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Estimation of Nonlinear Dynamic Systems over Communication
Channels

Vahideh Sanjaroon, Alireza Farhadi, Abolfazl Seyed Motahari and Babak. H. Khalaj

Abstract—Remote observation of the state trajectory of nonlinear dynamic
systems over limited capacity communication channels is studied. It is shown
that two extreme cases are possible: Either the system is fully observable
or the error in estimation blows up. The key observation is that such
behavior is determined by the relationship between the Shannon capacity
and the Lyapunov exponents; the well-known characterizing parameters
of a communication channel on one side, and a dynamic system from
the other side. In particular, it is proved that for nonlinear systems with
initial state x0, the minimum capacity of an AWGN channel required
for full observation of the system in the mean square sense is the sum
of
(
κi(x0)∆i(x0)

)
, where ∆i(x0)s and κi(x0)s denote distinct Lyapunov

exponents and their multiplicity numbers, respectively. Conversely, if the
capacity is less than E[

∑
i κi(x0)∆i(x0)], then observation is impossible.

To show the universality of the result, we obtain the same observability
conditions for the digital noiseless channel and the packet erasure channel
in sure and almost sure senses, respectively.

Index Terms—Nonlinear dynamic systems, Observability, Lyapunov expo-
nents, Capacity.

I. INTRODUCTION

A. Motivation and Backgrounds

One of the issues that has begun to emerge in a number of applications,
such as networked control systems, 5G mobile communication and tactile
Internet [1], [2], is how to observe the state trajectory of a dynamic
system over a communication channel subject to imperfections, such as
noise, dropout, or limited capacity. In these applications, observability
means how to transmit information about the state trajectory of a
dynamic system and reconstruct it reliably in real-time at the receiver. In
these applications, it is essential to find tight (necessary and sufficient)
conditions such that full observability is achievable at the receiver side.

The problem of almost sure observability of linear time-invariant
dynamic systems over the limited capacity packet erasure channel
that uses feedback acknowledgment is addressed in [3]. The packet
erasure channel is an abstract model for the commonly used systems
such as the Internet, WiFi and mobile communications. In [3], it is
shown that the eigenvalues-rate condition is tight. That is, the condition
C ≥

∑
{i:|λi(A)≥1|}

log2 |λi(A)|, where C denotes the channel capacity

(in bits per time step) and λi(A)s denote the eigenvalues of the system
matrix A, is the necessary and sufficient condition for observability
with almost sure asymptotically zero estimation error. For noisy linear
time-invariant dynamic systems over the digital noiseless channel, it
is shown in [4] that the eigenvalues-rate condition is tight for almost
sure observability. As the output of the dynamic systems is continuous
alphabet and the input-output of the Additive White Gaussian Noise
(AWGN) channel is also continuous alphabet, the AWGN channel is
suitable for control applications over communication channels. Hence,
many works in the literature (e.g., [5], [6], [7], [8]) are concerned with the
observability and stability of linear noisy time-invariant systems over the
capacity limited AWGN channel. In [5], it is shown that the eigenvalues-
rate condition is tight for mean square observability of linear noisy time-
invariant systems over the capacity limited AWGN channel.

The problem of stability of noiseless nonlinear dynamic systems over
the digital noiseless channel is addressed in [9], where it is shown that
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the tight bound on channel capacity for stability is given by the so-called
topological entropy. The extension of topological entropy is presented in
[10] for stability of uncertain dynamic systems with limited information.
The results in [11] shows the relation between minimum bit rate for
stabilization of Lipschitz nonlinear systems and stabilization entropy. The
stability of locally Lipschitz nonlinear systems is also addressed in [12].
In [13], the authors presented a sufficient condition for the observability
of the Lipschitz uncontrolled noiseless nonlinear systems over the digital
noiseless channel with asymptotically zero mean square estimation error.
The authors in [14] also presented a sufficient condition for observability
of distributed uncontrolled Lipschitz systems subject to bounded process
and measurement noises over the packet erasure network with bounded
mean absolute estimation error. In [15], it is shown that the desired
estimation of a nonlinear systems with limited information is impossible
for bit rates which are lower than estimation entropy. Furthermore,
it is proved that the derived upper bound on the estimation entropy
matches the average bit rate guaranteeing the desired estimation task.
In [16], the authors presented a necessary condition for mean square
exponential observability of noiseless nonlinear dynamic systems over
the real erasure channel in terms of erasure probability and positive
Lyapunov exponents. In [17], the authors also presented a necessary
condition in terms of the positive Lyapunov exponents for the stability
of nonlinear noiseless dynamic systems over the real erasure channel.
In [16], [17], the authors only studied those systems that have unique
ergodic invariant measure; therefore, they assumed that the Lyapunov
exponents are independent of x0.

B. Paper Contributions

In this paper, we present the fundamental role of the Lyapunov
exponents for observability (real-time reliable data reconstruction of the
state trajectory) of noiseless nonlinear dynamic systems under limited
information. Key contributions of this work compared to aforementioned
earlier literature can be summarized as follows:

1) In this work, we examine the observability problem of nonlin-
ear system over every memoryless communication channels in
different senses (sure, almost sure, and mean square) and prove
that C ≥

∑s
i=1 E[κi(x0)∆i(x0)] is a necessary condition over

all these classes of channels (Theorem 1). However, in earlier
works, the observability necessary conditions are obtained only
for the digital noiseless channel [15] or packet erasure channel
[16] in square exponential sense. Moreover, [15], [16] presented
the necessary conditions, respectively, based on estimation entropy
and constant Lyapunov exponents. Furthermore, [3], [18], focused
only on linear systems.

2) The authors in earlier works presented sufficient conditions for
observability of Lipschitz nonlinear system [13], [15] over digital
noiseless channel, however, in Theorem 2,

∑s
i=1 κi(x0)∆i(x0) is

obtained as the lower bound on the channel capacity in order to
guarantee the observability of nonlinear systems (1) (not only for
Lipschitz systems) over the digital noiseless channel. Moreover,
this lower bound improves the previous ones. Note that [18]
presented the sufficient condition only for linear dynamic systems.

3) Theorem 3 presents observability sufficient condition for nonlinear
system over packet erasure channel in almost sure sense as C >∑s
i=1 κi(x0)∆i(x0); while in [16], there is no proof of sufficiency
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Fig. 1: Control/communication system over the Discrete Memoryless
Channel (DMC) and AWGN channel

and [14] addressed this issue only for Lipschitz nonlinear systems.
Also, [3] presented the sufficient condition only for linear systems.

4) To the best of our knowledge, for the first time, the observability
issue of a nonlinear system over AWGN channel is addressed in
Theorem 4 which presents the observability sufficient condition of
such systems in the mean square sense. Note that [6], [7] presented
the observability condition only for linear systems over AWGN
channel.

Finally, this paper suggests that for the linear systems and also for
nonlinear systems which have unique ergodic measure, the condition
C ≥

∑s
i=1 κi(x0)∆i(x0), is tight for sure, almost sure, and mean

square observability. Note that the conditions written in terms of the
positive Lyapunov exponents result in the eigenvalues-rate condition for
the special case of linear time-invariant systems as shown in [16] and
[17]. Note also that the results of this paper extend the results of [3],
[6], [7], [18] to the nonlinear dynamic systems.

C. Paper Organization

The rest of the paper is organized as follows: in Section II, the
problem formulation is given. In Section III, necessary conditions for
sure, almost sure and mean square observability are presented; and in
Section IV, the sufficient conditions and simulation results are presented
for scalar nonlinear systems and then the results are extended to vector
case. Finally, Section V concludes the paper.

II. NOTATIONS AND PRELIMINARIES

A. Notation

We use the following notation throughout this paper. || · || and | · |
denote, respectively, the Frobenius norm and the absolute value. det(·)
and (·)tr denote, respectively, the determinant and the transpose of a
matrix, log(·) is the binary logarithm, E[·] denotes the expected value
function, Ex|y[·] denotes the expected value of the random variable x
with respect to the random variable y, P(·) is the probability mass func-
tion. The kth orbit of f(·) is denoted by f (k)(x) and its Jacobian matrix
is denoted by Df (k)(x). vt2t1 denotes the sequence vt1 , vt1+1 . . . , vt2 and
vt2 is used in place of vt20 . when an inequality symbol involves matrices
or vectors, we mean that the inequality is satisfied elementwise.R and
Z+ are, respectively, the real number and positive integer numbers. a.s=
represents almost sure convergence.

B. Preliminaries

The overall system model considered in this paper is shown in Fig. 1.
In what follows, we describe the input-output relation of each building
block of this system.

Plant: The plant is described by the following nonlinear, time invariant
and fully-observed system:

xk+1 = f(xk),

yk = xk,
(1)

where xk ∈ Rd is the state and yk is the observed signal. The initial
state x0 : Ω→ ψ0 is a random vector, i.e., x0 is a measurable function
from possible outcomes Ω to the set ψ0 ⊂ Rd.

In this paper, we use the Lyapunov exponents of function f(.) to
present necessary and sufficient conditions for observability of the system
over a communication channel. The Lyapunov exponent measures the

average expansion rate of nonlinear systems which is defined as follows
[19].

Definition 1: Consider the following symmetric-defined matrices:

Lk(x) =
(
Df (k)(x)trDf (k)(x)

) 1
2k ,

L(x) = lim
k→∞

Lk(x). (2)

The logarithm of the eigenvalues of L(x) are s distinct Lyapunov
exponents (s ≤ d) of the nonlinear system denoted by ∆i(x), 1 ≤ i ≤ s.
The corresponding eigenvectors p1(x), p2(x), . . . , ps(x) are orthogonal
(due to the symmetric matrix) and the corresponding eigenspaces are
denoted by P1(x), P2(x), . . . , Ps(x). The number ∆i(x) is counted
with the multiplicity κi(x) = dim(Pi(x)). For every nonzero vector
q ∈ Pi(x), i = 1, 2, . . . , s, we get:

∆i(x) = lim
k→∞

1

k
log
(
||Df (k)(x)q||

)
. (3)

We make the following assumptions on the system dynamic.
Assumption 1: For an uncontrolled dynamic system f(.), Lk(x) is

a matrix whose elements are the sequences of continuous functions
which converge locally uniformly to the limit functions on domain ψ0.
Furthermore, it is assumed that log(det Lk(x)) is a sequence of bounded
functions on this domain .

Assumption 2: We assume f(.) is differentiable. Note that the differ-
entiability of f(·) results in the differentiability of f (k)(.).

Assumption 3: We assume that ∆i(x) is bounded, continuous, and
positive on domain ψ0 for every i = 1, 2, . . . , s.

Communication channel: A communication channel is modeled by
a probability transition P(w|v), where v and w are the channel input
and output, respectively.

In this paper, we consider several types of communication channels
as follows.

– The digital noiseless channel with average rate Rav: For the kth
transmission, the input is chosen from a set with 2Rk members,
and the channel output is the same as the channel input. In
fact, Rk noiseless bits are transmitted at each channel use where
Rav = limn→∞

1
n

∑n−1
k=0 Rk . Therefore, the channel is noiseless

and memoryless and its capacity equals to C = Rav bits in each
channel use.

– The packet erasure channel with rate Rav and erasure probability γ:
In this case, the space of channel input is a set with 2Rk members,
and the channel output is the same as the input symbol (with proba-
bility 1−γ) or the erasure symbol (with probability γ). The capacity
of this channel is C = (1−γ)Rav = (1−γ) limn→∞

1
n

∑n−1
k=0 Rk.

– AWGN channel: This channel is described as follows,

wk = vk + nk, (4)

where vk ∈ R denotes the channel input, wk ∈ R the channel
output at time instant k, and nk the additive white Gaussian noise
with zero mean and variance σ2 assumed to be independent of the
initial state. The capacity of this channel under the average power
constraint pav ≤ p equals to C = 1

2
log(1 + p

σ2 ).
Note that, for a given input signal, the average power can be
computed as pav = limn→∞

1
n

∑n−1
k=0 E[v2

k] which is assumed to
be less than p due to the average power constraint.

Encoder: In general, in the availability of feedback, an encoder maps
(yk, wk−1)→ vk. However, as there is no process noise in the system
and all the ambiguity is due to the initial state, for any encoder, there is
an equivalent encoder which maps (x0, w

k−1)→ vk.
Decoder: The decoder is an operator that maps wk → x̂k|k, where

x̂k|k is the reconstruction of the state variable xk at time instant k given
the observation w0, w1, . . . , wk. We assume x̂0|−1 = 0.

In this paper, we are interested in the observability problem at the
output of communication link as defined below.

Definition 2: The system (1) over communication link is observable in
sure, almost sure, in probability, and mean square senses if an encoder
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and a decoder exist such that, respectively,
– lim

k→∞
||xk − x̂k|k|| = 0,

– P[ lim
k→∞

||xk − x̂k|k|| = 0] = 1,

– for all ε > 0, lim
k→∞

P
[
||xk − x̂k|k|| ≥ ε

]
= 0,

– lim
k→∞

E[(xk − x̂k|k)2] = 0.

III. NECESSARY CONDITIONS

In this section, we present the necessary condition for the observability
of the system (1) over any memoryless communication channel in prob-
ability sense which also implies the necessary condition of observability
in sure, almost sure and mean square senses. In the following theorem,
we prove the necessary condition in the probability sense with the
assumption that f(·) is one to one:

Theorem 1: A necessary condition for observability of the sys-
tem (1) in the probability sense over memoryless channels (in par-
ticular, DMC and AWGN channel) with capacity C is that C ≥
E[
∑s
i=1 κi(x0)∆i(x0)] where x0 is a random vector with bounded

entropy.
Proof: Due to the characteristics of memoryless channels, the following
relations are derived:

I(xk; x̂k|k) ≤ I(xk; x̂k|k)
(a)

≤ I(xk;wk) = h(wk)− h(wk|xk),

= h(wk)−
k∑
i=0

h(wi|w0, . . . , wi−1, x
k),

(b)
= h(wk)−

k∑
i=0

h(wi|w0, . . . , wi−1, vi, x
k),

(c)
= h(wk)−

k∑
i=0

h(wi|vi) ≤
k∑
i=0

I(wi; vi),

(d)

≤ (k + 1)C, (5)

where h(.) is the differential entropy for continuous variable. Using
the data processing inequality [20] leads to inequality (a). (b) follows
because with the knowledge of w0, . . . , wi−1, xi, one can obtain vi
exactly since the encoder maps (xi, w

i−1) to vi. (c) is a direct result
of memoryless channel [20]. (d) is also a derived result for memoryless
channel in [20].

For observability in the probability sense, the following function
provides a measure of distortion [3]:

dD(x, x̂) =

{
0 ||x− x̂|| ≤ D,
1 ||x− x̂|| > D.

(6)

Hence, E[dD(x, x̂)] = P(dD(x, x̂) = 1) = P(||x− x̂|| > D). As the
system is observable in the probability sense, for every ε > 0, there is
k1(ε) ∈ Z+ such that for every k ≥ k1(ε), E[dε(xk; x̂k|k)] ≤ ε.
In order to derive the relation between channel capacity and distortion,
an upper bound on I(xk; x̂k|k) is deduced for k ≥ k1(ε) under the
condition P(||xk − x̂k|k|| > ε) ≤ ε as follows:

(k + 1)C ≥I(xk; x̂k|k),

(a)

≥ (1− ε)h(xk)− 1

2
− log(Kdε

d),

(b)
=(1− ε)

(
h(x0) + E[log |det Df (k)(x0)|]

)
− 1

2
− log(Kdε

d),

(7)

where Kd is the volume constant for the d dimensional sphere [20].
(a) is the upper bound for I(xk; x̂k|k) which is obtained in [3] under
the condition P(||xk − x̂k|k|| > ε) ≤ ε. (b) is resulted as the function
xk = f (k)(x0) is assumed to be one to one [21].

Therefore, based on (7), the following inequality is true for every
ε > 0 and k ≥ k1(ε):

C ≥ 1− ε
k + 1

E[log |det Df (k)(x0)|]− 1

k + 1
log(Kdε

d)

+
1

k + 1

(
(1− ε)h(x0)− 1

2
). (8)

We take the limit with k going to infinity:

C ≥ lim
k→∞

1− ε
k + 1

E[log |det Df (k)(x0)|]− 1

k + 1
log(Kdε

d)

+
1

k + 1

(
h(x0)(1− ε)− 1

2
),

= (1− ε) lim
k→∞

E[
1

k + 1
log |det Df (k)(x0)|],

(a)
= (1− ε)E[ lim

k→∞

1

k + 1
log |det Df (k)(x0)|],

(b)
= (1− ε)E

[ s∑
i=1

κi(x0)∆i(x0)
]
. (9)

Note that in the above equalities/inequalities, (a) follows since for
bounded sequence 1

k+1
log
∣∣∣det Df (k)(x0)

∣∣∣, we can interchange lim-
its and expected value functions [22]. Equation (b) is resulted since
limk→∞

1
k+1

log |det Df (k)(x0)| =
∑s
i=1 κi(x0)∆i(x0) [19]. Note

that the inequalty (9) is true for arbitrary small value of ε > 0 which
implies that C > E

[∑s
i=1 κi(x0)∆i(x0)

]
is the necessary condition.

�

IV. SUFFICIENT CONDITIONS

In this section, we address the sufficient conditions for observ-
ability of the control/communication system of Fig. 1 consisting of
the digital noiseless, packet erasure, and AWGN channels. For this
purpose, we propose encoders and decoders that map (x0, w

k−1)→ vk
and wk → x̂k|k, respectively. This means that as the ambiguity in
the states of the system is only due to the ambiguity in the initial
state, it is possible to guarantee reliable observability by focusing on
reconstruction of the initial state at the receiver and sending it back to the
transmitter throughout communication steps. We explain the proposed
communication scheme for scalar case and then extend it to vector case.

A. Scalar case

In order to observe a scalar nonlinear system, the innovation process
(x0 − x̂0|k−1) is sent at every time slot k. Upon receiving wk, x̂0|k is
updated and sent back to the transmitter. Moreover, x̂k|k = f (k)(x̂0|k) is
also obtained to track the system. In this section, we prove that using such
coding scheme, we can obtain C > ∆(x0) as the sufficient condition
for observability.

Theorem 2: The sufficient condition for sure observability of the
control/communication system consisting of the system (1) and the
digital noiseless channel is C = Rav > ∆(x0), where x0 takes any
value in ψ0 = [−L0, L0].
Proof: At every time instant k, we quantize the innovation process
to Rk bits with a zero centroid quantizer whose dynamical range is(

2L0/2
∑k−1
i=0 Ri

)
[18]. We can adaptively change the value of Rk based

on x̂0|k−1, since x̂0|k−1 is available at both transmitter and receiver. In
fact, if this adaptive change of rates is possible, the proposed coding
scheme requires different average bit rates for different initial states.
Therefore, for designing a casual encoding/decoding scheme, we can
set the value of bit rates such that Rk = H(x̂0|k−1) where H(x) is
positive, bounded, and continuous on domain ψ0.1 Due to the positive
bit rates, the dynamical rang of quantizer goes to zero which implies the
convergence of x̂0|k to x0. Note that due to the convergence of x̂0|k−1

1Note that for fractional bit rates, time sharing technique should be used as
explained in Appendix A.
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to x0 and continuity of H(.), Rk converges to H(x0) and as a result,
Rav equals to H(x0). By reconstruction of x̂k|k = f (k)(x̂0|k), we have:

|xk − x̂k|k| ≤ max
−L0≤a≤L0

|fk(x̂0|k +
a

2

k−1∑
i=0

Ri

)− fk(x̂0|k)|. (10)

Now, the mean value theorem guaranties the existence of c ∈ [0, 1] for
every a ∈ [−L0, L0], such that:

|xk − x̂k|k| ≤ max
−L0≤a≤L0

ε
∣∣(Dfk(x̂0|k + εc))

∣∣, (11)

where ε , a/2
∑k−1
i=0 Ri . If the right hand of the above inequality goes to

zero everywhere, then the system is observable. Towards this purpose,
it is sufficient that:

lim
k→∞

(
max

−L0≤a≤L0

ε
∣∣(Dfk(x̂0|k + εc))

∣∣) 1
k

= max
−L0≤a≤L0

lim
k→∞

(ε)
1
k
∣∣(Dfk(x̂0|k + εc))

∣∣ 1
k < 1. (12)

Note that if Rav = ∆(x0) + ε for an arbitrary positive value of ε, the
above condition is satisfied, since:

max
−L0≤a≤L0

lim
k→∞

(ε)
1
k
∣∣(Dfk(x̂0|k + εc))

∣∣ 1
k =

L0

2Rav
2∆(x0)

=
L0

2∆(x0)+ε
2∆(x0) < 1. (13)

Therefore, with choosing function H(.) as ∆(.) + ε, (i.e., Rk =
∆(x̂0|k−1) + ε), the system is observable. Obviously, the minimum
required channel capacity for this transmission is ∆(x0) + ε.

Hence, under the condition C > ∆(x0), there is an encoder/decoder
which makes the system sure observable. This proves that C > ∆(x0)
is a sufficient condition for sure observability of the nonlinear system
over the digital noiseless channel. �

In the next theorem, the sufficient condition for the observability of
the dynamic system over the packet erasure channel is derived.

Theorem 3: The sufficient condition for almost sure observability of
the control/communication system consisting of the system (1) and the
packet erasure channel with erasure probability γ, average bit rate Rav
and feedback acknowledgment is C = Rav(1 − γ) > ∆(x0), where
Rav(1 − γ) is the channel capacity and x0 takes the values in the set
ψ0 = [−L0, L0].
Proof: At each time instant k, we apply a zero centroid quantizer with
dynamical range

[
2L0/

∏k−1
i=0 2βiRi

]
in order to quantize the innovation

process into Rk bits, where βis are independent indicator random
variables with the following distribution [3]:

p(βi = 0) = γ; p(βi = 1) = 1− γ. (14)

In fact, if the acknowledgment is not received at the transmitter,
transmitter resends the previous signal and therefore, the ambiguity of
x0 will not be changed.

As the transmitter and receiver have access to the value of x̂0|k−1 at
time instant k, we can adaptively set the value of Rk as a bounded, pos-
itive, and continuous function of x̂0|k−1, (i.e., Rk = H(x̂0|k−1)). Using
this encoder-decoder pair, x̂0|k and H(x̂0|k), respectively, converges to
x0 and H(x0) almost surely and as the results, Rav

a.s
= H(x0).

Note that reconstruction x̂k|k = f (k)(x̂0|k) leads to:

|xk − x̂k|k| ≤ max
a∈[−L0,L0]

|fk(x̂0|k +
a

2

k−1∑
i=0

βiRi

)− fk(x̂0|k)|. (15)

For almost sure observability of the system, it is sufficient that the
right hand side of the above inequality converges to zero almost surely.
Following similar steps as taken in the proof of Theorem 2, one can
obtain the sufficient condition for almost sure observability as follows:

∆(x0)
a.s
< lim

k→∞

1

k

k−1∑
i=0

βiRi = lim
k→∞

1

k

k−1∑
i=0

βiH(x̂0|i−1). (16)

In Appendix B, we prove that 1
k

∑k−1
i=0 βiH(x̂0|i−1) converges al-

most surely to (1 − γ)H(x0) for bounded, positive, and continuous
function H(·). Therefore, if we choose H(·) = 1

1−γ∆(·) + ε (i.e.,
Rk = 1

1−γ∆(x̂0|k−1) + ε), for an arbitrary value of ε > 0, the system
is observable in almost sure sense, since:

lim
k→∞

1

k

k−1∑
i=0

βiH(x̂0|i−1)
a.s
= (1− γ)H(x0),

= ∆(x0) + (1− γ)ε > ∆(x0), (17)

Now, with dependency assumption of channel capacity on the initial
state, we obtain the minimum required channel capacity for this proce-
dure as follows:

C = (1− γ)E[Rav|x0],

= lim
k→∞

(1− γ)

k
(R0 +

1

1− γ

k−1∑
i=1

E[∆(x̂0|i−1)|x0]) + ε,

= ∆(x0) + (1− γ)ε. (18)

Hence, under the condition C > ∆(x0), there is an encoder/decoder
which makes the system almost surely observable. �

The final theorem in this section, is about the sufficient condition
for observability of the control system over AWGN channel in the
mean square sense. To achieve this condition, the following additional
assumptions will be also placed on the plant (1):

Assumption 4: We assume that the function f(.) is analytic. Note that
the analyticity of f(·) results in the analyticity of f (k)(.).

Assumption 5: We assume that on domain ψ0, ∆(x) is bounded,
positive, and differentiable function whose derivative is also bounded.

Assumption 6: We assume that f(.) is a function such that for every
x ∈ ψ0 and n ≥ 2, we have,

lim
k→∞

(
Dnf (k)(x)

)(
Df (k)(x)

)−n
≤ f̄ ,

where f̄ is constant and Dnf (k)(·) is the nth derivative for function
f (k)(·). Note that conventional functions have this property.

Theorem 4: The sufficient condition for mean square observability
of the control/communication system consisting of the system (1) and
AWGN channel (4) with noiseless feedback link and capacity C is C >
∆(x0), where the initial state has Gaussian distribution.
Proof: We use a coding scheme that is based on [23] to address this
question. At every time slot k, vk = T (k)(x0 − x̂0|k−1) is transmitted.
Upon receiving wk, x̂0|k = x̂0|k−1 + R(k)wk is computed and sent
back to the transmitter and then, x̂k|k is also obtained in order to track
the system.

The functions T (.) and R(.) should be chosen as follows:

T (k) =

{
α0 k = 0,

(
∏k−1
i=0 αi)(α

2
k − 1)

1
2 k ≥ 1,

R(k) =

 α−1
0 k = 0,

(
∏k−1
i=0 αi)

−1 (α2
k−1)

1
2

α2
k

k ≥ 1.

Consequently, the estimation of the initial state after the first step is
x̂0|0 = x0 + n0

α0
, and after the second step, it is

x̂0|1 = x̂0|0 +
1

α0

(α2
1 − 1)1/2

α2
1

w1 = x0 +
n0

α0α2
1

+
1

α0

(α2
1 − 1)1/2

α2
1

n1,

The recursive solution is then given by:

x̂0|k = x0 + ρ0|kn0 + ρ1|kn1 + . . .+ ρk|knk, (19)

where, ρ0|k = 1

α0
∏k
i=1 α

2
i

and ρi|k for i ≥ 1 is obtained through the
following equation:

ρi|k =
(α2
i − 1)

1
2

i−1∏
j=0

αj
k∏
j=i

α2
j

. (20)
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Due to the knowledge of transmitter and receiver about the value of
x̂0|k−1 at time instant k, they can set log(αk), k 6= 0 as a bounded,
positive, and continuous function of x̂0|k−1. This choice leads to mean
squarely convergence of x̂0|k−1 to x0. With definition (e0|k , x0−x̂0|k)
and reconstruction x̂k|k = f (k)(x̂0|k), and using the Taylor expansion
for analytic function f (k)(x), we have:

x̂k|k = xk +Df (k)(x0)e0|k +

∞∑
n=2

1

n!
Dnf (k)(x0)en0|k. (21)

Consequently, we obtain error variance from (21) as follows:

E[(xk−x̂k|k)2|x0] =

E
[(
Df (k)(x0)e0|k +

∞∑
n=2

Dnf (k)(x0)

n!
en0|k

)2|x0

]
,

=Df (k)(x0)
2
E[e2

0|k|x0]

+

∞∑
t=1

∞∑
n=1

(t,n)6=(1,1)

1

t!n!
Dtf (k)(x0)Dnf (k)(x0)E[en+t

0|k |x0]. (22)

Note that based on Assumption 6, we have:

lim
k→∞

E[(xk−x̂k|k))2|x0] ≤ lim
k→∞

{
Df (k)(x0)

2
E[e2

0|k|x0]

+f̄2
∞∑
t=1

∞∑
n=1

(t,n) 6=(1,1)

1

t!n!
Df (k)(x0)

(t+n)
E[en+t

0|k |x0]

}
. (23)

Therefore, if we set αk = 2∆(x̂0|k−1)+ε for an arbitrary positive value
of ε, αk converges to α(x0) , 2∆(x0)+ε in probability and according
to Appendix C, the error variance converges to zero and system is
observable mean squarely.
Now, we should calculate the minimum required power for such proce-
dure:

Pav = lim
k→∞

Pav(k) = lim
k→∞

1

k
E[α2

0(x0 − x̂0|−1)2

+
1

k

k−1∑
i=1

(

i−1∏
l=0

αl(α
2
i − 1)

1
2 )2(x0 − x̂0|i−1)2|x0],

= lim
k→∞

1

k
α2

0x
2
0 +

1

k

k−1∑
i=1

E[(

i−1∏
l=0

αl(α
2
i − 1)

1
2 )2(x0 − x̂0|i−1)2|x0].

(24)

Using (41) in Appendix C leads to the following equation:

lim
i→∞

E[(

i−1∏
l=0

αl(α
2
i − 1)

1
2 )2(x0 − x̂0|i−1)2|x0]

= lim
i→∞

E[(α2
i − 1)σ2|x0]. (25)

Note that as x̂0|k converges to x0 mean squarely, ∆(x̂0|i−1) converges
to ∆(x0) in probability. Additionally, ∆(x0) is bounded and continuous,
Therefore:

lim
i→∞

E[(

i−1∏
l=0

αl(α
2
i − 1)

1
2 )2(x0 − x̂0|i−1)2|x0] = (22∆(x0)+2ε − 1)σ2.

Now, as E[(
∏i−1
l=0 αl(α

2
i − 1)

1
2 )2(x0 − x̂0|i−1)2|x0] is a convergent

sequence, its arithmetic mean is also convergent with the same limit
point. Therefore,

Pav = lim
k→∞

Pav(k) = lim
k→∞

α2(x2
0)

k
+ (22∆(x0)+2ε − 1)σ2, (26)

for any x0, it is easy to derive the minimum required channel capacity
for this transmission, as follows:

C =
1

2
log(1 +

P

σ2
) = ∆(x0) + ε. (27)
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Fig. 2: (a), (c), (e): Estimation error of the dynamic system over,
respectively, the digital noiseless, packet erasure and AWGN channels
with capacity C = 1.3 bit per channel use. (b), (d), (f): Estimation error
of the dynamic system over, respectively, the digital noiseless, packet
erasure and AWGN channels with C = 0.9 bit per channel use.

Consequently, if C > ∆(x0) there is a coding scheme in order to achieve
observability of the dynamic system over AWGN channel in the mean
square sense. �

B. Simulation results

We consider the following scalar nonlinear system satisfying Assump-
tion 1 and others:

xk+1 = 4xk(1− xk),

where x0 ∈ [0.1, 0.4] is a random variable. It is assumed that x̂0|−1 =
0.2, and therefore, (x0 − x̂0|−1) ∈ [−0.2, 0.2]. The Lyapunov exponent
of the above dynamic system on domain [0.1, 0.4] is constant and equals
to log(2) = 1 bit [24]. We simulate the estimate of the state xk over
the digital noiseless, packet erasure, and AWGN channels using the
proposed encoding/decoding schemes. The results of the estimation error
are presented in Fig. 2 for two different values of channel capacity. The
results illustrate that using the proposed communication schemes, the
above nonlinear system over digital noiseless, packet erasure and AWGN
channels is observable if C > ∆(x0).

C. Vector case

In this part, we prove that the sufficient condition for observ-
ability in Theorem 2, Theorem 3, and Theorem 4 is expressed as
C >

∑s
i=1 κi(x0)∆(x0) for multi-dimensionl system. Without loss

of generality, we assume that the system has d distinct and positive
Lyapunov exponents. Due to the space limitation, we prove the sufficient
condition for a two dimension system over the digital noiseless channel.
For other channels and higher order, a similar methodology can be used.

We assume that xk = [ak, bk]tr is the state of the system where
x0 ∈ ψ0 is a bounded random vector and x̂0|−1 = [0, 0]tr (i.e., there
are two constant numbers L1

0 and L2
0 such that [−L1

0,−L2
0]tr ≤ x0 −

x̂0|−1 ≤ [L1
0, L

2
0]tr). Based on the Definition 1, for every x0 ∈ ψ0, there
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are two eigenvectors p1(x0) and p2(x0) corresponding to the Lyapunov
exponents, hence, we can define P(x0) = [p1(x0), p2(x0)] as a unitary
matrix.

In our proposed scheme, at every time instant k, we transmit
Ptr(x̂0|k−1)(x0 − x̂0|k−1) over the digital noiseless channel by as-
signing R1

k and R2
k bits to its first and second elements, respectively.

Subsequently, uponing the channel output wk, the initial state estimate
is updated at the recievPtr(x̂0|k−1) is a unitary matrix, therefore, for
k ≥ 1, we can define L1

k and L2
k through the following ittiartive equation

such that [−L1
k,−L2

k]tr ≤ x0 − x̂0|k−1 ≤ [L1
k, L

2
k]tr .[

L1
k

L2
k

]
= P(x̂0|k−1)

[
1/2R 0

0 1/2R

]
Ptr(x̂0|k−1)

[
L1
k

L2
k

]
(28)

dyamivc (29) is stable, [L1
k, L

2
k] converges to zer(i.e., x0 converges to

x̂0|k)
based on the multi variable mean value theorem, there exist c, c′ ∈

[0 1] such that:

ak − âk|k = Df
(k)
1

(
(1− c)x0 + cx̂0|k

(
x0 − x̂0|k),

bk − b̂k|k = Df
(k)
2

(
(1− c′)x0 + c′x̂0|k

)
(x0 − x̂0|k),

where Df (k)
i is the ith row of the Jacobian matrix Df (k). The above

terms converge to zero if:

lim
k→∞

norm

[
Df

(k)
1

(
(1− c)x0 + cx̂0|k

)
Df

(k)
2

(
(1− c′)x0 + c′x̂0|k

)] [L1
k+1 ±L2

k+2

]
= 0.

or equivalently subsituting (29),

lim
k→∞

norm

[
Df

(k)
1

(
(1− c)x0 + cx̂0|k

)
Df

(k)
2

(
(1− c′)x0 + c′x̂0|k

)] p(x̂0|k)

k∏
i=0

([
1/2

∑
R1
i 0

0 1/2
∑
R2
i

]
ptr(x̂0|k)p(x̂0|k−1)

)
= 0.

As x̂0|k converges to x0, p(x̂0|k) and ptr(x̂0|k)p(x̂0|k−1) respectively
converges to p(x0) and unit matrix. therefore the suffiicent condition is
reduced to :

lim
k→∞

norm

[
Df

(k)
1

(
(1− c)x0 + cx̂0|k

)
Df

(k)
2

(
(1− c′)x0 + c′x̂0|k

)] p(x)

[
1/2

∑
R1
i 0

0 1/2
∑
R2
i

]
= 0.

Therefore, we can write an upper bound on the above norm as the
summation of the following two terms:

A =
2

2
2
k∑
i=0

R1
i

(
norm(

[
Df

(k)
1

(
(1− c)x0 + cx̂0|k

)
Df

(k)
2

(
(1− c′)x0 + c′x̂0|k

)] p1)

)2

, (29)

B =
21

2
2
k∑
i=0

R2
i

(
norm(

[
Df

(k)
1

(
(1− c)x0 + cx̂0|k

)
Df

(k)
2

(
(1− c′)x0 + c′x̂0|k

)] p2)

)2

. (30)

Similar to the scalar case, the system is observable in sure sense provided
limk→∞

1
k

log(A) < 0 and limk→∞
1
k

log(B) < 0. Note that x̂0|k
converges to x0, therefore, (3) results in:

lim
k→∞

2

k
log(norm(

[
Df

(k)
1

(
(1− c)x0 + cx̂0|k

)
Df

(k)
2

(
(1− c′)x0 + c′x̂0|k

)] .pi)) = 2∆i(x0),

(31)

where i = 1, 2. Now, substituting (31) in the aforementioned conditions,
results in the following sufficient conditions for observability.

lim
k→∞

1

k
log(A) = −2R1

av + 2∆i(x0) < 0, (32)

lim
k→∞

1

k
log(A) = −2R2

av + 2∆2(x0) < 0, (33)

where Riav = limk→∞
1
k+1

k∑
j=0

Rij for i = 1, 2. Similar to the scalar

case, if we set Rik = ∆i(x̂0|k−1) + ε for i = 1, 2 and for every ε >
0, the above two conditions are satisfied and the required capacity is
C = ∆1(x0) + ∆1(x0) + 2ε. Consequently, C >

∑s
i=1 κi(x0)∆i(x0)

is the observability sufficient condition, i.e., under this condition, there is
an encoding/decoding scheme to guarantee system observability in sure
sense.

Finally, the following points should be taken into account:
Remark 1: For some communication/control systems, we are able

to allocate average power/bit rate immediately after observation of
the initial state x0. Consequently, the channel capacity is assumed
to be dependent of x0 which is the assumption made in deriving
sufficient conditions. However, if the channel capacity is determined
independent of x0, the sufficient condition is modified as C >
supx0∈ψ0

∑s
i=1 κi(x0)∆i(x0).

Remark 2: Note that for the channels subject to fixed bit rate, the
proposed encoding/decoding scheme is not practical. In this situation,
we order Lyapunov exponent as ∆1(x0) ≥ ∆2(x0) ≥ . . . ≥ ∆d(x0) for
every x0

(
Note that if ki(x0) ≥ 2, then we consider ∆i+j(x0) equals to

∆i(x0) for j = 1, . . . , ki(x0)−1
)
. Hence, it is easy to verify that apply-

ing aforementioned scheme with fixed rate R =
∑d
i=1 supx0

∆i(x0)+ε
for every ε > 0 results in the observability of systems.

Remark 3: For those systems that have unique ergodic invariant
measure, L(x0) in (2) is independent of x0, then fixed rate encod-
ing/decoding can be employed which leads to the tight sufficient and
necessary conditions of observability.

Remark 4: For discrete linear system xk+1 = fk(xk) = Axk,
as a special case, the Lyapunov exponents are the logarithm of the
magnitudes of the eigenvalues of the matrix A [19]. Hence, the necessary
and sufficient condition is reduced to the well-known eigenvalues-rate
condition C >

∑
i max{0, log(|λi(A)|)} (also appearing in e.g., [25]–

[29]).

V. CONCLUSION

This paper addresses real-time reliable data reconstruction of the
state trajectory of nonlinear dynamic systems over capacity limited
communication channels. It is shown that over the memoryless chan-
nels (in particular two DMC and AWGN channels), the condition
C ≥ E[

∑s
i=1 κi(x0)∆i(x0)] is a necessary condition for sure; almost

sure, and mean square observability of noiseless nonlinear dynamic
systems, where C is the Shannon channel capacity and ∆i(x0)s are
the positive Lyapunov exponents. It is also shown that the condition
C >

∑s
i=1 κi(x0)∆i(x0) is a sufficient condition for sure, almost sure

and mean square observability over, respectively, the digital noiseless
channel, packet erasure channel and AWGN channel with noiseless
feedback channel. Finally, it is shown that for the special case of linear
noiseless time-invariant systems, the necessary and sufficient condition
for observability is reduced to the well-known eigenvalues-rate condition.

For future work, it is interesting to find the necessary and sufficient
conditions for sure, almost sure and mean square stability of nonlinear
controlled dynamic systems over limited capacity communication chan-
nels. This research direction is currently under investigation.

APPENDIX A

Time sharing technique for fractional bit:
As explained before, we set Ri = H(x̂0|i−1) in order to obtain
Rav = H(x0). However, these bit rates may be fractional numbers.
In the appearance of such problem, we can set new bit rates as follows:

R̄1 = bR1c, e1 , R1 − R̄1,

R̄2 = bR2 + e1c, e2 , R2 + e1 − R̄2,

...

R̄i+1 = bRi+1 + eic, ei+1 , Ri+1 + ei − R̄i+1.



7

Sum of new bit rates equals to:
k∑
i=1

R̄i = R1 − e1 +

k∑
i=2

(Ri + ei−1 − ei) =

k∑
i=1

Ri − ek, (34)

where 0 ≤ ek < 1. Therefore, this technique keeps the average power
as H(x0) with transmission just integer bit rates.

APPENDIX B

Note that H(x̂0|k−1) converges to H(x0) almost surely if and only
if for every ε1 > 0, limk1→∞ P(Ak1(ε1)) = 1, where Ak1(ε1) ,
{|H(x̂0|k−1)−H(x0)| < ε1, k ≥ k1} [30].

Similarly, and based on the strong law of large numbers, we have: for

every ε2 > 0, limk2→∞ P(Bk2(ε2)) = 1 where Bk2(ε2) , {| 1
k

k−1∑
i=0

βi−

(1− γ)| < ε2, k ≥ k2}.
Proving limk3→∞ P(Ck3(ε3)) = 1, for every ε3 > 0, leads

to the almost sure convergence of the sequence 1
k

k−1∑
i=0

βiH(x̂0|i−1)

to (1 − γ)H(x0) where Ck3(ε3) is defined as Ck3(ε3) ,

{| 1
k

k−1∑
i=0

βiH(x̂0|i−1)− (1− γ)H(x0)| < ε3, k ≥ k3}.
Using the total law of probability:

P(Ck3(ε3)) = P(Ck3(ε3) | Ak1(ε1))P(Ak1(ε1))

+ P(Ck3(ε3) | Ack1
(ε1))P(Ack1

(ε1)), (35)

where k1 = k3
T

, T ∈ Z+ and Ack1
(ε1) is the complement of event

Ak1(ε1), we obtain a lower bound for P(Ck3(ε3) | Ak1(ε1)) in the
following. It is clear that for k ≥ k3, we have:∣∣∣∣∣ 1k

k−1∑
i=0

βiH(x̂0|i−1)− (1− γ)H(x0)

∣∣∣∣∣ ≤
1

k

∣∣∣∣∣
k−1∑
i=0

βiH(x̂0|i−1)−
k−1∑
i=0

βiH(x0)

∣∣∣∣∣+

∣∣∣∣∣ 1k
k−1∑
i=0

βi − (1− γ)

∣∣∣∣∣H(x0).

(36)

The following inequalities are obtained under the assumption that
Ak1(ε1) has occurred:

1

k

∣∣ k−1∑
i=0

βiH(x̂0|i−1)−
k−1∑
i=0

βiH(x0)
∣∣ ≤

∣∣ 1
k

k1−1∑
i=0

βi
(
H(x̂0|i−1)−H(x0)

)∣∣+
∣∣ 1
k

k−1∑
i=k1

βi
(
H(x̂0|i−1)−H(x0)

)∣∣,
≤ k1

k
M +

k − k1

k
ε1 ≤

M

T
+ ε1, (37)

where M , max
(
H(x̂0|i−1)−H(x0)

)
which is a finite number.

Therefore,

P(Ck3(ε3) | Ak1(ε1))

≥ P
({M

T
+ ε1 +

∣∣ 1
k

k−1∑
i=0

βi − (1− γ)
∣∣H(x0) < ε3, k ≥ k3

})
,

= P
({∣∣ 1

k

k−1∑
i=0

βi − (1− γ)
∣∣ < ε3 − M

T
− ε1

H(x0)
, k ≥ k3

})
. (38)

For every ε3 > 0, we choose T and ε1 such that (ε3 − M
T
− ε1) > 0.

Therefore, when k3 goes to infinity:

lim
k3→∞

P(Ck3(ε3) | Ak1(ε1)) (39)

≥ lim
k3→∞

P
(
Bk3(

1

H(x0)
(ε3 −

M

T
− ε1))

)
= 1.

On the other hand, k1 = k3
T

also goes to infinity and therefore,
P(Ak1(ε1)) converges to one. Consequently, for every ε3 > 0,
limk3→∞ P(Ck3(ε3)) = 1.

APPENDIX C

We start the proof from the following relation:

e0|k = ρ0|kn0 + ρ1|kn1 + . . .+ ρk|knk. (40)

Substituting (20) in error variance leads to the following equation:

E(e2
0|k|x0) = E

[
1

k∏
i=0

α2
i

(
n2
k

k∑
i=1

n2
i−1 − n2

i

k∏
j=i

α2
j

+ 2

k∑
i=1

n0ni(α
2
i − 1)

1
2

i−1∏
m=1

αm
k∏
n=i

α2
n

+ 2

k−1∑
i=1

k∑
j=i+1

ninj(α
2
i − 1)

1
2 (α2

j − 1)
1
2

j−1∏
m=i

αm
k∏
n=j

α2
n

)
|x0

]
,

=Eαk0 |x0

[
1

k∏
i=0

α2
i

(
σ2 +

k∑
i=1

1
k∏
j=i

α2
j

E[n2
i−1 − n2

i |x0, α
k
i ]

+ 2

k∑
i=1

(α2
i − 1)

1
2

i−1∏
m=1

αm
k∏
n=i

α2
n

E[n0ni|x0, α
k
1 ]

+ 2

k−1∑
i=1

k∑
j=i+1

(α2
i − 1)

1
2 (α2

j − 1)
1
2

j−1∏
m=i

αm
k∏
n=j

α2
n

E[ninj |x0, α
k
i+1]

)]
. (41)

We show that the term inside the parenthesis in (41) converges to σ2 as
k goes to infinity. Toward this purpose, we consider the following steps:

1) A new sequence uk is defined as

uk+1 ,
k∑
i=1

1
k∏
j=i

α2
j

E[n2
i−1 − n2

i |x0, α
∞
i ].

Note that uk can be also determined thorough the following
iteration formula:

uk+1 =
1

α2
k+1

uk +
1

α2
k+1

E[n2
k − n2

k+1|x0, α
∞
k+1]. (42)

Due to the convergence of αi to α(x0) in the probability sense,
the zero convergence of E[n2

k − n2
k+1|x0, α

∞
k+1] is resulted, i. e.,

lim
k→∞

E[n2
k−n2

k+1|x0, α
∞
k+1] = lim

k→∞
E[n2

k−n2
k+1

∣∣x0, α(x0)] = 0.

Furthermore, αk+1 is greater than one and hence, the limit point
of sequence uk which is also the limit point of the sequence
k∑
i=1

1
k∏
j=i

α2
j

E[n2
i−1 − n2

i |x0, α
k
i ] converges to zero [3].

2) As αis are greater than one, it is obvious that

lim
k→∞

k∑
i=1

(α2
i − 1)

1
2

i−1∏
m=1

αm
k∏
n=i

α2
n

E[n0ni|x0, α
k
1 ] = 0.

3) We define new sequence

rk =

k−1∑
i=1

k∑
j=i+1

(α2
i − 1)

1
2 (α2

j − 1)
1
2

j−1∏
m=i

αm
k∏
n=j

α2
n

E[ninj |x0, α
∞
i+1].

By deriving the iteration formula of rk, we can prove
that rk converges to zero. Then, note that the sequence
k−1∑
i=1

k∑
j=i+1

(α2
i−1)

1
2 (α2

j−1)
1
2

j−1∏
m=i

αm
k∏
n=j

α2
n

E[ninj |x0, α
k
i+1] converges to the

limit point of rk which equals to zero.
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Consequently, we can write,

Df (k)(x0)
2
E(e2

0|k|x0) = Df (k)(x0)2E

σ2 + ζk
k∏
i=0

α2
i

| x0

 ,
where the sequence ζk goes to zero. In the following, we show

that the sequence Df (k)(x0)2E

 1
k∏
i=0

α2
i

| x0

 converges to zero

(Note that this convergence also implies the zero convergence of
Dfk(x0)

2
E(e2

0|k|x0)). By setting αi = 2(∆(x̂0|i−1)+ε), we have:

Df (k)(x0)2E

 1
k∏
i=0

α2
i

| x0


=
Df (k)(x0)2

α022kε
E

 1

2
2
k−1∑
i=0

∆(x̂0|i)

| x0

 ,
(a)

≤ Df (k)(x0)2

α022k(∆(x0)+ε)
E

2
2c̄(

k−1∑
i=0
|e0|i|)|x0

 ,
≤ Df (k)(x0)2

α022k(∆(x0)+ε)
E

2
2c̄(

k−1∑
i=0

i∑
j=0

ρj|i|nj |)
|x0

 ,
(b)

≤ Df (k)(x0)2

α022k(∆(x0)+ε)
E

2
2c̄(

k−1∑
j=0

k−1∑
i=j

ρ̄

2ε(2i−j)
|nj |)
|x0

 ,
(c)
=

Df (k)(x0)2

α022k(∆(x0)+ε)

k−1∏
j=0

E

2
2c̄(

k−1∑
i=j

ρ̄

2ε(2i−j)
|nj |)

 . (43)

Note that (a) follows because based on Assumption 5, there is
a constant number c̄ such that |d∆(x0)/dx| ≤ c̄ (which results in
|∆(x̂0|i−1) −∆(x0)| ≤ |e0|i−1|c̄). (b) follows since we have αi ≥ 2ε

for every i = 1, . . . , k − 1 (Due to the positive value of ∆(x)) and
therefore, ρj|i ≤ ρ̄

2ε(2i−j)
, where ρ̄ is a constant number. Because

of the indecency of noise samples, (c) is deduced. It can be proved

that
∏k−1
j=0 E

2
2c̄(

k−1∑
i=j

ρ̄

2ε(2i−j)
|nj |)

 is less than a constant number.

Furthermore, we have for every x0 ∈ ψ0:

lim
k→∞

(
Df (k)(x0)2

22k(∆(x0)+ε)

) 1
k

=
22∆(x0)

22∆(x0)+2ε
=

1

22ε
< 1, (44)

Therefore, (43) converges to zero and

lim
k→∞

Df (k)(x0)2E[e2
0|k|x0] = 0. (45)

Similarly, it can be proved that for every x0:

lim
k→∞

∞∑
t=1

∞∑
n=2

Df (k)(x0)
(t+n)

E[en+t
0|k |x0] = 0. (46)

Substituting (45) and (46) in (22) results in the convergence of
E[
(
xk − x̂k|k)

)2 |x0] to zero for every x0, therefore, E[
(
xk − x̂k|k)

)2
]

also converges to zero and the system is observable in the mean square
sense.
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