &, V; € R, i " ) )

V, is iid. ~ N(0,1), Xo ~ N(Zo, Vo), {Xo,V,} are Next, we hayg the folloyvmg proposition which gives nec-

mutually independent; € A, and D # 0. Next, in the €SSary cqndlt]on for uniform asymptotic observability and

following Proposition, using Example 2.8 and the Bodystabilizability in terms of the robust entropy rate.

integral formula [8], we calculate the robust entropy rate. Proposition 4.2:[9] A necessary condition on the robust
Proposition 3.6: The robust entropy rate of an uncertainchannel capacity Gropuse = limy oo 5 Cnrobust, Where

source with corresponding nominal source model (27) is Cn.robust IS the robust channel capacity fortimes channel
use) for uniform asymptotic observability and stabilizability

Hrobust(V) = %hﬂ(1 + 5+ Hs(Y) in probability is
1
HS()}) é % 111(27T€D2) Crobust > Hrobust (y) - 5 111(27T8)d det Fga (31)
+ Z In A (A)],  (28) where H,. .55t (V) is the robust entropy rate] is the di-
(i (A)|>1} mension of source symbol, ary is the covariance matrix

of the Gaussian distribution(y) ~ N(0,T,) (y € R?) that
at'Sf'eSfupra g(y)dy = e. ' .
" Remark 4.3:For the family of uncertain sources that
corresponds to the nominal source model (28)yb.s:(Y)

wheres > 0 is the unique solution of (14)Hs(Y) is the
Shannon entropy rate of the nominal source model (27
and \;(A4) is the eigenvalues of the system matrx

IV. APPLICATION IN STABILIZABILITY OF NETWORK (found in (31)) is computed from (20). For an uncertain
CONTROL SYSTEM sources given in Section lI-BOsy — Dgq), it is found
An application of information theory in networked con-from (26).
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