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Abstract— This paper compares the computation time of two
algorithms for solving a structured constrained linear optimal
control problem with finite horizon quadratic cost within the
context of automated irrigation networks. The first is a standard
centralized algorithm based on the active set method that does
not exploit problem structure. The second is distributed and
is based on a consensus algorithm, not specifically tailored
to account for system structure. It is shown that there is a
significant advantage in terms of computation overhead (the
time spent computing the optimal solution) in using the second
algorithm in large-scale networks. Specifically, for a fixed
horizon length the computation overhead of the centralized
algorithm grows as O(n5) with the number n of sub-systems.
By contrast, it is observed via a combination of analysis and
experiment that given n times resources for computation the
computation overhead of the distributed algorithm grows as
O(n) with the number n of sub-systems.

I. INTRODUCTION

A. MOTIVATION AND BACKGROUND

Some large-scale systems and networks, such as automated

irrigation networks, have a cascade topology. The dynamical

behavior of such cascade networks can be modeled by n
distributed interacting linear time invariant sub-systems (each

representing a connected water pool) of the following form:

Si : xi[k + 1] = Aixi[k] + Biui[k] + Fidi[k] + vi[k],

yi[k] = Cixi[k], zi[k] = Dixi[k], (1)

for i = 1, 2, ..., n and k ∈ {0, 1, 2, ..., N − 1}, where N ∈
N+ is the horizon length, vi[k] = Mixi+1[k] represents the

cascade interconnection, xi ∈ R
ni is the state variable of

dimension ni ∈ N+, ui ∈ R is the control input, yi ∈ R and

zi ∈ R are variables to be controlled, and di ∈ R is a known

disturbance for the i-th sub-system. For the system (1) we

are interested in solving the following linear-quadratic (LQ)

constrained optimal control problem:

min
u=(u1,...,un)

J(x[0],d, r,u)

subject to (1) and
{

yi[k], ui[k] ∈ [Li, Hi]
zi[k] ∈ [Ei, Zi]

}

∀i ∈ [1, n], k ∈ [0, N − 1],

(2)
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where

J(x[0],d, r,u)

=̇
n

∑

i=1

N−1
∑

k=0

||yi[k] − ri||
2
Q + ||ui[k] − ui[k − 1]||2R

+||zi[k]||2P . (3)

Here ||.|| denotes the Euclidean norm (i.e., ||z||2P =̇z′Pz),

x[0] =̇ (x′

1[0] . . . x′

n[0] )
′

is the vector of initial

states, d[k] = ( d1[k] . . . dn[k] )
′

is a vector of known

disturbances, r = ( r1 . . . rn )
′

is the vector of desired

values for yi, and Q, P ≥ 0, R > 0 are weighting matrices.

By expanding the state vector

x[k]=̇ (x′

1[k] . . . x′

n[k] )
′

at time step k in terms

of the initial states, disturbances and controls vectors and

substituting it in the quadratic cost functional (3), the

equality constraint in the optimization problem (2) vanishes

and it is observed that the Quadratic Programming (QP)

problem (2) involves nd = nN decision variables and

nc = 6nN inequality constraints. Generic algorithms for

centralized computation, such as the active set method

[1], involving one centralized computation resource that

is responsible for computing the controls ui are referred

to here as centralized optimization algorithms. In large-

scale systems (i.e. when nN is large), the total number

of constraints and decision variables can be very large.

In many cases this means the computation overhead

(i.e., the time spent computing the optimal solution) of

the centralized optimization algorithms is not practical.

Towards overcoming this computational scalability problem,

a consensus based distributed optimization algorithm is

proposed in [2] that exploits the computational power often

available at distributed sub-systems/decision makers (for

a brief description of this algorithm, see [3], Section II).

This distributed algorithm can be used to approximate the

solution of the structured optimal control problem (2).

B. PAPER CONTRIBUTIONS

This paper compares the computation overhead of the

centralized optimization algorithm based on the active set

method [1] with the computation overhead of the aforemen-

tioned consensus based distributed optimization algorithm of

[2] for the QP problem (2) subject to inequality constraints.

For a fixed horizon length, it is shown that the computation

overhead of the centralized algorithm grows as O(n5) with

the number n of sub-systems. By contrast, it is observed via a

combination of analysis and experiment that the computation

overhead of the distributed algorithm grows as O(n) with
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the number n of sub-systems given n times resources for

computation when the computational power of each dis-

tributed resource is the same as the centralized resource.

Similarly, for a fixed number of sub-systems, it is shown that

the computation overhead of the centralized algorithm and

the distributed algorithm grows as O(N5) and O(N6) with

the horizon length N , respectively. However, on the basis of

experiments for a particular irrigation network of interest to

us, it is observed that the growth of the distributed algorithm

computation overhead in N is bounded above by that of

the centralized algorithm. In summary, empirical evidence

suggests that there is a significant advantage in terms of the

computation time in using the consensus based distributed

optimization algorithm of [2] in large-scale irrigation net-

works.

C. PAPER ORGANIZATION

The paper is organized as follows: Section II is allocated to

computation overhead analysis. This is followed by commu-

nication overhead analysis in Section III. Simulation results

are presented in Section IV and the paper is concluded in

Section V.

II. COMPUTATION OVERHEAD ANALYSIS

In this section we analyze the computation overhead of the

aforementioned centralized and consensus based distributed

optimization algorithms. Throughout, we use the following

stopping criterion to approximate the optimal solution of the

QP problem (2) by the distributed optimization algorithm.

Definition 2.1: For a given ǫ > 0, the distributed algo-

rithm of [2] is terminated as soon as the following inequality

holds

|J(ut
1, ..., u

t
n) − J(ut−1

1 , ..., ut−1
n )| ≤ ǫ.

Note that for small values for ǫ, there will be very small

improvement in the approximation of the optimal solution

by the distributed optimization algorithm of [2]; and as

the algorithm converges [2], the algorithm can be therefore

terminated as soon as the above inequality holds.

For a given ǫ > 0, let Tǫ be the smallest integer such

that |J(ut
1, ..., u

t
n) − J(ut−1

1 , ..., ut−1
n )| ≤ ǫ, ∀t ≥ Tǫ.

Then, Tǫ is referred as the total number of iterations for ǫ-

convergence. We refer to J(uTǫ

1 , ..., uTǫ

n ) as an approximation

of the optimal cost and the sequence (uTǫ

1 , ..., uTǫ

n ) as an

approximation of the optimal solution.

The formal definition of computation overhead is given

below. It involves optimization time and constraint making

time complexity term as defined as follows:

Definition 2.2: (Optimization Time): Optimization time

Copt is the empirical time spent by optimizers/decision

makers to approximate the optimal solution.

Definition 2.3: (Constraint Making Time Complexity):

Constraint making time complexity term Ccm is the empiri-

cal time spent for making constraints to be implemented in

optimizers.

Definition 2.4: (Computation Overhead): Computation

overhead denoted by Ccen for the centralized algorithm and

Cdis for the distributed algorithm is Copt plus Ccm.

We have one more definition.

Definition 2.5: (Optimization Computational Complex-

ity): Optimization computational complexity is the empirical

number of floating point arithmetic operations (addition,

multiplication, devision) to be executed to find the optimal

solution.

The active set method [1], [4] and the interior point

method [4], [5] are the most commonly used approaches for

solving general QP problems. As a benchmark, we employ

a generic active set method [4] to solve the QP problem

(2) using the centralized optimization algorithm and the

distributed algorithm of [2]. Computation overhead analysis

of the interior point method is reported in [3].

Let nc and nd be the numbers of inequality constraints and

decision variables of a QP problem, respectively. As stated

in [4] at each iteration of the Active Set Method (ASM), the

computing device must solve a system of linear equations

with empirical number of nd + nc

2 linear equations (i.e., the

empirical number of linear equations∼ O(nd + nc

2 )). There-

fore, if the commonly used techniques, such as the generic

Gauss-Jordan elimination technique or Gaussian elimination

technique (which have cubic computational complexity) is

used to solve this system of linear equations, the optimization

computational complexity associated with each iteration of

the active set method is O
(

(nd+ nc

2 )3
)

. As shown in [4], the

empirical number of iterations required for the convergence

of the active set method to the optimal solution grows as

O(ndnc). Therefore, the optimization computational com-

plexity of ASM for solving QPs is

ASM ∼ O
(

ndnc(nd +
nc

2
)3

)

. (4)

The optimization time Copt is proportional to the optimiza-

tion computational complexity. Therefore, if ASM is used,

then

Copt ∼ O
(

ndnc(nd +
nc

2
)3

)

. (5)

In this section, the computation overhead for the cen-

tralized and distributed algorithms are analyzed for the QP

problem (2) for two cases: (i) Fixed N . (ii) Fixed n.

A. Fixed N , Varying n

In this section it is assumed that the horizon length N
is fixed but the number of sub-systems n varies. It is also

assumed that the distributed decision makers use the active

set method for their smaller QPs, and at each inner iteration

updated decision variables are exchanged only when all

optimizers finish their computation. That is, the distributed

algorithm uses synchronized communication. Under these

assumptions expressions for the computation overheads of

the centralized algorithm and distributed algorithm in terms

of the number of sub-systems n are presented in this section.

As the centralized optimization algorithm applied to the

QP problem (2) involves nc = 6nN inequality constraints

and nd = nN decision variables, from (5) it follows that the

optimization time of the centralized algorithm is of order 5,
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i.e.,

Copt(n) ∼ O
(

ndnc(nd +
nc

2
)3

)

∼ O(n5).

In addition, as the number of inequality constraints is a linear

function of n, the complexity term Ccm is a linear function

of n, i.e., Ccm(n) ∼ O(nc) ∼ O(n). Hence, the computation

overhead of the centralized algorithm is of order 5, i.e.,

Ccen(n) = Copt(n) + Ccm(n) ∼ O(n5). (6)

When the distributed optimization algorithm of [2] is ap-

plied to the QP problem (2), each decision maker/sub-system

i has a decision variable ui of dimension N and the horizon

length N determines its number of inequality constraints.

Under the assumption of synchronized communication, the

computation overhead of the distributed optimization algo-

rithm of [2] in terms of the number of sub-systems, i.e.,

Cdis(n), is given by

Cdis(n) =

Tǫ(n)
∑

j=1

Cj(n), (7)

where Tǫ(n) is the empirical number of required iterations

for ǫ-convergence and Cj(n) is the computation overhead of

the decision maker with the largest computation overhead

at iteration j. This decision maker is referred to here as

‘dominant decision maker’. As shown in [3] the computation

overhead of the last sub-system Sn dominates as it has the

largest number of inequality constraints. Note that at each

iteration j, the dominant computation overhead (overhead of

sub-system Sn) consists of two terms: Cj(n) = Copt,j(n) +
Ccm,j(n), where Copt,j(n) is the optimization time and

Ccm,j(n) is the constraint making time complexity term of

the dominant sub-system (i.e., sub-system Sn) at iteration j.

For a given number of sub-systems n, the dominant sub-

system remains the same for all iterations, whereby the

dominant computation overhead Cj(n) also remains the

same for j > 1, since there is no change in the number of de-

cision variables and inequality constraints associated with the

dominant sub-system for j ≥ 1. Therefore, Cj(n) =̇ C(n) =
Copt(n) + Ccm(n),∀j > 1, where Copt(n) and Ccm(n) are

the optimization time and constraint making complexity term

of the dominant sub-system. However, for j = 1, it takes

some time that variables to be placed into the cache memory

and therefore

C1(n) ≥ Cj(n) = C(n),∀j > 1.

Hence, applying (7) to the QP problem (2) results in the

following expression for the computation overhead.

Cdis(n) = C1(n) + (Tǫ(n) − 1)C(n). (8)

As shown in [3], the number of the inequality constraints

of the dominant sub-system is

nc =







2N(2
⌊

N
2

⌋

+ 1), if n ≥
⌈

N
2

⌉

and N is even,

2N(
⌈

N
2

⌉

+
⌊

N
2

⌋

+ 1), if n ≥
⌈

N
2

⌉

,and N is odd,

2N(2n + 1), if n <
⌈

N
2

⌉

,

and the number of decision variables of each sub-system

is nd = N . Hence, for the case of n ≥
⌈

N
2

⌉

, we have:

Copt(n) ∼ O
(

ndnc(nd + nc

2 )3
)

∼ O(n0), Ccm(n) ∼

O(nc) ∼ O(n0), C(n) = Copt(n) + Ccm(n) ∼ O(n0),
and C1(n) ∼ O(nc + nd) ∼ O(n0). Note that for the other

case of n <
⌈

N
2

⌉

, Copt(n), Ccm(n), C(n) and C1(n) are

polynomial functions of n with order 4,1,4,1, respectively. In

addition, from the experimental results (given in Section IV)

it is observed that Tǫ(n) as a function of n is approximated

and upper bounded by a linear function. Hence, for the QP

problem (2), from (8) it follows for n ≥
⌈

N
2

⌉

that Cdis(n)
has the following expression.

Cdis(n) ∼ O(n). (9)

Note that for the other case, Cdis(n) is a polynomial function

of n with order 5.

Remark 2.6: Similar to the centralized optimization algo-

rithm, the distributed optimization algorithm does not exploit

the topology of the network either in its formulation or in the

solutions of smaller QPs. The topology of the network just

helped us to determine the dominant sub-system to analyze

the computation overhead of the distributed optimization

algorithm on cascade systems.

B. Fixed n, Varying N

In this section it is assumed that the number of sub-

systems n is fixed but the horizon length N varies. Similar

to the previous section it is also assumed that the distributed

decision makers use the active set method and synchronized

communication. Under these assumptions expressions for the

computation overheads in terms of the horizon length N are

presented in this section.

As the centralized optimization algorithm applied to the

QP problem (2) involves nc = 6nN inequality constraints

and nd = nN decision variables, following a similar argu-

ment to the previous section, it follows that

Copt(N) ∼ O(N5), Ccm(N) ∼ O(N).

Hence, the computation overhead of the centralized optimiza-

tion algorithm is of order 5, i.e.,

Ccen(N) = Copt(N) + Ccm(N) ∼ O(N5). (10)

Similarly, for the distributed algorithm it follows for the

case of N > 2n that Copt(N) ∼ O(N5), Ccm(N) ∼ O(N),
and C1(N) ∼ O(N). Note that for the other case of N ≤ 2n,

Copt(N), Ccm(N) and C1(N) are polynomial functions of

N with order 9, 2 and 2, respectively. In addition, from the

experimental results (given in Section IV) it is observed that

Tǫ(N) ∼ O(N). Therefore, for N > 2n, we have

Cdis(N) = C1(N) + (Tǫ(N) − 1)(Copt(N) + Ccm(N))

∼ O(N6). (11)

Note that for the other case, Cdis(N) is a polynomial

function of N with order 10.

Remark 2.7: Experimental results (given in Section IV)

for the case of N ≤ 2n reveals that for a small N (e.g.,
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N ≤ 24) the optimization time Copt(N) is approximated by

a linear function; and consequently, Cdis(N) is a polynomial

function of N with order 3.

III. COMMUNICATION OVERHEAD ANALYSIS

In this section we are concerned with communication

overhead as defined below.

Definition 3.1: (Communication Overhead): Communica-

tion overhead Ccom is the total time spent for exchanging

information between sub-systems/decision makers to have an

approximation of the optimal solution up to an apriori fixed

precision ǫ.

Note that for the centralized algorithm the communica-

tion overhead is zero as this algorithm involves only one

centralized computation resource. Consequently, the com-

putation time of the centralized algorithm is Ccen
total=̇Ccen,

while the computation time of the distributed algorithm is

Cdis
total=̇Cdis + Ccom.

Throughout this section it is assumed that the irriga-

tion network consists of heterogeneous pools with different

lengths pi, i = 1, 2, ..., n distributed along a straight line,

communication is wireless with the bandwidth of BW be-

tween each two sub-systems, and the communication net-

work protocol is Time Division Multiple Access (TDMA)

scheme. That is, a specific time slot is allocated to each sub-

system to broadcast its information while other sub-systems

are waiting to receive the transmitted information. It is also

assumed that the communication topology is described by

an undirected connected graph. The communication range of

each sub-system is denoted by d, while the effective range

under which a reliable communication is guaranteed is αd
where 0 < α ≤ 1. Each variable (decision variable and

initial water level) is also encoded into a string of binaries

with length l for transmission.

Under the above assumptions let L denote the distance

between sub-system/pool S1 and pool Sn gates. For L ≤ αd,

a time slot of s = 2l
BW

is allocated to each sub-system

when the distributed algorithm is initialized (i.e., at t = 0) to

broadcast its chosen decision variable u0
i and its measured

water level at t = 0 to all other sub-systems. For the rest

of iterations t ∈ {1, 2, .., Tǫ} a time slot of s = l
BW

is

allocated. Hence, the communication overhead for the case

of L ≤ αd is

Ccom =
2nl

BW
+

nl

BW
Tǫ =

nl

BW
(2 + Tǫ), (12)

where Tǫ is the number of iterations for ǫ-convergence.

Now, consider the other case of L > αd. As the commu-

nication range of each sub-system is limited, the irrigation

network must be decomposed into at least q=̇
⌈

L
αd

⌉

disjoint

neighborhoods of sub-systems to have a connected commu-

nication graph via multi-hopping. For the simplicity, suppose

that sub-systems S1 and Sn are contained in neighborhoods

N1 and Nq, respectively. The intermediate neighborhoods

are denoted by N2,..., Nq−1. For neighborhoods N1 and Nq,

one sub-system is chosen as cluster head and for intermediate

neighborhoods two sub-systems are chosen as clusters heads.

In each neighborhood, clusters heads are chosen such that

they are within the effective communication range of their

closest neighborhood sub-systems.

Now, consider the distributed algorithm of [2]. At each it-

eration, for exchanging information between all sub-systems,

first an intra-neighborhood communication takes place by

allocating a time slot of s = Ml
BW

seconds to each sub-

system where M = 2 when the algorithm is initialized and

M = 1 for t ≥ 1. This is followed by communication

between clusters heads acting as relays to exchange infor-

mation between neighborhoods and subsequently between all

sub-systems. For communication between neighborhoods a

TDMA scheme is used by allocating a time slot of s̄ =
Mmmaxl

BW
to each cluster head where mmax is the number of

sub-systems in the biggest neighborhood. Consequently, at

each iteration it takes M(q − 1)mmaxl
BW

seconds to transfer

information from neighborhood N1 to all of its downstream

neighborhoods/sub-systems, and M(q − 2)mmaxl
BW

seconds

to transfer information from neighborhood N2 to all of

its downstream neighborhoods/sub-systems, etc. Similarly, it

takes M(q − 1)mmaxl
BW

seconds to transfer information from

neighborhood Nq to all of its upstream neighborhoods/sub-

systems, and M(q − 2)mmaxl
BW

seconds to transfer infor-

mation from neighborhood Nq−1 to all of its upstream

neighborhoods/sub-systems, etc. This results in the total

overhead of Mnl
BW

+ 2
(

(q− 1) + (q− 2) + (q− 3) + ... + 2 +

1
)

Mmmaxl
BW

= Mnl
BW

+ q(q−1)Mmmaxl
BW

for exchanging infor-

mation between all neighborhoods; and therefore, between

all sub-systems at each iteration. Hence, the communication

overhead for this case is

Ccom =

(

nl

BW
+

q(q − 1)mmaxl

BW

)

(2 + Tǫ). (13)

In summary, we have the following expression for the

communication overhead:

Ccom =

{

nl
BW

(2 + Tǫ), if L ≤ αd,
(

nl
BW

+ q(q−1)mmaxl

BW

)

(2 + Tǫ), if L > αd.

IV. SIMULATION RESULTS

In this section, the expressions for the computation over-

head are verified for the automated East Goulburn irriga-

tion district No. 12 with a total 42 sub-systems (pools

operating under distributed distant-downstream PI control

for water-level regulation), which is of the form (1). This

network of heterogeneous sub-systems represents a typical

irrigation system in Australia and other locations globally.

The computation overheads of the centralized optimization

algorithm and consensus based distributed optimization al-

gorithm of [2] are compared with each other in this section

for two cases: (i) Fixed N , and (ii) Fixed n. For the

first case the expressions for the computation overhead are

verified by increasing the number of upstream sub-systems.

In particular, the centralized optimization algorithm and the

consensus based distributed optimization algorithm of [2]

are applied to the last 6, 12, 18, 24, 30, 36, and 42 sub-

systems of the automated East Goulburn irrigation district
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No. 12. For the other case, we fix n to be n = 42 and

we verify the expressions for computation overhead for

N = {6, 9, 12, 15, 18, 20, 21, 22, 23, 24}. Throughout, it is

assumed that the last sub-system of this irrigation district

is subject to 17.8041 m3/min off-take disturbance and the

water levels must be within ±0.25m of the desired water

levels. That is, the lower bounds on the water levels are set

to be Li = ri − 0.25 and the upper bounds are set to be

Hi = ri + 0.25. It is also assumed that the upper bounds

on the input flow rates are Zi = L
3

2

i , the lower bounds are

Ei = 0, πi = 1
n

and the weighting matrices Q, R, P in (2)

are identity matrices. u0
i are chosen to be the desired water

levels and ǫ is set to be 0.1. The total length of this irrigation

district is L = 79590m and the communication parameters

are BW= 25Kbits, l = 32bits, d = 15000m and α = 2
3 .

For communication, this irrigation network is divided into 8

heterogeneous neighborhoods, as follows: N1 = {S1, .., S9},

N2 = {S10, ..., S14}, N3 = {S15, S16, S17}, N4 =
{S18, ..., S21}, N5 = {S22, S23, S24}, N6 = {S25, ..., S28},

N7 = {S29, ..., S35} and N8 = {S36, ..., S42}. Note that

sub-systems S9, S10, S14, S15, S17, S18, S21, S22, S24,S25,

S28, S29, S35 and S36 are chosen as clusters heads. All

of the sub-systems of neighborhood N2 are in the effective

communication range of cluster head S9. Similarly, all of the

sub-systems of neighborhood N1 are in the effective range of

cluster head S10 and all of the sub-systems of neighborhood

N3 are in the effective range of cluster head S14, and so on

and so for. For optimization, the MATLAB solver quadprog

is used, via YALMIP [6], to compute the solution to QPs

numerically. The solver quadprog is set to use the active set

method [4].

A. Fixed N , Varying n

In this section we fix the horizon length to be N = 24.

Similar to [4] to find the computation overhead for comput-

ing the optimal solution for each n = 6, 12, 18, 24, 30, 36, 42,

the simulation results are repeated several times by choosing

different initial conditions: xi[0] = ( gi 0 . . . 0 )
′

,

where gi = ri−0.2, gi = ri−0.18, ... ,gi = ri, gi = ri+0.02,

..., gi = ri+0.2. Then, the average of the obtained overheads

is calculated by excluding those results which are subject to

infeasible optimization solution. This average represents the

computation overhead for a given n.

Table I summarizes trade-offs between n, Ccm(n),
Copt(n) and Ccen(n) for the centralized optimization algo-

rithm and Fig. 1 and Fig. 2 show the optimization time and

computation overhead of the centralized algorithm, respec-

tively, applied to the QP problem (2). As clear from Fig. 1

and Fig. 2 the optimization time and computation overhead

in terms of the number of sub-systems are approximated and

upper bounded by the following polynomials, which are of

order 5 (note that for n > 12, Ccm is approximated and

upper bounded by the following linear function Ccm(n) ≈
0.1308n − 0.375).

Copt(n) ≈ α5n
5 + α4n

4 + α3n
3 + α2n

2

+1886.667n − 5203.66, (14)

n Ccm(sec.) Copt(sec.) Ccen(sec.)
6 1.18 15.24 16.42

12 1.58 149.36 150.94

18 1.98 925.81 927.79

24 - - -

30 3.42 6577.21 6580.64

36 4.26 9496.95 9501.22

42 5.12 14034.94 14040.06

TABLE I

TRADE-OFFS BETWEEN n, Ccm(n), Copt(n) AND Ccen(n).
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Fig. 1. Optimization time of the centralized algorithm versus the number
of sub-systems n for N = 24. Blue dots are experimental data. Red curve
includes the corresponding approximated data obtained by the polynomial
(14).

Ccen(n) = Copt(n) + Ccm(n)

≈ α5n
5 + α4n

4 + α3n
3 + α2n

2

+1886.7978n − 5204.035. (15)

Here α5 = 0.002618280607, α4 = −0.306171682097, α3 =
13.0855694 and α2 = −237.504.

Remark 4.1: i) During the experiments for n = 24 it is

observed that for non of initial states the active set method

converges to the optimal solution.

ii) The expressions for Ccm and Copt are obtained by

interpolating a linear function and a polynomial function of

order 5, respectively. For Ccm, it is observed that there will

be very small improvement in interpolation error if a higher

order function is used. This is also true for Copt. For Copt,

it is also observed that approximating Copt by a lower order

function results in a significant interpolation error.

Table II summarizes trade-offs between n, C1(n), Ccm(n),
Copt(n), Tǫ(n) and the distributed algorithm computation

overhead Cdis(n). From this table it is observed that C1(n),
Ccm(n) and Tǫ(n) are approximated (except for small

n = 6) and upper bounded by the following functions,

respectively: C1(n) ≈ 1.77, Ccm(n) ≈ 0.79, and Tǫ(n) ≈
0.334n + 4. From this table it also follows that the domi-

nant optimization time Copt(n) is approximated and upper

bounded by the following: Copt(n) ≈ 0.164.
Consequently, from (8) it follows that Cdis(n) is approx-

imated as follows: Cdis(n) ≈ 0.334n + 4.

Remark 4.2: Although the centralized algorithm is unable

to find the optimal solution for n = 24, the distributed

algorithm is able to approximate the optimal solution for
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n C1(sec.) Ccm(sec.) Copt(sec.) Tǫ Cdis(sec.)
6 1.56 0.66 0.11 4 3.65

12 1.63 0.76 0.16 8 7.52

18 1.6 0.76 0.164 10 9.18

24 1.64 0.75 0.163 11 10.35

30 1.73 0.78 0.164 12 11.42

36 1.76 0.77 0.164 16 15

42 1.77 0.79 0.164 18 17.64

TABLE II

TRADE-OFFS BETWEEN n, C1(n), Ccm(n), Copt(n), Tǫ(n) AND

Cdis(n).
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Fig. 2. Centralized computation overhead Ccen(n) versus the number of
sub-systems n for N = 24. Blue dots are experimental data. Red curve
includes the corresponding approximated data obtained by polynomial (15).

this case.

Fig. 3 compares the computation overheads of the cen-

tralized algorithm and the distributed optimization algorithm

with each other for fixed N = 24. From this figure it follows

that for the irrigation network of interest to us there is a

significant advantage in terms of the computation overhead

in using the distributed optimization algorithm. Specifically,

the computation overhead of the centralized algorithm for

n = 42 is Ccen(42) = 14040.06 seconds which is obviously

intractable, while the computation overhead of the distributed

optimization algorithm is Cdis(42) = 17.64 seconds. Also,

when nN > 400 there is a significant reduction in compu-

tation overhead if the distributed optimization algorithm is

used.

Remark 4.3: Under the aforementioned assumptions for

communication, we have Ccom(42) = 13.98 seconds and

therefore, the computation time of the distributed algorithm

is Cdis
total(42) = Cdis(42) + Ccom(42) = 31.62 seconds.

B. Fixed n, Varying N

In this section we fix the number of sub-systems to be

n = 42 and vary the horizon length N . Table III summarizes

trade-offs between N = {6, 9, 12, 15, 18, 24}, Ccm(N),
Copt(N) and Ccen(N). From this table it follows that the

above complexity terms are approximated and upper bounded

(except for the small N = 6) by the following polynomials.

Ccm(N) ≈ 0.236N − 0.544,

Copt(N) ≈ β5N
5 + β4N

4 + β3N
3 + β2N

2
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Fig. 3. Ccen(n) and Cdis(n) versus the number of sub-systems for N =
24. Solid curve indicates Ccen(n) and dashed curve indicates Cdis(n).

N Ccm(sec.) Copt(sec.) Ccen(sec.)
6 1.01 67.91 68.92

9 1.58 172.68 174.26

12 2.07 493.81 495.88

18 2.94 1606.3 1609.2

20 3.27 4729.9 4733.2

24 5.12 14034.94 14040.06

TABLE III

TRADE-OFFS BETWEEN N , Ccm(N), Copt(N) AND Ccen(N).

+2203.9943N − 5490,

Ccen(N) = Copt(N) + Ccm(N)

≈ β5N
5 + β4N

4 + β3N
3 + β2N

2

+2204.2303N − 5490.544.

Here β5 = 0.001, β4 = −0.30721, β3 = 17.064 and β2 =
−304.32681. Table IV summarizes trade-offs between

N , C1(N), Ccm(N), Copt(N), Tǫ(N) and Cdis(N). From

this table it follows that the above complexity terms are

approximated and upper bounded (except for small N = 6, 9)

by the following polynomials.

C1(N) ≈ 0.00075N2 − 0.001N + 1.427,

Ccm(N) ≈ 0.0003542N2 + 0.0219584N + 0.0655,

Copt(N) ≈ 0.0055N + 0.032,

Tǫ(N) ≈ 1.4N − 14.7,

Cdis(N) = C1(N) + (Tǫ(N) − 1)(Copt(N) + Ccm(N))

≈ 0.00049584N3 + 0.03364N2 − 0.2955N

−0.10375. (16)

Fig. 4 compares the experimental data with the approxi-

mation given by the above polynomial for Cdis(N), which

is obtained from the formula (8). From this figure it follows

that the distributed algorithm computation overhead is ap-

proximated and upper bounded (except for small N = 6, 12)

by the above cubic function.

Fig. 5 compares the computation overheads of the cen-

tralized algorithm and the distributed optimization algorithm

with each other for n = 42. From this figure it also
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N C1(sec.) Ccm(sec.) Copt(sec.) Tǫ Cdis(sec.)
6 1.39 0.21 0.065 2 1.62

9 1.46 0.29 0.079 2 1.83

12 1.52 0.38 0.097 2 2

15 1.57 0.47 0.11 6 4.075

18 1.65 0.52 0.13 10 7.59

20 1.7 0.64 0.141 12 10.64

21 1.73 0.68 0.147 14 12.1

22 1.75 0.72 0.153 16 13.92

23 1.76 0.75 0.158 17 15.75

24 1.77 0.79 0.164 18 17.64

TABLE IV

TRADE-OFFS BETWEEN N , C1(N), Ccm(N), Copt(N), Tǫ(N) AND

Cdis(N).
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Fig. 4. Cdis(N) versus the horizon length for n = 42. Blue dots are
experimental data. Red curve includes the corresponding approximated data
obtained by polynomial (16).

follows that there is a significant advantage in terms of the

computation overhead in using the distributed algorithm for

the irrigation network of interest to us. Specifically, when

nN > 400 there is a significant reduction in computation

overhead if the distributed optimization algorithm is used.

This follows as each decision maker frequently updates its

local component of the overall decision variable by solving

an optimization problem of reduced size.

V. CONCLUSIONS

In this paper we compared the computation overhead

of a centralized optimization algorithm for solving the QP

problem (2) with the computation overhead of the distributed

optimization algorithm of [2]. It was assumed that both

algorithms use the active set method and do not exploit

problem structure. For the QP problem (2), which represents

the typical optimization problem arising in automated irri-

gation networks, it was illustrated that there is a significant

advantage in terms of computation overhead in using the

distributed optimization algorithm of [2] for large-scale irri-

gation networks. Specifically, for the particular network of

interest to us (the East Goulburn irrigation district No. 12) it

was shown that the centralized optimization algorithm cannot

provide a computationally tractable solution; and there is

a significant reduction in the computation overhead when

5 10 15 20 25
0

100

200

300

400

500

N

C
c

e
n
,C

d
is

(s
e
c
o

n
d

s
)

�

Fig. 5. Ccen(N) and Cdis(N) versus the horizon length N for n = 42.
Solid curve indicates Ccen(N) and dashed curve indicates Cdis(N).

nN > 400 if the distributed optimization algorithm of [2] is

used.
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