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Abstract—This paper is concerned with tele-presence and
tele-operation of autonomous vehicles over the Additive White
Gaussian Noise (AWGN) channel. This wireless communication
channel is subject to transmission noise and transmission power
constraint. We propose an encoder, decoder and controller by
implementing a novel linearization method for linearizing the
nonlinear dynamic systems at operating points. For the linearized
systems, we implement the encoder, decoder and controller that
we previously proposed for output tracking as well as stability
of linear dynamic systems. We propose two novel linearization
methods and we prove their satisfactory performances for output
tracking as well as stability of nonlinear dynamic system. The
first method is based on the fixed linearization rate and the
second one is based on the variable (optimal) linearization rate.
The decoder that is based on the second method is in fact the
extended Kalman filter with the optimal linearization rate. We
compare the performances of these two methods with each other
and the other proposed methods by implementing them to the
problems of the tele-presence and tele-operation of autonomous
vehicles over the AWGN channel. We illustrate their satisfactory
performances. It is illustrated that the second method has higher
computational complexity with slightly better performance and
is applicable to a larger class of reference trajectories.

Index Terms - Networked control system, tele-presence,
tele-operation, autonomous vehicle, the unicycle model, the
Monte Carlo method.

I. INTRODUCTION

A. Motivation and Background

Estimation and stochastic control of dynamic systems over
communication channels subject to imperfections are an active
research direction in recent years. Communication links in
these problems suffer from transmission noise, power con-
straint, distortion, delay and limited bandwidth and these
imperfections make the problem of estimation and control
of dynamic systems over communication channel different
from the classical estimation and control problems. Examples
of remotely controlled systems are the emerging connected
and autonomous vehicles, such as unmanned aerial vehicles,
autonomous underwater vehicles, e.g., Ifremer’s Autonomous
Underwater Vehicles (AUVs) [1] and autonomous road ve-
hicles, e.g., Zoox’s robotaxies. These emerging systems will
have applications in Industry 4.0, military, public transporta-
tion, space and underwater exploration, smart agriculture, etc.
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Fig. 1. A nonlinear noisy dynamic system controlled over AWGN channel

For example, Ifremer’s AUVs are used for the localization
of chemical pollution with unknown location. Remotely con-
trolled road vehicles can be used to transfer front line war
wounded to a safe location, in emerging connected vehicles
technology, which is the backbone of smart transportation sys-
tems, we have vehicle to vehicle wireless communication and
vehicle to infrastructure communication, where measured data
from vehicle is transmitted subject to imperfections [2], etc.
These remotely controlled autonomous vehicles are monitored
and controlled real time by distant operator for the intervention
in the case of emergency. However, real time monitoring and
control over wireless communication links are challenging
due to the existence of the communication imperfections, as
mentioned above. The focus on the most of tele-operated
research papers has been on the communication delay, e.g., [3]
- [8]. Nevertheless, the aforementioned tele-operated systems
are mainly subject to other types of imperfections, such as
noise, limited transmission power/bit rate constraint and rate
distortion. Hence, in this paper we focus on communication
channels subject to noise and limited transmission power.
The monitoring and control of linear dynamic systems over
communication links subject to above imperfections have been
studied in the literature (e.g., [9]-[14]). However, many practi-
cal systems, such as connected and autonomous vehicles have
nonlinear dynamics. Hence, nonlinear control over communi-
cation channel subject to imperfections is an active research



direction in recent years [1], [15]-[20]. Fig. 1 illustrates a basic
block diagram for control over the AWGN channel that has
been considered in many papers (e.g., [9] - [11], [13],[14]).

The block diagram of Fig. 1 corresponds to the tele-
operation system of autonomous vehicles (e.g., autonomous
under water, autonomous road or unmanned aerial vehicles)
over the AWGN channel. Miniature unmanned aerial vehicles,
for example, are small vehicles controlled remotely by a
distant controller/operator. These vehicles are mostly used
for aerial photography, shipping and delivering, geographical
mapping, disaster management, precision agriculture, search
and rescue missions, wildlife monitoring, etc. In the tele-
operation of a miniature unmanned aerial vehicle, remote
autonomous vehicle should track a desired reference trajectory
generated by a distant controller or operator based on the
information received from remote vehicle via a wireless chan-
nel. High level control signal generated by remote operator
should be also sent through wireless communication channel to
remote vehicle. Because the remote operator may have access
to high power resources for transmission, generated high level
control signal can be communicated to the remote vehicle with
high transmission power; and hence with high signal to noise
ratio and therefore almost without imperfections. However, as
the vehicle is small and has limited capacity on-board batteries,
the communication from the vehicle to the remote operator
should be with the minimum possible transmission power; and
therefore, the signal to noise ratio in the path from vehicle
to distant controller/operator is low resulting in imperfections
in this path, as shown in Fig. 1. Thus, proper encoder and
decoder should be designed for the compensation of the
noise effects, that unlike the conventional coding scheme,
result in real time reliable communication from the dynamic
system (i.e., an information source with memory) [16]. The
basic block diagram of Fig. 1 can also correspond to the
tele-operation problem of AUVs [1]. Sonar wave is used
for the underwater wireless communication. Unlike the sea-
surface, the deep-sea is silent resulting in high signal to noise
ratio in communication from remote controller located in the
surface vessel to the remotely operated AUV; and hence, the
communication from remote controller/operator to vehicle is
almost without imperfections; while the communication from
AUV to remote controller is subject to imperfections, as shown
in Fig. 1.

The Additive White Gaussian Noise (AWGN) channel
considered in the basic block diagram of Fig. 1 is a basic
model for wireless communication. This channel is a basic
model for satellite communication, deep space communication
and when the line of sight is strong. The transmission of
information via the AWGN channel is subject to transmission
noise and also antenna’s power constraint. The output of
dynamic system is continuous alphabet with memory. Also
the AWGN channel’s input and output are continuous alphabet.
Thus, the AWGN channel is a suitable communication channel
for the remote control of dynamic systems over wireless
communication channels. Another motivation for considering
the AWGN channel, is the availability of relatively cheap with
long communication range FM transceivers [16].

Reference tracking (tele-operation) and tele-presence are the

two main goals in connected vehicles and remotely controlled
autonomous vehicles. Reference tracking means the tracking
of a desired trajectory designed by a remote human opera-
tor/intelligent control unit; and tele-presence means providing
the states of remotely controlled vehicle for remote human
operator/intelligent control unit in real time so that remote
human operator/intelligent control unit is able to design proper
desired trajectory for the satisfactory remote reference track-
ing. Most of papers in this area are concerned with the stability
and state tracking of linear dynamic systems at the end of
AWGN channel, e.g., [9] - [11], [13],[14]. In [9], the authors
presented an optimal control technique for asymptotic bounded
mean square stability of a partially observed linear Gaussian
system over the AWGN channel. In [13], the authors consid-
ered a framework for the feedback stabilization of an open
loop unstable linear dynamic system via an AWGN channel
subject to limited signal to noise ratio. In [14], the authors
investigated stabilization and performance issues for Multi
Input-Multi Output (MIMO) linear time invariant system over
a MIMO communication link modelled as a parallel AWGN
channel. [18] and [21] addressed the problems of controlling
of nonlinear dynamic systems over the AWGN channel. [18]
presented a novel method based on the describing function for
controlling those continuous time dynamics that have periodic
outputs to sinusoidal inputs. It also illustrated an application of
the theoretical developments in remote control of the unicycle
model, which is an abstract model for the autonomous vehicle
over the analog AWGN channel. Note that we are living in
digital era and therefore analog communication is not widely
used. The discrete time dynamic system over the discrete time
communication channel, as shown in the block digram of Fig.
1 is more suitable for today’s digital era. Unlike [18] that
is concerned with a specific class of dynamic systems, [21]
addressed the problem of state tracking of a quite general
class of noiseless nonlinear dynamic systems over the AWGN
channel and the packet erasure channel. In [22] the authors
presented a novel method that is based on the linearization
technique [23] with variable and optimal linearization rate and
addressed the problems of state tracking, reference tracking
and stability of a quite general form of noiseless nonlinear
dynamic systems over the packet erasure channel, which is an
abstract model for communication via WiFi, the Internet and
Zigbee modules.

B. Paper Contributions

This paper aims to fill the gap in the literature by addressing
the problems of state tracking as well as reference tracking
of a quite general form of the discrete time nonlinear noisy
dynamic system subject to both process and measurement
noises over the discrete time AWGN channel, with applications
in the tele-presence and tele-operation of autonomous vehicles.

The major contributions of this paper are as follows:
• The extension of the classical linearization method for

controlling nonlinear dynamic systems to the context
of networked control system for controlling nonlinear
systems over the AWGN channel.



• Two different novel linearization methods, namely
linearization with fixed rate and variable rate are
proposed. In the fixed rate method, the linearization
period is fixed and determined so that the stability of
the switching system resulted from the linearization is
satisfied [16]. The variable rate linearization method is
based on the state estimation error. In this method not
only the stability of the switching systems is satisfied;
but also the upper bound for the linearization period
is extracted by monitoring the evolution of the mean
square estimation error. Because encoder does not have
access to the exact estimation error, and encoder and
decoder should agree on a same operating point, the
estimation error should be approximated in both encoder
and decoder by the Monte Carlo approximation. Once
the trend of the mean square estimation error changes,
the new linearization is applied. After that in each
linearrization interval, the available linear networked
control methods are used for state as well as reference
tracking. The stability of linear switching system which
is resulted from linearizing the nonlinear system is shown.

• Proper encoder, decoder and controller are presented for
mean square state tracking at the end of communication
link as well as reference tracking and stability of
nonlinear dynamic systems, when measurements are sent
through the AWGN channel.

• The decoder for the case of the linearization with the
variable rate is the extended Kalman filter [24] with the
optimal linearization rate. To the best of our knowledge,
the extended Kalman filter with the optimal linearization
rate has not been presented in the literature; and this is
another major contributions of this paper.

• The satisfactory performance of the theoretical
developments is illustrated via computer simulations by
applying the proposed encoder, decoder and controller on
the unicycle model, which is an abstract representation
for the autonomous vehicles dynamics [1]. It is illustrated
that the linearization method with variable rate has higher
computational complexity; but it results in a slightly
better performance and is applicable to a larger class of
reference trajectories.

C. Paper Organization

The paper is organized as follows. The problem formu-
lation is given in Section II, ; In Section III the design of
proper encoder, decoder and controller for tracking of the
state trajectories, reference tracking and stability of nonlinear
noisy dynamic systems over the AWGN channel is presented.
Section IV is devoted to the simulation results for the unicycle
model ; and Section V concludes the paper and summarizes the
main contributions of the paper and future research directions.

II. PROBLEM FORMULATION

The following notations are used throughout the paper: The
expected value of random variables and the absolute value are
denoted by E[·] and |·|, respectively. ||·|| is the Euclidean norm
and V tr denotes the transpose of vector/matrix V . A−1 and
λi(A) denote the inverse and eigenvalues of the square matrix
A, respectively. R and N denote the sets of real numbers and
natural numbers, respectively; and In is the identity matrix
with dimension n× n. Also, X(i) denotes the ith element of
the vector X and 0 denotes the zero vector/matrix. R+ is the
set of non-negative real numbers and N+ is the set of non-
negative integers. N(m,Q) denotes Gaussian distribution with
mean m and variance Q. diag{ } denotes the diagonal matrix
and trac() denotes the trace of a square matrix.

In this paper we are concerned with the mean square
tracking of the state trajectory as well as reference tracking and
the stability of discrete time noisy nonlinear dynamic systems
over the discrete time AWGN channel, as it is seen in the block
diagram of Fig.1. The building blocks of Fig.1 are described
below.

Noisy nonlinear dynamic system: Noisy nonlinear dy-
namic system is described by the following dynamic:{

Xt+1 = F (Xt, Ut) + εt
Yt = H(Xt) + et

(1)

In the above dynamic system, t ∈ N+ is the time instant,
F (Xt, Ut) ∈ Rn is a smooth nonlinear vector of state variables
Xt. Xt ∈ Rn, Ut ∈ Rm and Yt ∈ Rl denote the state
variables, the control vector and the observation vector at time
t, respectively. H(Xt) ∈ Rl is a smooth nonlinear vector
of state variables Xt. It is also assumed that the initial state
X0 is a Gaussian distributed random variable with mean X̄0

and variance Q0 (i.e., X0 ∼ N(X̄0, Q0)). εt and et are
Rn, Rl valued zero mean i.i.d. Gaussian random process and
measurement noise with variance Q and R, respectively. X0,
εt and et are mutually independent.

Communication Channel: A parallel discrete time AWGN
channel with feedback acknowledgements is considered be-
tween dynamic system and controller. It is subject to input
power constraint: E||Z(i)

t ||2 ≤ P
(i)
t , i = 1, 2, ..., l, where P (i)

t

is the transmission power of the ith antenna and Z
(i)
t is the

ith element of the channel input vector Zt ∈ Rl. The AWGN
channel output is described by Z̃t = Zt + W̃t, where W̃t is
zero-mean Gaussian process.

Encoder: Encoder is a causal operator denoted by Zt =
E(Yt, Z̃

t−1, U t−1) that maps the observation signal vector Yt
to the channel input Zt by the knowledge of the past channel
outputs Z̃t−1 = (Z̃0, Z̃1, ..., Z̃t−1) (available for the encoder
via the feedback channel) and past control signal vectors
U t−1 = (U0, U1, ..., Ut−1).

Decoder: A Kalman filter which estimates the state vector
of systems using channel output and control vector. That is,
X̂t = D(Z̃t−1, U t−1) that maps the past channel outputs Z̃t−1

and the past control signals vectors U t−1 to the system state
estimation X̂t.

Controller: Controller has the following form: Ut = U[j]−
Lt∆

ˆ̃Xt + µt, where U[j] is the control vector at the jth oper-



ating point, Lt is the controller gain, and ∆ ˆ̃Xt = ∆X̂t − Rt
(where Rt is the desired reference trajectory vector and ∆X̂t

will be determined shortly) and µt is used for the reference
tracking, which will be defined in the next section.

The objective of this paper is to design an encoder, decoder
and a controller that result in mean square error in state tra-
jectory tracking, stability and mean square reference tracking
of the system (1), as defined below:

Definition 2.1: (Mean square error in state trajectory track-
ing): Consider the block diagram as shown in Fig. 1 described
by a noisy nonlinear dynamic (1) over the AWGN channel. It
is said that the state trajectory is tracked in the mean square
sense if and only if there exist an encoder and a decoder such
that for a given Dcom ∈ R+, the following property holds for

all t ∈ N+: E
∥∥∥Xt − X̂t

∥∥∥2

≤ Dcom.
Definition 2.2: (Mean square error reference tracking):

Consider the block diagram as shown in Fig. 1 described by
a noisy nonlinear dynamic (1) over the AWGN channel. It is
said that the reference trajectory Rt is tracked in the mean
square sense if and only if there exist an encoder, decoder
and a controller such that for a given Dc ∈ R+ the following
property holds for all t ∈ N+: E ‖Xt −Rt‖2 ≤ Dc.

Definition 2.3: (Mean square stability): The stability is a
special case of the reference tracking with Rt = 0

III. ENCODER, DECODER AND CONTROLLER FOR THE
STATE TRACKING, REFERENCE TRACKING AND STABILITY

This section presents a proper encoder, decoder and con-
troller which result in mean square tracking of state trajectory,
mean square reference tracking and stability as defined in
Definitions 2.1, 2.2 and 2.3. In order to address these problems,
we use the linearization method. That is, we linearize the
nonlinear dynamic system (1) at operating points with a
fixed rate and later on with a variable (optimal) rate and
for each linearized system we use the encoder and decoder
of [9] that result in output tracking of the partially observed
linear dynamic systems subject to Gaussian process and mea-
surement noises over single input - single output AWGN
channel. For the simplicity of understanding the proposed
coding scheme and controller for the state tracking as well
as the reference tracking of the nonlinear dynamic system
(1) over the AWGN channel, we first describe the encoder,
decoder and controller of [9] for output tracking and stability
of linear dynamic systems over the AWGN channel. We then
combine this coding scheme with the linearization method to
achieve the state tracking, reference tracking and stability of
noisy nonlinear dynamic system (1) over the AWGN channel.

A. Encoder, Decoder and Controller for the Output Tracking
and Stability of Linear Systems over the AWGN Channel

This subsection describes the encoder, decoder and con-
troller of [9]. In [9] the authors studied the mean square
asymptotic output tracking and stability of the networked
control system of Fig. 1. The system considered here is the
partially observed linear dynamic system subject to Gaussian

process and measurement noises over the single input - single
output discrete time AWGN channel.{

Xt+1 = AXt +BUt +Nεt, X0 = X
Yt = CXt +Det

(2)

In (2), Xt ∈ Rn is the states vector, Yt ∈ R is the
measured output vector and Ut ∈ Rm is the control input
vector. εt ∈ Ro and et ∈ Rq are Gaussian process and
measurement noises, respectively. They are i.i.d. zero mean
Gaussian with the variance matrices of Q and R, respectively.
Moreover, X ∼ N(X̄0, Q0); and X , εt and Vt are mutually
independent.

The mean square asymptotic output tracking of [9] is
defined as follows:

Definition 3.1: (Mean square asymptotic tracking of the
output trajectory): Consider the linear dynamic system (2) over
the AWGN channel. It is said that the output trajectory is mean
square asymptotically tracked at the end of communication
channel if and only if there exist an encoder and a decoder
such that for a given Dv ∈ R+, the following property holds:

limt→∞E
∥∥∥Yt − Ỹt∥∥∥2

≤ Dv , where Ỹt is the reconstruction
of Yt at the end of communication channel.
For this system over the single input - single output discrete
time AWGN channel, the encoder, decoder and controller
that result in the mean square asymptotic output tracking and
stability are described bellow:
Encoder Description: The linearizer block in Fig. 1 is the
identity operator. The innovation generator has the following
description (αt is defined shortly):

Zt = αtKt, Kt = Yt − Ŷt, Ŷt = CX̂t (3)

Decoder Description: The linearizer block is the identity
operator; and the pre-decoding part (i.e., K̃t) is described by

K̃t = γtZ̃t, (4)

where Z̃t is the channel output and αt, γt ∈ R+ are defined
as follows:

αt =

√
ηtWC

Dν
, γt =

√
Dνηt
WC

, ηt = 1− Dν

ψt
, Dν < min

t∈N+
ψt,

(5)

where ψt will be defined shortly.
Remark 3.2: As clarified in [9], the parameters αt and

γt are chosen so that the channel input Kt is matched to
the communication channel resulting in real time reliable
communication up to the given distortion level Dv , i.e.,
E||Kt − K̃t||2 ≤ Dv .

The mean square state estimator has the following descrip-
tion:

X̂t+1 = AX̂t +
1

αtγt
AΠtC

tr(CΠtC
tr +DRDtr +

WC

α2
t

)−1K̃t

+BUt, X̂0 = x̄0 = E[X0],
(6)



where Πt is the mean square state estimation error given by
the following Riccati equation:

Πt+1 = AΠtA
tr −AΠtC

tr(CΠtC
tr +DRDtr +

WC

α2
t

)−1

CΠtA
tr +NQN tr, Π0 = V̄0

(7)

Then, Ψt
∆
= CΠtC

tr + DRDtr. Note that Ỹt = K̃t + CX̂t.
It has been shown in [9] that using this coding scheme, we
have real time reliable communication up to the distortion level

Dν , as follows: E
∥∥∥Yt − Ỹt∥∥∥2

= E
∥∥∥Kt − K̃t

∥∥∥2

= Dν , ∀t ∈
N+. In order to achieve this real time reliable communication
by allocating the minimum channel capacity (bandwidth), we
should tune the antenna’s power as follows:

E[Zt
2] = α2

tΨt =
ηtWC

Dν
Ψt

∆
= Pt. (8)

.
Controller Description: With the assumptions that the pair

((CtrC,A)) is detectable and the pair (A,B) is stabilizable,
the stabilizing remote controller that also optimize the follow-
ing quadratic cost functional

lim
T→∞

1

T

T−1∑
t=0

E[‖Xt‖2CtrC + ‖Ut‖2H ] (H > 0) (9)

is given by
Ut = −∆cX̂t, (10)

where ∆c = (H +BtrP∞B)
−1
BtrP∞A and P∞ is the

unique positive semi-definite solution of the following alge-
braic Riccati equation:

P∞ = AP∞A
tr −AtrP∞B(H +BtrP∞B)

−1
BtrP∞A+

CtrC.
(11)

B. Encoder, Decoder and Controller for the State Tracking,
Reference Tracking and Stability of Nonlinear Systems over
the AWGN Channel

In this section, an encoder, decoder and controller for the
mean square state tracking as well as the reference tracking
and the stability of noisy nonlinear dynamic systems over the
AWGN channel are presented.

The applied methodology is based on the linearization
of nonlinear noisy dynamic system at operating points, as
follows: In the beginning, the nonlinear dynamic is linearized
at the initial state (X̄0, U0), (U0 = 0). Then the coding
scheme presented in Section III-A is applied to the extracted
linear model in each sampling time. For each element of
the measurement vector of the dynamic system (1), we use
the coding scheme of Section III-A. The linearized model is
a good approximation of the nonlinear dynamic (1) in the
beginning; and therefore, The mean square estimation error,
i.e., E||Xt − X̂t||2 decreases as time progresses; because
the decoder receives more measurements from the dynamic
system. But, as time progresses, the nonlinear dynamic
system should be linearized at new operating point so that

the best approximation of nonlinear system is available
at all time. Throughout, we implement two methods for
updating the linearized system: Linearization with fixed rate
and linearization with variable (optimal) rate. When the first
method is implemented, the time interval of linearization is
considered to be fixed. But, when we implement the second
method, it is variable. For both methods, there is a lower
bound on the linearization period. Beyond this lower bound
we may encounter a combination of subsystems which leads
to unstability of switching systems in [25]. For the second
method, we choose the largest possible linearization period
that results in a good approximation of the nonlinear system
by the family of the linearized systems.
In [25] the stability is shown by determining linearization
period under the dwell time τa. Tt is shown in [26] that the
average dwell time τa, which is a measure of the frequency of
switches (here the frequency of updating linearized system),
should be greater than or equal to a critical value denoted by
τ∗a defined as follows. τa ≥ τ∗a ; τa = t

Nt
, τ∗a = lnh

lnλ−lnλ∗ ,
where Nt is the number of switches that occurs in the time
interval of [0, t] and h, λ and λ∗ are defined as follows:
For all linearized models with the system matrix A[j],
there exist λ1 < 1 and λ2 > 1 such that the following
relations hold [26]:

∥∥A[j]

∥∥ < 1;
∥∥∥At[j]∥∥∥ ≤ hjλ

t
1, where∥∥A[j]

∥∥ ≥ 1;
∥∥∥At[j]∥∥∥ ≤ hjλt2. Then, h = maxj hj , λ ∈ [λ1, 1]

and λ∗ ∈ [λ1, λ] is the largest value that satisfies the
following inequality for some c > 0: ‖Xt‖ ≤ c(λ∗)

t ‖X0‖.
In order to satisfy the above condition, it is sufficient that
the linearization period Tl is much larger than the system
sampling period (e.g., Tl ≥ 15T , where T is the sampling
period).

1) Encoder, Decoder and Controller Descriptions for the
Fixed as well as Variable Linearization Rates: Suppose for
j ∈ N the jth linearized system, which is obtained by
linearizing the nonlinear dynamic system (1) at the current
operating point (X[j],U[j]), has the following description (Note
that (X[1], U[1])=(X̄0, U0), (X[2], U[2])=(X̂Tl

, UTl
), etc.): ∆Xt+1 = A[j]∆Xt +B[j]∆Ut + εt

∆Yt = C[j]∆Xt + et
t = {(j − 1)Tl, ..., jTl − 1},

(12)

where A[j] = ∂F
∂X |(X[j],U[j]), B[j] = ∂F

∂U |(X[j],U[j]), C[j] =
∂H
∂X |(X[j],U[j]), ∆Xt+1 = Xt+1 − F (X[j], U[j]), ∆Xt = Xt −
X[j], ∆Ut = Ut−U[j] and ∆Yt = Yt−H(X[j]). The encoder
and decoder are described in the following:
Encoder Description: The linearizer block is described by
(12). The innovation generator block for each element of the
vector Zt has the following description:

Z
(i)
t = α

(i)
t K

(i)
t , Kt = ∆Yt −∆Ŷt, ∆Ŷt = C[j]∆X̂t,

∆X̂t = X̂t −X[j]

(13)

Decoder Description: The linearizer block is described by
(12); and each element of the pre-decoding part (i.e., K̃t) is



described by

K̃
(i)
t = γ

(i)
t Z̃

(i)
t , (14)

where Z̃
(i)
t is the channel output and α

(i)
t , γ

(i)
t ∈ R+ are

defined as follows:

α
(i)
t =

√
η

(i)
t W

(i)
C

Dν
, η

(i)
t = 1− Dν

ψt,ii
, γ

(i)
t =

√√√√Dνη
(i)
t

W
(i)
C

,

Dν < min
t∈N+

ψt,ii.

(15)

where ψt,ii will be defined shortly. The recursive Kalman filter
estimator is then described as follows:

∆X̂t+1 = A[j]∆X̂t +A[j]ΠtC
tr
[j](C[j]ΠtC

tr
[j] +R+ α−2

t WC)−1

(αtγt)
−1K̃t +B[j]∆Ut, ∆X̂(j−1)Tl

= 0
(16)

where αt = diag{α(1)
t , α

(2)
t , ..., α

(l)
t }, γt =

diag{γ(1)
t , γ

(2)
t , ..., γ

(l)
t } and Πt is the mean square state

estimation error variance matrix given by :

Πt+1 = A[j]ΠtA
tr
[j] −A[j]ΠtC

tr
[j](C[j]ΠtC

tr
[j] +R+ α−2

t WC)−1

C[j]ΠtA
tr
[j] +Q.

(17)

Then, Ψt = C[j]ΠtC
tr
[j] + R and Ψt,ii is the ith diagonal

element of the matrix Ψt. Note that for each t ∈ [(j −
1)Tl, jTl−1], ∆X̂t = X̂t−X[j] and ∆Ỹt = K̃t+C[j]∆X̂t. It
can be shown that using this coding scheme, we have the real
time reliable communication up to the distortion level lDν , as

follows: E
∥∥∥∆Yt −∆Ỹt

∥∥∥2

= E
∥∥∥Kt − K̃t

∥∥∥2

= lDν .
In order to achieve this real time reliable communication, we
should tune the antenna’s power at each linearized zone as
follows:

E[(Z
(i)
t )2] = (α

(i)
t )2Ψt,ii =

η
(i)
t W

(i)
C

Dν
Ψt,ii

∆
= P

(i)
t . (18)

Controller Description: The controller is described
in the following form as mentioned in Section II
∆Ut = −Lt∆ ˆ̃Xt + µt, where ∆ ˆ̃Xt = ∆X̂t − Rt and
for each t ∈ [(j − 1)Tl, jTl − 1], Lt = L[j] is chosen such
that the matrix A[j]−B[j]L[j] is stable and µt is chosen such
that µt = −B+

[j]((A[j] − B[j]L[j])(Rt −X[j]) + B[j]L[j]Rt −
Rt+1 + F (X[j], U[j])), where B+

[j] is the pseudo inverse of
the matrix B[j].

2) Realization of the Fixed and Variable Linearization Rate
Methods: : The fixed linearization rate method is easily
obtained by fixing a linearization period, which is sufficiently
larger than the sampling period (e.g., Tl = 15T ) and suf-
ficiently small that results in a good approximation of the
nonlinear system by the family of the linearized equivalent
systems. But, for the variable linearization rate case, the
encoder and decoder should agree on the time of linearization.
Generally speaking, when the linearized system is getting
away from the nonlinear system, the linearization should be

updated. In the beginning of a new linearization zone, the
trace of the estimation error, trac(Πt) (which is the mean
square estimation error) is strictly increasing or decreasing.
When the time progresses, this increasing or decreasing trend
is violated as the linearized system is getting away from
the nonlinear system; and therefore, the time when the in-
creasing or decreasing trend of the mean square estimation
error is violated, is the right time for updating the linearized
system. Note that the encoder and decoder in the proposed
method reconstruct the mean square estimation error using
the Monte Carlo approximation method by the knowledge of
∆X̂t communicated to the encoder by the feedback channel.
This method works as follows:

At the sample time t = 0, the encoder and decoder
choose M realization for X0 ∼ N(X̄0, Q0) and computes
E0 = 1√

M

(
X

[1]
0 − X̂0 . . . X

[M ]
0 − X̂0

)
, where X

[i]
0

is the ith realization of X0. Subsequently, Π0 = E0E
tr
0 .

At the time instant t = 1, using the description (1) for the
nonlinear dynamic system and M realization obtained for
X0 available from the previous time instant as well as M
realization for the process noise, the encoder and decoder
compute M realization for X1. Then, they compute E1 =

1√
M

(
X

[1]
1 − X̂1 . . . X

[M ]
1 − X̂1

)
, where X

[i]
1 is the

ith realization of X1. Subsequently, Π1 = E1E
tr
1 . Similarly,

for the other time instances, Πt is reconstructed at the encoder
and decoder; and hence, the encoder and decoder by observing
the increasing or deceasing trend of trace(Πt) determine the
right time for updating the linearized system.

3) Mathematical Proofs: Now, in the following we show
that using the proposed coding scheme and controller, we have
the mean square tracking of the state trajectory at the end of
communication channel as well as the reference tracking and
hence the stability. These results are shown in the following
two propositions.

Proposition 3.3: (Mean square state tracking): Consider the
control/communication block diagram of Fig. 1 described by
the nonlinear dynamic system (1) and the proposed coding
scheme and controller. For this system we have the mean
square state tracking, as defined in Definition 2.1, provided the
pair (C[j], A[j]) is detectable, the pair (A[j], Q

1
2 ) is stabilizable

and the linearization period Tl is sufficiently small and greater
than the sampling period T .
Proof: As the linearization period Tl is sufficiently small, the
linearized system is a good approximation of the nonlinear
system. Consequently, at each linearized zone the mean
square estimation error tends to the steady state value of

the mean square estimation error (i.e., E
∥∥∥X[j] − X̂[j]

∥∥∥2

),
which is a bounded value as the pair (C[j], A[j]) is detectable
and the pair (A[j], Q

1
2 ) is stabilizable [27]. In other words,

in each linearized zone, we get an asymptotically bounded
estimation; and hence, as the linearization is not too frequent,
we get asymptotically bounded estimation for the nonlinear
dynamic as it has been proved in the Theorem 3.1 of [28]
and [29].

Remark 3.4: i) The case of variable linearization period, is



optimal in the sense that in this method the linearized system
is updated at the right time when the linearized system starts
getting a way from the nonlinear system. In other words, it
is the largest linearization period that results in a very good
approximation for the nonlinear system by the family of the
linearized systems.
ii) The proposed decoder is the extended Kalman filter and
for the case with the variable (optimal) linearization rate, it
is the extended Kalman filter with the optimal linearization
rate. In order to implement this filter to nonlinear systems, we
should consider the increasing or decreasing trend of trac(Πt)
at each linearized zone and update the linearized system when
this trend changes. To the best of our knowledge, the extended
Kalman filter with the optimal linearization rate has not been
presented in the literature.

Proposition 3.5: (Mean square error reference tracking and
stability): Consider the control/communication block diagram
of Fig. 1 described by the nonlinear dynamic system (1)
and the proposed coding scheme and controller. For this
system, we have the mean square reference tracking and
stability, as defined in Definitions 2.2 and 2.3, provided the
linearization period is sufficiently small and greater than the
sampling period T , the pair (A[j], B[j]) is stabilizable, the pair
(C[j], A[j]) is detectable and the pair (A[j], Q

1
2 ) is stabilizable.

Proof: Define the reference tracking error, as follows: Ert =
Xt−Rt. Therefore, for each t ∈ [(j−1)Tl, jTl−1] we have
the following relations for the state tracking error:

Ert+1 = Xt+1 −Rt+1

= (Xt+1 − F (X[j], U[j])) + F (X[j], U[j])−Rt+1

= ∆Xt+1 + F (X[j], U[j])−Rt+1

= A[j]∆Xt −B[j]L[j]∆
ˆ̃Xt +B[j]µt + εt −Rt+1

+ F (X[j], U[j])

= A[j]∆Xt −B[j]L[j]∆X̂t +B[j]L[j]Rt +B[j]µt+

εt −Rt+1 + F (X[j], U[j]).
(19)

Hence, from the above relations, we have (Et = Xt − X̂t=
∆Xt −∆X̂t):

Ert+1 = A[j]∆Xt −B[j]L[j]∆Xt +B[j]L[j]Et +B[j]L[j]Rt

+B[j]µt + εt −Rt+1 + F (X[j], U[j])

= (A[j] −B[j]L[j])∆Xt +B[j]L[j]Et +B[j]L[j]Rt

+B[j]µt + εt −Rt+1 + F (X[j], U[j].)
(20)

Recall that Ert = Xt−Rt; and therefore, Ert = (Xt−X[j])+
X[j]−Rt = ∆Xt+X[j]−Rt. Hence, from the above relations,
we have

Ert+1 = (A[j] −B[j]L[j])E
r
t + (A[j] −B[j]L[j])(Rt −X[j])

+B[j]L[j]Et +B[j]L[j]Rt +B[j]µt + εt −Rt+1

+ F (X[j], U[j]).
(21)

Now as µt=−B+
[j]((A[j]−B[j]L[j])(Rt−X[j])+B[j]L[j]Rt−

Rt+1 +F (X[j], U[j])), the above equality for Ert+1 is approx-

imated by the following:

Ert+1 = (A[j] −B[j]L[j])E
r
t +B[j]L[j]Et + εt. (22)

Now, for the simplicity of the presentation, suppose that εt = 0
(the general case is treated similarly).Therefore, we have:

Ert+1 = (A[j] −B[j]L[j])E
r
t +B[j]L[j]Et. (23)

Consequently, from the above recursive equation for Ert , we
get the following expression for Ert for the jth linearized zone
(i.e., t ∈ [(j − 1)Tl + 1, jTl]).

Ert = (A[j] −B[j]L[j])
t−(j−1)TlEr(j−1)Tl

+

t−1∑
k=(j−1)Tl

(A[j] −B[j]L[j])
t−1−kB[j]L[j]Ek,

t ∈ [(j − 1)Tl + 1, jTl].

(24)

Now, as Er(j−1)Tl
and Ek are independent and Ek is also an

independent process with zero mean, we get the following
expression for E[Er trt Ert ].

E[Er trt Ert ](= E||Xt −Rt||2)

= ((A[j] −B[j]L[j])
t−(j−1)Tl)tr(A[j] −B[j]L[j])

t−(j−1)Tl

.trac(E[Er(j−1)Tl
Er tr(j−1)Tl

]) +

t−1∑
k=(j−1)Tl

Ltr[j]B
tr
[j]((A[j]−

B[j]L[j])
t−1−k)tr(A[j] −B[j]L[j])

t−1−kB[j]L[j]trac

(E[EkE
tr
k ]).

(25)

Recall that the controller gain L[j] is chosen so that the matrix
A[j] − B[j]L[j] is a stable matrix. Hence, when t ∈ [(j −
1)Tl + 1, jTl] increases, the first term in the above equality
tends to zero and hence it remains bounded. In addition, recall
that it has been shown in the above proposition that the mean
square estimation error decreases and remains bounded as time
increases. Therefore, the second term in the above equality
also remains bounded as t increases. Consequently, in each
linearized zone the tracking error is mean square bounded
(stable); and hence, the combined system remains bounded.
This completes the proof for the mean square reference
tracking and also mean square stability because the stability
is a special case of the reference tracking with Rt = 0.

Remark 3.6: For each linearized equivalent system, the
controller gain L[j] should be be chosen so that the matrix
A[j] −B[j]L[j] is a stable matrix.

IV. SIMULATION RESULTS

In order to verify the satisfactory performance of the two
proposed linearization methods, we consider the block diagram
of Fig. 1 described by the nonlinear dynamic system (27).
Presented encoder, decoder and controller will be applied to
the unicycle model for remote controlling. The dynamics of
miniature drones, autonomous road vehicles and autonomous
under water vehicles are described by a 6 degrees of freedom
model. However, the vehicle dynamic can be handled by local



control loops, which results in the kinematic unicycle model,
as described below [13]:

ẋ(t) = v(t) cos(θ(t))
ẏ(t) = v(t) sin(θ(t))

θ̇(t) = u(t)
(26)

where (x(t), y(t)) is the vehicle position , θ(t) the ve-
hicle orientation, v(t) is the forward velocity and u(t) is
the rotational velocity. The state vector of the system is
X(t) = [x(t) y(t) θ(t)]tr and U(t) = [v(t) u(t)]tr is the
control vector. The discrete time equivalent model is (27),
where T is the sampling period. xt+1 = xt + Tvt cos(θt)

yt+1 = yt + Tvt sin(θt)
θt+1 = θt + Tut

(27)

Note that in (27) xt, yt, θt, vt and ut are the discrete time
equivalent signals of x(t), y(t), θ(t), v(t) and u(t), respec-
tively. Note also that for this model, the state vector is
Xt = [xt yt θt]

tr. Consequently, the state space representation
of the family of the discrete time equivalent linearized systems,
have the following state space matrices:

A[j] =

1 0 −Tv[j] sin(θ[j])
0 1 Tv[j] cos(θ[j])
0 0 1

 (28)

B[j] =

T cos(θ[j]) 0
T sin(θ[j]) 0

0 T

 (29)

Here, the unicycle model should track a circle with center at
(5,3) and the radius of 2. Therefore, we choose the reference
vector Rt = [r

[x]
t r

[y]
t r

[θ]
t ]tr, as follows:

[r
[x]
t r

[y]
t r

[θ]
t ]tr = [5 + 2 cos(3f0 t) 3 + 2 sin(3f0 t)

arctan(
r

[y]
t − ŷt−1

r
[x]
t − x̂t−1

)]tr.
(30)

Fixed Rate Case: Now we consider f0 = 10−2 as refer-
ence signal frequency and x0 ∼ N(1, 1), y0 ∼ N(1, 1),
θ0 ∼ N(1, 1) and we consider a 3 × 3 parallel Gaussian
channel with zero mean white Gaussian noise and the identity
variance matrix. The system outputs, i.e., xt, yt and θt, which
are sampled from x(t), y(t) and θ(t) with sampling period
T seconds are sent through this parallel Gaussian channel
to the remote controller; and the proper control signals ut
and vt generated by remote controller are applied to the
nonlinear dynamic system (26) by a Zero Order Hold (Z.O.H)
mechanism. Throughout this section we set Dv = 2.

Fig. 2-Fig. 6 illustrate that the system outputs track the
reference signal when the measurements and system are not
subject to noise (i.e., et, εt ∼ N(0, 0)) and when T = 10−2

seconds. Note that for this simulation, we fix the linearization
period to be T=0.15 seconds. Note also that the critical value
for the average dwell time (τ∗a ) for this simulation is 6.3
and considering the discretization with sampling period of
T0 = 10−2 it is τ∗a = 0.0063 . Based on the simulation results
we can find that, the system outputs xt, yt and θt eventually
track the reference signals r[x]

t , r
[y]
t and r

[θ]
t . Therefore, as it

is seen in Fig. 6 the autonomous vehicle eventually tracks
the desired reference circle. This result is expected from
Proposition 3.5 because for the very small sampling period
T , the discrete time equivalent dynamic system (27), which
is used for the design of remote controller, is a very good
approximation of the actual dynamic of (26).
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Fig. 2. xt and r[x]t for the fixed rate linearization method when εt, et ∼
N(0, 0)
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Fig. 3. yt and r[y]t for the fixed rate linearization method when εt, et ∼
N(0, 0)

To illustrate the satisfactory performance of the proposed
method in comparison to the classical nonlinear control
methods, we apply the presented method on [30] to the block
diagram of Fig. 1 described by the unicycle model as the
nonlinear dynamic. Fig. 6 illustrates the tracking performance
of the proposed method and Fig. 7 illustrates the tracking
performance of the feedback linearization method presented
in [30]. The classical feedback linearization method has not
been designed to deal with the effects of communication
imperfections, such as limited transmission power and
transmission noise; while our proposed method has been
mainly designed to compensate these imperfections. Hence, as
it is clear from Fig. 6 and Fig. 7, the proposed method results
in much better reference tracking performance. To compare
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Fig. 4. θt and r[θ]t for the fixed rate linearization method when εt, et ∼
N(0, 0)
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Fig. 5. xt−yt for the fixed rate linearization method when εt, et ∼ N(0, 0)

our proposed method with other similar methods note that in
[18] using a novel method, which is based on the describing
function, the reference tracking of the unicycle model over
the analog AWGN channel was addressed. Comparing the
simulation result depicted in Fig. 5 and those depicted in
[18] reveals that the performance of the proposed method is
as good as the performance of the method presented in [18].
Nevertheless, the proposed method is applicable to much
larger class of nonlinear systems and reference trajectories;
while the method presented in [18] is only applicable to
specific dynamics that have periodic outputs to sinusoidal
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Fig. 6. xt − yt − t for the fixed rate linearization method when εt, et ∼
N(0, 0)
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Fig. 7. xt − yt − t for the classical feedback linearization technique when
εt, et ∼ N(0, 0)

inputs.
Now to quantify the performance of the

proposed method, we define the Root Sum Square
Error (RSSE) criterion as follows: RSSE =√∑end time

T

t= start time
T

(xt − r[t]
x )2 + (yt − r[t]

y )2 + (θt − r[t]
θ )2.

RSSE associated with Fig. 6 which corresponds to the
case of zero process and measurement noises for t = 0 to
t = 103 sec. is 21.7861. For the case of εt ∼ N(0, 0.1.I3)
and et ∼ N(0, 0.1.I3), RSSE is 24.6806. For the case of
εt ∼ N(0, I3) and et ∼ N(0, I3), RSSE is 25.6621. Table I
summarizes these computations. This table illustrates that the
proposed method is robust against measurement and system
noises.

TABLE I
RSSES COMPUTED FOR DIFFERENT PROCESS AND MEASUREMENT NOISES

WHEN THE FIXED RATE LINEARIZATION METHOD IS IMPLEMENTED

Case RSSE
εt = 0, et=0 21.7861

εt, et ∼ N(0, 0.1.I3) 24.6806
εt, et ∼ N(0, I3) 25.6621

For the linearization period of 0.15 sec., the RSSE associ-
ated with Fig. 6, which corresponds to the case of T = 10−2

sec. for t = 0 to t = 103 is 21.7861. For the case of T = 10−3



sec., RSSE is 36.9455. However, as for this case the number
of sampled used to compute RSSE is 10 times more than that
of used for the other case, we should normalize its RSSE
by multiplying 36.9455 by 1√

10
to get the normalized RSSE

with the value of 11.6832. For the case of T = 0.1 sec.
and the linearization period of 0.2 sec., RSSE is 56.8147 and
the normalized value is 179.6639. Table II summarizes these
computations. This result is expected because for the latter
case, the frequency of switching between stable linearized
systems is fast; and therefore, the combined system tends to
be unstable.

TABLE II
RSSES COMPUTED FOR DIFFERENT SAMPLE PERIODS WHEN THE FIXED

RATE LINEARIZATION METHOD IS IMPLEMENTED

Case RSSE
T=0.001 11.6832
T=0.01 21.7861
T=0.1 179.6639

Table III compares RSSE for difference channel noise when
T = 10−2 seconds, the linearization period is 0.15 seconds and
the system is not subject to process and measurement noises.
This table illustrates that the proposed method is also robust
against channel noise.

TABLE III
RSSES COMPUTED FOR DIFFERENT CHANNEL NOISES WHEN THE FIXED

RATE LINEARIZATION METHOD IS IMPLEMENTED

Case RSSE
W̃t ∼ N(0, 0.1.I3) 20.3024
W̃t ∼ N(0, I3) 21.7861
W̃t ∼ N(0, 2.I3) 23.6912

Variable Rate Case: Now, we repeat the above results
when we use the second proposed method, that is, the
linearization with the optimal rate to be able to compare these
two methods with each other. Fig. 8 is the counterpart of Fig.
6 with the optimal linearization rate. Tables IV, V, VI are
also the counterparts of Tables I, II and III, respectively, for
the optimal rate case. From these figures and tables it follows
that the second method has a slightly better performance, as
it is expected although its computational load is much higher
than that of the first method.

Now, consider the situation where the autonomous vehicle
of the case study should track a much faster reference
trajectory. To simulate this situation, we set T0 = 0.1. Fig.
9 illustrates the performance of the second method (i.e., the
variable rate linearization method). For the first method, we
get a very poor performance with the RSSE = 46.8422 and
for the second method, we get a good quality performance
with the RSSE = 17.309. Table VII summarizes the RSSEs
for different T0. As it is clear from these figure and table, the
second method is able to track faster reference signals; while
the first method is not able to do that.
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Fig. 8. xt− yt− t for the variable rate linearization method when εt, et ∼
N(0, 0)

TABLE IV
RSSES COMPUTED FOR DIFFERENT PROCESS AND MEASUREMENT NOISES

WHEN THE VARIABLE RATE LINEARIZATION METHOD IS IMPLEMENTED

Case RSSE
εt = 0, et=0 20.7421

εt, et ∼ N(0, 0.1.I3) 21.4337
εt, et ∼ N(0, I3) 24.72

TABLE V
RSSES COMPUTED FOR DIFFERENT SAMPLE PERIODS WHEN THE

VARIABLE RATE LINEARIZATION METHOD IS IMPLEMENTED

Case RSSE
T=0.001 25.6187
T=0.01 20.7421
T=0.1 38.5883

TABLE VI
RSSES COMPUTED FOR DIFFERENT CHANNEL NOISES WHEN THE

VARIABLE RATE LINEARIZATION METHOD IS IMPLEMENTED

Case RSSE
W̃t ∼ N(0, 0.1.I3) 18.8167
W̃t ∼ N(0, I3) 20.7421
W̃t ∼ N(0, 2.I3) 21.4172
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Fig. 9. xt−yt− t for the variable rate linearization method when T0 = 0.1

V. CONCLUSION AND DIRECTIONS FOR FUTURE
RESEARCH

This paper addressed the problem of mean square state
tracking, reference tracking and stability of nonlinear noisy
dynamic systems over the AWGN channel with applications in
tele-presence and tele-operation of autonomous vehicles. The



TABLE VII
RSSES COMPUTED FOR DIFFERENT T0 WHEN THE VARIABLE RATE

LINEARIZATION METHOD IS IMPLEMENTED

T0 RSSE
0.1 17.309
0.2 21.5507
0.5 23.5127
1 22.2473

proposed technique was based on the linearization with fixed
and variable rates. A proper encoder, decoder and controller
for state tracking of nonlinear dynamics at the end of commu-
nication channel as well as reference tracking and stability
over the AWGN channel were presented. The satisfactory
performances of the proposed methods were illustrated by
applying them to the unicycle model, which is an abstract
model for autonomous vehicles. This paper presented an
extended Kalman filter with the optimal linearization rate.
Another major contributions of this paper was the presentation
of a novel method for the estimation and stochastic control of
nonlinear dynamic systems over the AWGN channel. It has
been shown in this paper that the method, which is based on
the linearization with the fixed rate, has lighter computational
load; but it is not able to track fast reference signals. On the
other hand, the method, which is based on the linearization
with variable rate, is able to track both fast and slow reference
signals; but it is computationally expensive. Hence, to track
slow reference signals, the first method is recommended and
for tracking fast reference signals, the second method is
recommended.

Linearization at an operating point for strongly nonlinear
or discontinuous dynamic is not a suitable method and the
proposed technique is not applicable. In addition, the proposed
technique, generally speaking, is computationally expensive.
It requires frequent linearization at operating points and at
each time instant the computation of the mean square es-
timation error at the encoder and decoder using the Monte
Carlo. Hence, for future it is interesting to develop nonlin-
ear estimation and control methods for controlling nonlinear
systems over the AWGN channel in order to present less
computationally expensive methods and particularly suitable
for controlling strongly nonlinear or discontinuous systems
over the AWGN channel. The nonlinear control and observer
methods presented in [31] and [32] may be suitable candidates
for this extension.
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