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Tele-operation of Autonomous Vehicles over Additive

White Gaussian Noise Channel

Ali Parsa and Alireza Farhadi∗

Abstract

This paper is concerned with the tele-operation of autonomous vehicles over analog Additive White

Gaussian Noise (AWGN) channel, which is subject to transmission noise and power constraint. The

nonlinear dynamic of autonomous vehicle is described by the unicycle model and is cascaded with

a bandpass filter acting as encoder. Using the describing function method, the nonlinear dynamic of

autonomous vehicle is represented by an approximate linear system. Then, the available results for linear

control over analog AWGN channel are extended to account for linear continuous time systems with

non - real valued and multiple real valued eigenvalues and for tracking a non-zero reference signal.

Subsequently, by applying the extended results on the describing function of autonomous vehicles, a

mean square control technique including an encoder, decoder and a controller is presented for reference

tracking of the tele-operation of autonomous vehicles over AWGN channel. The satisfactory performance

of the proposed control technique is illustrated by computer simulations.

Index Terms

Networked control system, tele-operation system, the describing function, the unicycle model,

AWGN channel.

I. INTRODUCTION

A. Motivation and Background

Tele-operation of autonomous vehicles has become an active research direction in recent years.

In these systems, the remote autonomous vehicle must track a reference signal generated by

a remote operator which is communicated to it via a wireless link. In this application, the

measurements from on-board sensors are also communicated to remote operator to help operator
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Fig. 1. A dynamic system over MIMO parallel AWGN channel

to generate a desired reference signal. One of the abstract model for wireless communication is

Additive White Gaussian Noise (AWGN) channel. This channel is an abstract model for satellite

communication, deep space communication and when the line of sight is strong. Therefore, for

these situations we deal with the tele-operation of system of Fig. 1. Very often autonomous

vehicles are battery powered; and hence, communication from these vehicles to the base station

where the operator is located must be done with minimum possible transmission power to increase

the on - board battery life time. Therefore, communication from vehicle to remote controller

is subject to noise and power constraint. However, as the communication from the base station

to remote vehicle can be done with high transmission power, in the block diagram of Fig. 1,

the communication link from remote controller to the remote vehicle (dynamic system) can be

considered without imperfections and limitations.

The tele-operation of Fig. 1 is an example of networked control systems. In networked

control systems we deal with controlling dynamic systems over communication channels subject

to imperfections and limitations. Some results addressing basic problems in stability and/or

state tracking of dynamic systems over communication channels subject to imperfections and

limitations can be found in [1]-[28]. Dynamic systems can be viewed as continuous alphabet
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information sources with memory. Therefore, many works in the literature (e.g., [1], [12], [13],

[18], [19], [22]-[28]) are dedicated to the question of state tracking and/or stability over AWGN

channel, which itself is naturally a continuous alphabet channel. [12], [13] addressed the problem

of mean square stability and state tracking of linear Gaussian dynamic systems over AWGN

channel when noiseless feedback channel is available full time and the communication of control

signal from remote controller to system is perfect (see Fig. 1). In [12], the authors presented

an optimal control technique for asymptotic bounded mean square stability of partially observed

discrete time linear Gaussian systems over AWGN channel. In [13], the authors addressed the

continuous time version of the problem addressed in [12]. In [22], the authors considered a

framework for discussing control over a communication channel based on Signal-to-Noise Ratio

(SNR) constraints and focused particularly on the feedback stabilization of an open loop unstable

plant via a channel with a SNR constraint. By examining the simple case of a linear time invariant

plant and an AWGN channel, the authors in [22] derived necessary and sufficient conditions

on the SNR for feedback stabilization with an LTI controller. In [23], the authors addressed

the problem of state tracking of nonlinear systems over AWGN channel. In [25], the authors

presented a sub-optimal decentralized control technique for bounded mean square stability of a

large scale system with cascaded clusters of sub-systems. Each sub-system is linear and time

invariant and both sub-system and its measurement are subject to Gaussian noise. The control

signals are exchanged between sub-systems without any imperfections, but the measurements

are exchanged via an AWGN communication network. In [27] the author presented a sub-

optimal technique for mean square stability of a distributed system with geographically separated

Gaussian sub-systems interconnected by a AWGN communication network. In [28], the authors

investigated stabilization and performance issues for MIMO LTI networked feedback systems,

in which the MIMO communication link is modeled as a parallel noisy AWN channel. The idea

of using the describing function for controlling nonlinear dynamic systems over AWGN channel

for the first time was presented in [29]. In addition of the AWGN channel, others communication

channels, which are in the sharp attention of networked control systems research community,

are the real and the packet erasure channels that are abstract models for communication via the

Internet and WiFi links. [30] addressed the problems of optimal control and stability of LTI

systems over the real erasure channel, which is subject to random packet dropout, where both

remote and local controllers operate on the system. [31] also addressed the problem of optimal

control of LTI systems by a remote controller over the real erasure channel.

The above literature review reveals that the available results on the stability and state tracking
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of dynamic systems over AWGN channel are mainly concerned with linear dynamic systems. To

the best of our knowledge, control of nonlinear dynamic systems over AWGN channel is limited

to [23] and [29], which are not concerned with the tele-operation of autonomous vehicles subject

to communication imperfections. In the tele-operation of autonomous vehicles, we deal with state

tracking as well as reference tracking of nonlinear systems. The dynamic of autonomous vehicles

(autonomous underwater, unmanned aerial and autonomous road vehicles) is described by the

six degrees freedom model. However, the vehicle dynamic is handled by an on - board control

loop that results in a kinematic unicycle model, which is nonlinear [16]. In addition in deep

space tele-operation systems or when the line of sight is strong, AWGN channel is a suitable

model for wireless communication. These motivate research on tele-operation of the unicycle

model over AWGN channel, which is the subject of this paper.

B. Paper Contributions

Key contributions of this paper compared to the aforementioned earlier literature are summa-

rized as follows:

1) In the field of nonlinear dynamic systems, the describing function is used for building

oscillators [32]. However, in this paper, for the first time it is used to stabilize and control

a practical nonlinear dynamic system. That is, the unicycle model, which is an abstract model

for describing the dynamics of autonomous underwater, unmanned aerial and autonomous road

vehicles.

2) To the best of our knowledge, earlier works on controlling dynamic systems over the AWGN

channel are mainly concerned with the stability and state tracking of linear dynamic systems,

e.g., [1],[12],[13],[18],[19],[22],[24],[25],[27],[28]. Only [24] and [29] addressed the problem

of controlling nonlinear dynamic systems over the AWGN channel. Nevertheless, [24] is just

concerned with the estimation problem; and [29] addressed the problem of tracking and stability

of those systems that have periodic outputs to sinusoidal inputs. Therefore, [29] used a linear

dynamic system subject to saturated excitation for computer simulation as this type of non-

common dynamic systems is consistent with the theoretical development in [29]. However, by

finding a describing function for the unicycle model, which also has periodic outputs to periodic

inputs, this paper presents a real application of the theoretical development of [29] by controlling

a practical nonlinear dynamic system over the AWGN channel.
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C. Paper Organization

The paper is organized as follows. In Section II, the problem formulation is presented.

Section III describes the describing function method. Then, in Section IV the theory of mean

square reference tracking of linear dynamic systems with multiple real and non-real valued

eigenvalues over MIMO AWGN channel is developed. Section V is devoted to the tele-operation

of autonomous vehicles. Simulation results for the unicycle model are given in Section VI and

the paper is concluded by summarizing the contributions of the paper and direction for future

research in Section VII.

II. PROBLEM FORMULATION

Throughout, certain conventions are used: E[·] denotes the expected value, var[.] the variance,

| · | the absolute value and V ′ the transpose of vector/matrix V . A−1 denotes the inverse of a

square matrix A and N(m,n) the Gaussian distribution with mean m and covariance n. R

denotes the set of real numbers and In the identity matrix with dimension n by n. trac(A)

denotes the trace of a square matrix A, diag{.} denotes the diagonal matrix, [A]ij denotes the

i, jth element of the matrix A and 0 denotes the zero vector/matrix.

This paper is concerned with asymptotic mean square stability and reference tracking of

autonomous vehicles over AWGN communication channel, as is shown in the block diagram of

Fig. 1. The building blocks of Fig. 1 are described below.

Dynamic System: The dynamic system is the following time - invariant unicycle system [16]:
ẋ(t) = v(t) cos(φ(t))

ẏ(t) = v(t) sin(φ(t))

φ̇(t) = u(t)

(1)

where x(t), y(t) are the position vector, φ(t) the heading angle, and the control inputs are the

vehicle forward velocity v(t) and the angular velocity u(t). Note that for the remote controller

the initial conditions (x(0), y(0), φ(0)) are unknown and has the Gaussian distribution.

Communication Channel: Communication channel between system and controller is a MIMO

AWGN channel without interference (parallel) with n inputs and n outputs. The output of the

encoder (which will be described shortly) is transmitted through the MIMO channel and a white

Gaussian noise vector is added to it (as is shown in Fig. 1), where N(t) =
[
n1(t) . . . nn(t)

]′
i.i.d. ∼ N(0, R̃) (R̃ = diag{r̃1, ..., r̃n}) is the MIMO channel noise and ni(t) ∼ N(0, r̃i)

is the additive noise of the ith input - output path of the MIMO parallel AWGN channel.

Also, the MIMO parallel AWGN channel is subject to the channel input power constraints Poi,
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i = 1, 2, ..., n as follows: E[f 2
i (t)] ≤ Poi, i = 1, 2, ..., n, where fi(t) is the ith element of the

encoder output vector F (t) =
[
f1(t) . . . fn(t)

]′
, which is the input of the channel. That

is, Y (t) = F (t) +N(t), where Y (t) =
[
y1(t) . . . yn(t)

]′
is the channel output.

Encoder: The encoder is a bandpass filter cascaded with a matrix gain. This bandpass filter

saves only the fundamental frequency of the system outputs and omits the other harmonics which

have less information to be sent. For this purpose, a high pass filter with a relatively low cut

off frequency (e.g., 0.1 Hz) is used to omit the DC part. This filter is cascaded with a low pass

filter with a cut off frequency of ω � 2π× 0.1 rad/s. For constructing such a filter we can use

the following transfer functions:

Hbp(s) = Hhp(s)Hlp(s), (2)

Hhp(s) =
s2

s2 + ωh
Q
s+ ω2

h

, ωh = 2π × 0.1 rad/s, Q = damping factor = 0.707, (3)

Hlp(s) =
ω2

s2 + ω
Q
s+ ω2

. (4)

It will be shown in the next section that the nonlinear dynamic system (1) together with

the bandpass filter has an approximate linear dynamic system with n = 7 states X(t) =[
x1(t) . . . xn(t)

]′
, in which these states and the matrix gain

C(t) =


c11(t) c12(t) ... c1n(t)

c21(t) c22(t) ... c2n(t)

...

cn1(t) cn2(t) ... cnn(t)


form the encoder output as F (t) = C(t)(X(t) − X̂(t)), where X̂(t) =

[
x̂1(t) . . . x̂n(t)

]′
is the estimation of states.

Decoder: Decoder is the minimum mean square estimator or the Kalman filter, also known

as Linear Quadratic Estimator (LQE). At each time instant t, the Kalman filter generates an

estimation X̂(t) using the channel output Y (t).

Controller: Controller is a certainty equivalent controller of the following form: u(t) =

−l(t)X̂(t) + ν(t).

The objective of this paper is to find the matrix gain C(t) and u(t) to force the positions x(t)

and y(t) and the heading angle φ(t) follow the desired paths.
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III. IMPLEMENTATION OF THE DESCRIBING FUNCTION METHOD

In this section, we first present the idea of the describing function to obtain the approximate

linear dynamic system from a nonlinear time-invariant dynamic system. Then, we obtain the

describing function for the nonlinear dynamic system of (1).

A. The Describing Function

This subsection is borrowed from [29]. For all nonlinear time - invariant dynamic systems that

respond periodically to sinusoidal inputs, we can find an approximate linear dynamic system, as

defined below [32]:

Consider a SISO nonlinear time - invariant dynamic system with periodic outputs in response to

periodic inputs. Suppose that this nonlinear dynamic system is excited by the following input:

u(t) = γ cos(ωt), where γ > 0 is large enough to excite all modes of the nonlinear system.

Then, as the output is a periodic signal, it has a Fourier series representation that includes all

harmonics of the input with frequency of ω. That is,

y(t) = yd +
∞∑
i=1

(ai sin(iωt) + bi cos(iωt)),

yd =
ω

4π

∫ 2π
ω

− 2π
ω

y(t)dt,

ai =
ω

2π

∫ 2π
ω

− 2π
ω

(y(t) sin(iωt))dt

bi =
ω

2π

∫ 2π
ω

− 2π
ω

(y(t) cos(iωt))dt. (5)

Now, if this nonlinear system is cascaded with a bandpass filter with high cut-off frequency of ω,

then we have a periodic output at the end of the filter which consists of only the first harmonic

with the frequency of ω, and all other harmonics are eliminated. In other words, the output of

the bandpass filter is the following:

yf (t) = a1 sin(ωt) + b1 cos(ωt). (6)

Having that, we call the nonlinear dynamic system that is cascaded with the bandpass filter with

the high cut off frequency of ω, a quasi linear system [32]. Because, we can find a linear dynamic

system with the input u(t) = γ cos(ωt) and the output yf (t) with the following transfer function:

H(jω) = |H(jω)|∠H(jω). (7)
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|H(jω)| =
√
a21 + b21
γ

. (8)

∠H(jω) = − arctan(
a1
b1

) rad. (9)

This means that the nonlinear dynamic system can be represented by a linear dynamic system

with the above transfer function called the describing function of the nonlinear dynamic system.

Note that the describing function represents the transfer function of the approximate linear

dynamic system and the transfer function represents the response of the dynamic system to the

input signal when the initial conditions are set to be zero. Hence, the describing function is

obtained for zero initial conditions.

B. The Approximate Linear System for the Unicycle Model

For a given fixed forward velocity v(t), the nonlinear dynamic system (1) has periodic outputs

to periodic inputs u(t) = γcos(ωt). Hence, in the block diagram of Fig. 1 as this dynamic is

cascaded with the bandpass filter, it has an approximate linear system description. To obtain

this describing function, we first assume that the input is u(t) = γ cos(ωt); and ẋ(t) and ẏ(t)

are the outputs of the system (1); and hence, the inputs of the bandpass filter. Therefore, we

obtain Hẋ(s) = f1
f2s2+f3s+f4

and Hẏ(s) = c1
c2s2+c32s+c4

transfer functions as describing functions

from the input to the outputs ẋ(t) and ẏ(t), respectively (fis and cis are real coefficients). Then,

obviously for obtaining the describing functions from input u(t) to outputs x(t) and y(t), we

must multiply 1
s

to these transfer functions. Note that as is clear from Fig. 1, the inputs to the

bandpass filter are x(t) and y(t). However; we can assume that these inputs are obtained by

integration of ẋ(t) and ẏ(t); and thus, for the simplicity in obtaining the describing functions, by

moving this integration operator after the transfer function of the bandpass filter, we can assume

that the outputs of the nonlinear system and therefore the inputs to the filter are ẋ(t) and ẏ(t).

Also, note that from (1) it follows that the transfer function between input u(t) and output φ(t)

is Hφ(s) = 1
s
. That is, the relation between u(t) and φ(t) is linear .

The equivalent state space representation of the approximate linear system has seven states:

X(t) = [x1(t) x2(t) . . . x7(t)]
′ where correspond to d1ẍ(t) + d2ẋ(t) + x(t), d3ẍ(t) + d4ẋ(t),

d5ẍ(t) +d6ẋ(t), d7ÿ(t) +d8ẏ(t) + y(t), d9ÿ(t) +d10ẏ(t), d11ÿ(t) +d12ẏ(t) and φ(t), respectively

(dis are real coefficients). The input of this representation is u(t) and the output vector is
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[x(t) y(t) φ(t)]′ with the system matrices A =


Ax 0 0

0 Ay 0

0 0 Aφ

, B = [Bx By Bφ]′ and C =


Cx 0 0

0 Cy 0

0 0 Cφ

, where Ax =


0 0 0

0 e1 e2

0 −e2 e1

, Ay =


0 0 0

0 e5 e6

0 −e6 e5

, Aφ = 0, Bx = [e9 e10 e11],

By = [e12 e13 e14], Bφ = 1, Cx = [e15 e16 0], Cy = [e17 e18 0] and Cφ = 1. Hence, we need

a MIMO parallel AWGN channel with 7 inputs and 7 outputs for transmitting x1(t) to x7(t).

Note that the equivalent state space representation of the approximate linear system is in the

real Jordan form.

IV. REFERENCE TRACKING OF LINEAR SYSTEMS WITH MULTIPLE REAL AND NON-REAL

VALUED EIGENVALUES OVER AWGN CHANNEL

Now, we extend the results of [13] to account for reference tracking and hence stability of linear

dynamic systems with multiple real and non-real valued eigenvalues over MIMO parallel AWGN

channel. In the next section, by applying these extended results on the describing functions

associated with the nonlinear system (1), we address the reference tracking problem of tele-

operation of autonomous vehicles, as is shown in the block diagram of Fig. 1.

Suppose that the dynamic system in Fig. 1 is linear with n states. Hence, the system that is

seen by the remote controller is as follows:

 Ẋ(t) = AX(t) +Bu(t), X(0) = ξ

Y (t) = C(t)(X(t)− X̂(t)) +N(t)
(10)

where X(0) is the initial state, which is known for the encoder but unknown for the remote con-

troller, that is for the remote controller the exact value of ξ is unknown and hence ξ ∼ N(X0, Q0)

(Q0 is diagonal) is treated as the Gaussian random variable with known mean and variance. Note

that N(t) =
[
n1(t) . . . nn(t)

]′
i.i.d. ∼ N(0, R̃) (R̃ = diag{r̃1, ..., r̃n}) is the additive noise

of the MIMO channel (ni(t) ∼ N(0, r̃i) is the additive noise of the ith path of the MIMO parallel

AWGN channel) which can be treated as the measurement noise provided the channel input power

constraint is met. The objective here is to achieve mean square asymptotic reference tracking

for the linear system (10) with n states and n outputs over MIMO parallel AWGN channel.

Throughout, it is assumed that the system matrix A has real eigenvalues, real multiple eigen-

values and distinct complex conjugate eigenvalues as the system matrix A that corresponds to
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the describing function of the nonlinear system (1) includes these types of eigenvalues. As it was

shown in the previous section, for the unicycle model, the system matrix A of the approximate

linear system is in the real Jordan form. Therefore, throughout this section it is assumed that

the system (10) can be decomposed to several decoupled sub-systems; and hence, for each sub-

system, an encoder and a decoder are designed separately. Note that the Jordan block associated

with a real eigenvalue λi(A) with multiplicity 2 is the following matrix

λi(A) 1

0 λi(A)

 and

the Jordan block associated with the complex conjugate pair of eigenvalues λi(A) = σ±
√
−1w

(w 6= 0) is

 σ w

−w σ

.

A. Mean square asymptotic state tracking

In this section, it is assumed that each of the Jordan block is at most a 2 by 2 matrix. Then,

for all three possible cases: a) A =

 σ w

−w σ

, σ,w ∈ R, w 6= 0, b) A =

a 1

0 a

, a ∈ R, c)

A =

a1 0

0 a2

, a1, a2 ∈ R, a1 6= a2; we find the matrix gain C(t) for mean square asymptotic

state tracking of system states at the decoder.

1) Sub-systems with complex conjugate eigenvalues: Suppose that the system matrix A in the

linear system of (10) has the following form

A =

 σ w

−w σ

 , σ, w ∈ R, w 6= 0. (11)

Then, we have the following proposition for mean square asymptotic state tracking of system

states at the decoder:

Proposition 4.1: Consider the block diagram of Fig. 1 described by the linear system (10) with

the system matrix A =

 σ w

−w σ

 , σ, w ∈ R, w 6= 0. Suppose that Po1 > 2σ and Po2 > 2σ,

[Q0]12 = 0, [Q0]11 = [Q0]22 and r̃1 = r̃2. Let γ1 = min(Po1, Po2). Then, by choosing the

encoder matrix gain as C(t) =

√ γ1r̃1
p11(t)

0

0
√

γ1r̃2
p22(t)

, and the following decoder

˙̂
X(t) = AX̂(t) +Bu(t) +K(t)Y (t), X̂(0) = X0, (12)

K(t) = P (t)C ′(t)R̃−1, R̃ = diag{r̃1, r̃2} (13)
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Ṗ (t) = A′P (t) + P (t)A− P (t)C ′(t)R̃−1C(t)P (t), P (0) = Q0, P (t) = P ′(t) =

p11(t) p12(t)

p12(t) p22(t)

 ≥ 0;(14)

we have mean square asymptotic state tracking of system states at the decoder.

Proof: The encoder matrix gain has the following general form C(t) =

c11(t) c12(t)

c21(t) c22(t)

;

and subsequently the decoder can be extracted as follows (for the simplicity of presentation the

dependency to the time index, t, is dropped):



ṗ11 = 2σp11 − 2wp12 − (2p11p12c11c12r̃
−1
1 + 2p11p12c21c22r̃

−1
2 + p211c

2
11r̃
−1
1 + p212c

2
12r̃
−1
1

+p211c
2
21r̃
−1
2 + p212c

2
22r̃
−1
2 )

˙p22 = 2σp22 + 2wp12 − (2p22p12c22c21r̃
−1
2 + 2p22p12c21c11r̃

−1
1 + p222c

2
22r̃
−1
2 + p212c

2
21r̃
−1
2

+p222c
2
12r̃
−1
1 + p212c

2
11r̃
−1
1 )

˙p12 = 2σp12 − wp22 + wp11 − r̃−11 (p11p12c
2
11 + p212c11c12 + p11p22c11c12 + p12p22c

2
12)

−r̃−12 (p11p12c
2
21 + p212c22c21 + p11p22c22c21 + p12p22c

2
22)

(15)

Now, by substituting c11(t) =
√

γ1r̃1
p11(t)

, c22(t) =
√

γ1r̃2
p22(t)

and c12(t) = c21(t) = 0, we have

ṗ12(t) = 0 (⇒ p12(t) = p12(0) = [Q0]12 = 0) and

ṗ11(t) = (2σ − γ1)p11(t)⇒ p11(t) = e−(γ1−2σ)tp11(0). (16)

ṗ22(t) = (2σ − γ1)p22(t)⇒ p22(t) = e−(γ1−2σ)tp22(0). (17)

Thus, by the above selection, we have

P (t) =

e−(γ1−2σ)tp11(0) 0

0 e−(γ1−2σ)tp22(0)

 (18)

when the decoder description is as follows:

˙̂
X(t) = AX̂(t) +Bu(t) +K(t)Y (t), X̂(0) = X0, K(t) = P (t)C

′
(t)R̃−1. (19)

Now, as we assumed that γ1 > 2σ, we have limt→∞E[(x1(t) − x̂1(t))
2] = limt→∞ p11(t) =

limt→∞ e
−(γ1−2σ)tp11(0) = 0. Similarly, we have limt→∞E[(x2(t)−x̂2(t))2] = limt→∞ p22(t) = 0.

Hence, P (t)→ P̄ =

0 0

0 0

 . This completes the proof.
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2) Sub-systems with real multiple eigenvalues: Suppose that the system matrix A in the linear

system of (10) has the following form

A =

a 1

0 a

 , a ∈ R. (20)

Then, we have the following proposition for mean square asymptotic state tracking of system

states at the decoder:

Proposition 4.2: Consider the block diagram of Fig. 1 described by the linear system (10)

with the system matrix A =

a 1

0 a

, a ∈ R. Suppose that Po1 > 2a and Po2 > 2a,

[Q0]12 = 0, [Q0]11 = [Q0]22 and r̃1 = r̃2. Then, by choosing the encoder matrix gain as

C(t) =

√ r̃1
2δp11(t)

√
δr̃1

2p22(t)√
δr̃2

2p11(t)

√
r̃2

2δp22(t)

, where δ = γ1 −
√
γ21 − 1 and γ1 = min(Po1, Po2), and

the following decoder

˙̂
X(t) = AX̂(t) +Bu(t) +K(t)Y (t), X̂(0) = X0, (21)

K(t) = P (t)C ′(t)R̃−1, R̃ = diag{r̃1, r̃2} (22)

Ṗ (t) = A′P (t) + P (t)A− P (t)C ′(t)R̃−1C(t)P (t), P (0) = Q0, P (t) = P ′(t) =

p11(t) p12(t)

p12(t) p22(t)

 ≥ 0;(23)

we have mean square asymptotic state tracking of system states at the decoder.

Proof: The encoder matrix gain has the following general form C(t) =

c11(t) c12(t)

c21(t) c22(t)

;

and subsequently the decoder can be extracted as follows (for the simplicity of presentation the

dependency to the time index, t, is dropped):



ṗ11 = 2ap11 − (2p11p12c11c12r̃
−1
1 + 2p11p12c21c22r̃

−1
2 + p211c

2
11r̃
−1
1 + p212c

2
12r̃
−1
1

+p211c
2
21r̃
−1
2 + p212c

2
22r̃
−1
2 )

˙p22 = 2ap22 + 2p12 − (2p22p12c22c21r̃
−1
2 + 2p22p12c21c11r̃

−1
1 + p222c

2
22r̃
−1
2 + p212c

2
21r̃
−1
2

+p222c
2
12r̃
−1
1 + p212c

2
11r̃
−1
1 )

˙p12 = 2ap12 + p11 − r̃−11 (p11p12c
2
11 + p212c11c12 + p11p22c11c12 + p12p22c

2
12)

−r̃−12 (p11p12c
2
21 + p212c22c21 + p11p22c22c21 + p12p22c

2
22)

(24)

March 14, 2020 DRAFT



13

Now, by substituting c11(t) =
√

r̃1
2δp11(t)

, c12(t) =
√

δr̃1
2p22(t)

, c21(t) =
√

δr̃2
2p11(t)

and c22(t) =√
r̃2

2δp22(t)
, we have ṗ12(t) = 0 (⇒ p12(t) = p12(0) = [Q0]12 = 0) and

ṗ11(t) = (2a− (
1

2δ
+
δ

2
))p11(t)⇒ ṗ11(t) = (2a− 1 + δ2

2δ
)p11(t)⇒ (25)

ṗ11(t) = (2a− γ1)p11(t)⇒ p11(t) = e−(γ1−2a)tp11(0). (26)

ṗ22(t) = (2a− (
1

2δ
+
δ

2
))p22(t)⇒ ṗ22(t) = (2a− 1 + δ2

2δ
)p22(t)⇒ (27)

ṗ22(t) = (2a− γ1)p22(t)⇒ p22(t) = e−(γ1−2a)tp22(0). (28)

Thus, by the above selection, we have

P (t) =

e−(γ1−2a)tp11(0) 0

0 e−(γ1−2a)tp22(0)

 (29)

when the decoder description is as follows:

˙̂
X(t) = AX̂(t) +Bu(t) +K(t)Y (t), X̂(0) = X0, K(t) = P (t)C

′
(t)R̃−1. (30)

Now, as we assumed that Po1 > 2a and Po2 > 2a, we have limt→∞E[(x1(t) − x̂1(t))
2] =

limt→∞ p11(t) = limt→∞ e
−(γ1−2a)tp11(0) = 0. Similarly, we have limt→∞E[(x2(t)− x̂2(t))2] =

limt→∞ p22(t) = 0. Hence, P (t)→ P̄ =

0 0

0 0

 . This completes the proof.

3) Sub-systems with real distinct eigenvalues: Suppose that the system matrix A in the linear

system of (10) has the following form

A =

a1 0

0 a2

 , a1, a2 ∈ R, a1 6= a2. (31)

Then, we have the following proposition for mean square asymptotic state tracking of system

states at the decoder:

Proposition 4.3: Consider the block diagram of Fig. 1 described by the linear system (10)

with the system matrix A =

a1 0

0 a2

, a1, a2 ∈ R, a1 6= a2. Suppose that [Q0]12 = 0, Po1 > 2a1

and Po2 > 2a2 (Po1 and Po2 are the channel input power constraint). Then, by choosing the

encoder matrix gain as C(t) =

√Po1r̃1
p11(t)

0

0
√

Po2r̃2
p22(t)

, and a decoder with the following description

˙̂
X(t) = AX̂(t) +Bu(t) +K(t)Y (t), X̂(0) = X0, (32)
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K(t) = P (t)C ′(t)R̃−1, R̃ = diag{r̃1, r̃2} (33)

Ṗ (t) = A′P (t) + P (t)A− P (t)C ′(t)R̃−1C(t)P (t), P (0) = Q0, P (t) = P ′(t) =

p11(t) p12(t)

p12(t) p22(t)

 ≥ 0;(34)

we have mean square asymptotic state tracking of system states at the decoder.

Proof: The encoder matrix gain has the following general form C(t) =

c11(t) c12(t)

c21(t) c22(t)

; and

subsequently, the matrix P (t), which represents the covariance matrix of the decoding error can

be extracted as follows (for the simplicity of presentation the dependency to the time index t is

dropped):



ṗ11 = 2a1p11 − (2p11p12c11c12r̃
−1
1 + 2p11p12c21c22r̃

−1
2 + p211c

2
11r̃
−1
1 + p212c

2
12r̃
−1
1

+p211c
2
21r̃
−1
2 + p212c

2
22r̃
−1
2 )

˙p22 = 2a2p22 − (2p22p12c22c21r̃
−1
2 + 2p22p12c21c11r̃

−1
1 + p222c

2
22r̃
−1
2 + p212c

2
21r̃
−1
2

+p222c
2
12r̃
−1
1 + p212c

2
11r̃
−1
1 )

˙p12 = a1p12 + a2p12 − r̃−11 (p11p12c
2
11 + p212c11c12 + p11p22c11c12 + p12p22c

2
12)

−r̃−12 (p11p12c
2
21 + p212c22c21 + p11p22c22c21 + p12p22c

2
22)

(35)

Now, by substituting c11(t) =
√

Po1r̃1
p11(t)

, c22(t) =
√

Po2r̃2
p22(t)

and c12(t) = c21(t) = 0, we have

ṗ12(t) = 0 and p12(t) = p12(0) = [Q0]12 = 0. Subsequently, we have

ṗ11(t) = (2a1 − Po1)p11(t)⇒ p11(t) = e−(Po1−2a1)tp11(0). (36)

ṗ22(t) = (2a2 − Po2)p22(t)⇒ p22(t) = e−(Po2−2a2)tp22(0). (37)

Thus, by the above selection, we have

P (t) =

e−(Po1−2a1)tp11(0) 0

0 e−(Po2−2a2)tp22(0)

 (38)

when the decoder description is as follows:

˙̂
X(t) = AX̂(t) +Bu(t) +K(t)Y (t), X̂(0) = X0, K(t) = P (t)C

′
(t)R̃−1. (39)

Now, as we assumed that Po1 > 2a1 and Po2 > 2a2, we have limt→∞E[(x1(t) − x̂1(t))2] =

limt→∞ p11(t) = limt→∞ e
−(Po1−2a1)tp11(0) = 0. Similarly, we have limt→∞E[(x2(t)−x̂2(t))2] =

limt→∞ p22(t) = 0. Hence, P (t)→ P̄ =

0 0

0 0

 . This completes the proof.
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B. Asymptotic Reference Tracking

Now, to obtain the control signal u(t) for tracking the reference signal R(t), we consider the

following cost functional

J = lim
t1→∞

1

t1

∫ t1

0

E[[X(t)−R(t)]′Q[X(t)−R(t)] + ru2(t)]dt, Q = Q′ ≥ 0, r > 0. (40)

Subsequently, the control signal u(t) is obtained by minimizing the above cost functional sub-

ject to the dynamic system (10). From the classical LQG results [33] it follows that u(t) =

−l(t)X̂(t) + ν(t), where

l(t) = r−1B′P̃ (t) (41)

ν(t) = −r−1B′S(t) (42)

and P̃ (t) and S(t) are the solutions of the following equations:

˙̃P (t) = −P̃ (t)A− A′P̃ (t)−Q+ P̃ (t)Br−1B′P̃ (t) (43)

Ṡ(t) = −[A′ − P̃ (t)Br−1B′]S(t) +QR(t). (44)

Under the assumption that the pair (A,B) is stabilizable and the pair(In, A) is detectable, we

have P̃ (t)→ ¯̃P [33], where ¯̃P is the unique symmetric non-negative definite stabilizing solution

of the corresponding Algebraic Riccati equation; and hence, J → J̄ = 0. This indicates that

E[X(t) − R(t)]′Q[X(t) − R(t)] → 0; and hence, E[(xi(t) − ri(t))
2] → 0, i = 1, 2, ..., n,

(R(t) =
[
r1(t) . . . rn(t)

]′
).

V. REFERENCE TRACKING OF THE TELE-OPERATION OF AUTONOMOUS VEHICLES

In this section, we apply the results of previous sections to address the reference tracking

problem of the tele-operation system described by the block diagram of Fig. 1. In this block

diagram the nonlinear dynamics of the miniature drones, autonomous road vehicles and au-

tonomous underwater vehicles is described by the unicycle model of (1). In this tele-operation

system, the initial conditions vector
[
x(0) y(0) φ(0)

]′
is unknown for the remote controller

and has the Gaussian distribution with diagonal covariance matrix. Both positions x(t) and y(t)

must be controlled by one input u(t) as it is assumed that the forward velocity v(t) is fixed. In

the following rφ(t), rx(t) and ry(t) are the reference signals for φ(t), x(t) and y(t), respectively

(R(t) = [rx(t) ry(t) rφ(t)]′); and x̂(t), ŷ(t) and φ̂(t) are mean square estimation of x(t), y(t)

and φ(t) at the decoder, respectively, which are available for the remote controller. Now, from

Fig. 2 it follows that to control both x(t) and y(t) by one input u(t), we must have the reference
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Fig. 2. An autonomous vehicle with current positions x(t) and y(t) moving towards the desired positions rx(t) and ry(t)

signal rφ(t) = arctan( ry(t)−ŷ(t)
rx(t)−x̂(t)) [34], which forces x(t) and y(t) to follow rx(t) and ry(t),

respectively; when φ(t) tracks rφ(t) and x̂(t)→ x(t), ŷ(t)→ y(t).

To achieve this goal, we notice that the equivalent state space representation of the approximate

linear system of the nonlinear unicycle model cascaded with the bandpass filter, has seven states:

X(t) = [x1(t) x2(t) . . . x7(t)]
′; and hence, we need a MIMO parallel AWGN channel with

7 inputs and 7 outputs for transmitting x1(t) to x7(t). Now, we use the encoder and decoder

proposed in the previous section with matrices derived from A, B and C as given in Section III.

Since the system matrix A is in the real Jordan form, the encoder and decoder proposed in Section

IV can be used for different 2 by 2 sub-systems for transmitting [x2(t) x3(t)]
′ and [x5(t) x6(t)]

′

and their reconstruction at the decoder; and also for the scalar sub-systems for transmitting x1(t),

x4(t) and x7(t) and their reconstruction. Then, using the controller u(t) = −l(t)φ̂(t) +ν(t) with

gains computed by (41) to (44) with A = Aφ = 0, B = Bφ = 1 and R(t) = rφ(t), we

have mean square asymptotic tracking of the reference signal rφ(t) by φ(t); and hence, the

desired reference tracking. Note that at the decoder x̂(t), ŷ(t) and φ̂(t) are obtained as follows:

[x̂(t) ŷ(t) φ̂(t)]′ = CX̂(t), which converge to [x(t) y(t) φ(t)]′ = CX(t), as X̂(t) → X(t), in

mean square sense.
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Fig. 3. x(t) and rx(t)

VI. SIMULATIONS RESULTS

For the purpose of illustration, consider the block diagram of Fig. 1 with the nonlinear dynamic

of (1). For the remote controller, the initial conditions (x(0), y(0), φ(0)) are unknown and has the

following description [x(t) y(t) φ(t)]′ ∼ N(0, 3I3). The autonomous vehicle must track a circle

with the center located at (xr, yr) and the radius of ρ with the angular velocity of ωr. Therefore,

[x(t) y(t) φ(t)]′ must track the reference signal [rx(t) ry(t) rφ(t)]′, where rx(t) = xr+ρ cos(ωrt),

ry(t) = yr + ρ sin(ωrt) and rφ(t) = arctan( ry(t)−ŷ(t)
rx(t)−x̂(t)). Note that as ṙx(t) = ρωr sin(−ωrt) and

ṙy(t) = ρωr cos(−ωrt), for the simplicity of design, we choose the forward velocity constant

and equals to v(t) = ρωr m/s.

To obtain the describing function for a given ω, e.g., ω = 1 rad/s; we apply the inputs

v(t) = ρωr m/s and u(t) = ηωr cos(ωt) rad/s (η ≥ 1 is a gain to excite all modes of the

nonlinear system) to the system (1). Then, from this input and the corresponding outputs of

the bandpass filter, the describing functions for η = 3, ωr = 1 rad/s and ρ = 1 are computed

as Hx(s) = 1
s(s2+0.2s+8.5)

and Hy(s) = −1
s(s2+0.2s+8.5)

, respectively. The equivalent linear state

space representation of this system has seven states: X(t) = [x1(t) x2(t) . . . x7(t)]
′ where
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Fig. 4. y(t) and ry(t)

correspond to 0.1176ẍ(t)+0.0235ẋ(t)+x(t), −0.1176ẍ(t)−0.0235ẋ(t), 0.0040ẍ(t)−0.3424ẋ(t),

0.1176ÿ(t) + 0.0235ẏ(t) + y(t), −0.1176ÿ(t) − 0.0235ẏ(t), 0.0040ÿ(t) − 0.3424ẏ(t) and φ(t),

respectively. The input of this representation is u(t) and the output vector is [x(t) y(t) φ(t)]′

with the system matrices A =


Ax 0 0

0 Ay 0

0 0 Aφ

, B = [Bx By Bφ]′ and C =


Cx 0 0

0 Cy 0

0 0 Cφ

,

where Ax =


0 0 0

0 −0.1 −2.914

0 2.914 −0.1

, Ay =


0 0 0

0 −0.1 −2.914

0 2.914 −0.1

, Aφ = 0, Bx = [0.1176 −

0.1176 0.0040], By = [0.1176 − 0.1176 0.0040], Bφ = 1, Cx = [1 1 0], Cy = [−1 − 1 0] and

Cφ = 1.

Hence, we need a MIMO parallel AWGN channel with 7 inputs and 7 outputs for transmitting

x1(t) to x7(t), which has the following specification: N(t) i.i.d. ∼ N(0, diag{0.5, 0.5, 0.5, 0.5,

0.5, 0.5, 0.5}) with the power constraints: Poi = 1 for i ∈ {1, 2, 3, ..., 7}, which meet the

requirements of the propositions of Section IV.

March 14, 2020 DRAFT



19

0 10 20 30 40 50
−10

0

10

20

30

40

50

time(sec)

ra
d

 

 

φ
t

r[φ]
t

Fig. 5. φ(t) and rφ(t)

Fig. 3 to Fig. 5 illustrate that the system outputs x(t), y(t) and φ(t) track the reference

signals rx(t), ry(t) and rφ(t), respectively, for η = 3, ρ = 1, ωr = 1 and xr = yr = 0, using the

technique proposed in Section V. Fig. 6 illustrates the control signal u(t). Also, Fig. 7 and Fig. 8

illustrate that the autonomous vehicle tracks the reference circle. As is clear from these figures,

the proposed tracking technique is able to force the nonlinear system asymptotically track the

reference signals very well. The Root Cumulative Square Error (RCSE) computed for the period

of [20 , 50] second (i.e.,
√∫ 50

20
[(x(t)− rx(t))2 + (y(t)− ry(t))2]dt) for different chooses of ω

is shown in Table I.

This table indicates that in order to have a satisfactory reference tracking, the high cut off

frequency of the bandpass filter is better to be at least equals to ωr.

To compare the performance of the proposed technique, we apply the proposed technique

and the feedback linearization control technique of [35] (with the linearized system of (9) and

(10) of [35]) to the block diagram of Fig. 1 for the reference signals of rx(t) = 0.0005t and

ry(t) = 0.0002t. The RCSE computed for the period of [20 , 50] second when the proposed

technique is used is 5.43 (see Fig. 9) and the RCSE computed for the feedback linearization
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Fig. 6. Control signal: angular velocity

TABLE I

RCSE VS ω

ω RCSE

0.2 7.91

1 5.53

10 5.59

100 5.48

1000 5.45

control technique of [35] is 17.36 (see Fig. 10). From these figures, it is clear that the proposed

technique has a better performance in the presence of communication imperfections.

Over the packet erasure channel, which is subject to random packet dropout and quantization

imperfections, [36] presented a novel technique, which is based on the linearization method, for

the reference tracking of the unicycle model of (1). Comparing the simulation results of this

section with those of [36] for tracking a circle, reveals that the approximate method presented

in this paper for the unicycle model is as good as the linearization method used in [36].
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Remark 6.1: i) Simulations study illustrates that the linear approximation method proposed

in this paper which is based on the describing function is good for the particular nonlinear

system considered in this paper. Although the describing function is obtained for a sinusoidal

input, from Fig. 6 it is clear that for the non-sinusoidal inputs, the approximation must be also

good. Otherwise, we did not get such a good reference tracking as well as state tracking for the

nonlinear system (in Figs. 7, 8, 3, 4, 5) for an estimator and controller which are based on the

approximate linear system.

ii) In order to utilize the communication channel and transmit with the maximum allowable

powers, Poi (i = 1, 2), the encoder gain C(t) is computed in Propositions 4.1 - 4.3 so that[
var[C(t)(X(t)−X̂(t))]

]
ii

= Poi. However, using the proposed coding scheme and as P (t)→ 0,

some elements of the matrix gain C(t) tend to infinity. To avoid this situation, the following

modifications in the encoder matrix gain C(t) are suggested:

• For the encoder matrix gain of Proposition 4.1 when pii(t) < 0.01γ1r̃i, we replace pii(t) in

the matrix gain C(t) by pii(t) + 0.01γ1r̃i.

March 14, 2020 DRAFT



22

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

y(t)

x(
t)

 

 

x(t)−y(t)
r
xy

Fig. 8. x(t)− y(t) diagram

• For the encoder matrix gain of Proposition 4.3, when pii(t) < 0.01Poir̃i, we replace pii(t)

in the matrix gain C(t) by pii(t) + 0.01Poir̃i.

• For the encoder matrix gain of Proposition 4.2, let h = min( δr̃1
2
, r̃2
2δ

), then when pii(t) <

0.01h, we replace pii(t) in the matrix gain C(t) by pii(t) + 0.01h.

Using the above modifications, when P (t) → 0, the elements of the matrix gain C(t) remain

bounded. We repeated computer simulation for ω = 1, ωr = 1 and tracking the circle using the

modified encoder matrix gain; and we observed that with the expense of transmission with the

power a bit less than the maximum allowable power, we get RCSE=5.55 which is very close to

the RCSE of the corresponding case with infinite gain.

VII. CONCLUSION AND DIRECTION FOR FUTURE RESEARCH

In this paper, a new technique for mean square asymptotic state tracking and reference tracking

of the autonomous vehicles over analog AWGN channel was presented. Autonomous vehicle is

cascaded with a bandpass filter acting as encoder; and hence, an approximate linear dynamic sys-

tem was extracted using the describing function method. Then, the results of [13] were extended
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Fig. 9. x(t)− y(t)− time diagram for the proposed technique

to account for systems with multiple real and non-real valued eigenvalues over MIMO parallel

AWGN channel. Subsequently, by applying the extended results on the describing function,

a technique for mean square asymptotic state tracking and reference tracking of autonomous

vehicles was presented. Finally, the satisfactory performance of the proposed technique was

illustrated using computer simulations.

In addition to the describing function method, there are other methods, e.g., based on the

Volterra series theorem [37], [38], [39] for nonlinear analysis in the frequency domain. Using

the Volterra series expansion, the Generalized Frequency Response Function (GFRF) was defined

in [40], which is multivariate Fourier transform of the Volterra kernels. This provides a useful

concept for approximation of the nonlinear systems. Therefore, for future, it is interesting to

compare the performance of the proposed technique with those based on other approximation

methods (e.g., GFRF). In addition, it is interesting to consider more realistic model for the

dynamic system (1), e.g., a dynamic system subject to measurement and process noises. This

research direction is currently under investigation in our research team.
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