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Abstract— In this paper we are concerned with uniform mean
square reliable data reconstruction and robust stability for a
class of dynamical systems over Additive White Gaussian Noise
(AWGN) channels, subject to the limited capacity constraints.
Specifically, the design of an encoder, decoder and controller
subject to the mean square reliable data reconstruction and
stability, is considered for a class of dynamical systems. The
class of dynamical systems which are described the uncertainty
is modeled via a relative entropy constraint.

I. I NTRODUCTION

Recently, there has been a significant progress in addressing
reliable data reconstruction (known as observability) and sta-
bility of dynamical systems which are controlled over limited
capacity communication channels [1]-[13] (throughout the
capacity is measured in bits per source message which is
directly related to the transmission bit rate). In this paper, we
are concerned with the control/communication system of Fig.
1. The control/communication system of Fig. 1 is defined
on a complete probability space(Ω,F(Ω), P ) with filtration

{F}t≥0; t ∈ N+
4
= {0, 1, 2, ...}, whereYt, Zt, Z̃t, Ỹt andUt,

t ∈ N+ are Random Variables (R.V.’s) denoting the source
message, channel input codeword, channel output codeword,
the reproduction of the source message, and the control input
to the source, respectively. The objective of this paper is
to design an encoder, decoder and controller which achieve
uniform mean square reconstruction and robust stability for
a class of dynamical systems, when the capacity of the
communication channel is limited.
The problem of uniform observability and robust stability
of fully observed uncertain dynamical systems subject to a
bounded disturbance input is considered in [4], [9], [12],
[13]. This paper complements the already existing results in
the literature since it addresses similar questions for a class of
dynamical system, which is described by a relative entropy
constraint (the class denotes the uncertainty description of
the system). This uncertainty description is a generalization
of the sum quadratic uncertainty description considered in
[14],[15], [4], [9], [12], [13], and it is shown to have nice
structure [16].
This paper is organized as follows. In Section II, the problem
formulation and mathematical preliminaries are given. In
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Fig. 1. Control/communication system subject to uncertainty in the source

Section III, an encoding scheme for mean square reliable
data reconstruction of an uncertain source which produces
orthogonal processes, is proposed. Subsequently, in Section
IV, stability for a class of dynamical systems subject to
quadratic constraints are investigated.

II. PROBLEM FORMULATION AND MATHEMATICAL

PRELIMINARIES

In this paper, we are concerned with the
control/communication system of Fig. 1. Throughout,

sequences of R.V.’s are denoted byY T 4
= (Y0, Y1, ..., YT )

for T ∈ N+. log(.) denotes the natural logarithm andIq

denotes identity matrix with dimension (q× q). A stochastic
kernel P (dF ; x) is a mappingP : Â × A → [0, 1] which
satisfies i) For everyx ∈ A, the set functionP (:; x) is a
probability measure onÂ, and ii) For everyF ∈ Â, the
function P (dF ; .) is A-measurable ((A,A), (Â, Â) are
measurable spaces).diag(...) denotes diagonal matrix,σ{.}
denotesσ-algebra andσ̄(.) denotes the biggest singular
value.
The different blocks of Fig. 1 are described below.
Information Source. The information source is described



by the probability measureP (dY T ) = fY T dY T which
depends on the control sequence as shown in Fig. 1. It
is assumed that the density functionfY T belongs to the
following relative entropy constraint.

fY T−1 ∈ DSU (gY T−1)
4
=

{
fY T−1 ;

1
T

H(fY T−1 ||gY T−1)

≤ Rc + EfY T−1 [
1

2T

T−1∑
t=0

Y
′
t MtYt]

}
(1)

whereH(.||.) is the relative entropy [17],gY T−1 andfY T−1

are the joint density functions associated with observation
Y T−1 obtained from nominal and uncertain systems, respec-
tively, Rc ≥ 0 and Mt = M

′
t ∈ <d×d is positive semi-

definite, andEfY T−1 [.] is the expectation with respect to the
joint density functionfY T−1 .
The relative entropyH(fY T−1 ||gY T−1) can be thought of
as a measure of the difference between the nominal density
function gY T−1 and the perturbed density functionfY T−1 .
Typical perturbation allowed under the above relative entropy
constraint are the perturbations in the mean of the density
function gY T−1 [18]. One example of such perturbations is
given by the following class of fully observed Gauss Markov
systems.

(Ω,F(Ω), P ; {Ft}t≥0) :{
Xt+1 = AXt + NUt + BWt + BW̄t, X0 = X,

Yt = Ht, Ht = Xt
(2)

where Xt ∈ <d, Ut ∈ <o, Wt ∈ <m, W̄t ∈ <m, X0 ∼
N(x̄0, V̄0), Ht ∈ <d, Wt is i.i.d.∼ N(0,ΣW ), ΣW > 0, W̄t

is the perturbed noise random process which is{σ{Wl}; l ≤
t− 1} adapted, andHt is the signal to be controlled.
The nominal system associated with the above uncertain
system, is the following fully observed system.

(Ω,F(Ω),Π; {Ft}t≥0) :{
Xt+1 = AXt + NUt + BWt, X0 = X,

Yt = Ht, Ht = Xt
(3)

It can be shown that for the sequenceY T−1,
H(fY T−1 ||gY T−1) = 1

2EP

[∑T−2
t=0 W̄

′
t Σ

−1
W W̄t

]
. That

is, the relative entropy constraint (1) holds for the uncertain
system (2) with the nominal system (3), provided the
following sum quadratic constraint holds.

EP

[ 1
2T

( T−2∑
t=0

(W̄
′
t Σ

−1
W W̄t)−

T−1∑
t=0

(X
′
tMtXt)

)

−Rc

]
≤ 0. (4)

Remark 2.1:It is clear from above example that the
relative entropy uncertainty description (1) gives as a special
case a constraint on the energy of the uncertainty. Such
uncertainty description has been considered in [14], [15]; and
for continuous time systems (in the form of integral quadratic
constraint uncertainty description) has been considered in
[16], [19]-[21].
Communication Channel: The communication channel is
an AWGN channel. That is, the communication channel at

time t ∈ N+ is described bỹZt = Zt +W̃t (E[Z
′
tZt] ≤ Pt),

whereZt, Z̃t ∈ <d are the channel input and output at timet
and the stochastic process{W̃t ∈ <d; t ∈ N+}∼ N(0,Wc)
is an orthogonal zero mean Gaussian process independent of
Zt.
For an AWGN channelZ̃t = Zt + W̃t, Zt ∈ <,
E(Z2

t ) ≤ Pt, W̃t ∼ N(0, Wc), the channel capacity with
and without feedback is the same, and it is given byC =
limT→∞ 1

2T

∑T−1
t=0 log(1 + Pt

Wc
), nats, provided the limit

exists.
Encoder: The encoder at any timet ∈ N+ is modeled by
a stochastic kernelP (dZt; yt, ut−1, z̃t−1).
Decoder: The decoder at any timet ∈ N+ is modeled by a
stochastic kernelP (dỸt; z̃t, ut−1).
Controller: The controller at any timet ∈ N+ is modeled
by a stochastic kernelP (dUt; z̃t, ut−1).

In this paper, we construct encoding and stabilizing schemes
which guarantee uniform mean square reconstruction and
stability (as defined below) for the class of systems (2) when
the perturbed noise process is subject to the sum quadratic
constraint (4).

Definition 2.2: (Uniform Mean Square Reconstruction).
Consider the control/communication system of Fig. 1 over
a class of dynamical systems. The signalY T is uniformly
reconstructed using a mean square error criterion if there
exist a control sequence, an encoder and decoder such that

lim
T→∞

sup
fY T−1∈DSU (gY T−1 )

1
T

T−1∑
t=0

E||Yt − Ỹt||r ≤ Dv, (5)

for r = 2 and a finiteDv ≥ 0.
Definition 2.3: (Mean Square Robust Stability). Consider

the control/communication system of Fig. 1 over a class of
dynamical systems. LetYt = Ht +Γt whereHt is the signal
to be controlled andΓt is a function of measurement noise
and uncertainty. The signalHT is mean square stabilizable
if there exists an encoder, decoder and controller such that

lim
T→∞

sup
fY T−1∈DSU (gY T−1 )

1
T

T−1∑
t=0

E||Ht||r ≤ Dv, (6)

for r = 2 and a finiteDv ≥ 0.
In [10], a general necessary condition for uniform observ-

ability and robust stability of an uncertain system described
via the relative entropy constraint (1) was derived. It is based
on the suitable application of the following lower bound
relating capacity and rate distortion.

Theorem 2.4:Consider a communication system without
feedback equipped with an encoder and decoder (similar to
Fig. 1 without feedback) in whichYt ∈ <d. A necessary
condition forr-mean uniform reconstruction ofY T is given
by

C ≥ Hr(Y)− d

r
+ log(

r

dVdΓ(d
r )

(
d

rDv
)

d
r )

4
= RS,r(Dv), (7)

whereC is the channel capacity measured in nats per source
message,Hr(Y) is the entropy rate for a class of sources



(see [10], Definition 2.1, in which the quantity is defined
as a maximization over the class of source of the entropy
rate),Γ(.) is the gamma function,Vd is the volume of the

unit sphere (e.g.,Vd = V ol(Sd); Sd
4
= {y ∈ <d; ||y|| ≤ 1})

andRS,r(Dv) is the robust Shannon lower bound (see [10],
Lemma 2.4).
Although, Theorem 2.4 is subject to the case of without
feedback, the results can be extended to feedback channels
and sources which use feedback from the output of the
decoder to the input of the encoder (hence they are applicable
to the system of Fig. 1), provided 1) The capacity of the
channel with and without feedback are the same, 2) the
rate distortion of a source without using feedback from
the decoder to the encoder is the same as the one that
uses such feedback, and the reconstruction kernel is causal.
Conditions 1) is valid for the AWGN channel considered,
while condition 2) holds if the source output is an orthogonal
process, which uses feedback.
Note that subject to conditions 1), 2) above, then (7) is also a
necessary condition for uniform reconstruction and stability
of an innovation type encoder using definitions (5) and (6),
when lim is replaced withlim sup.
The results given in subsequent sections complement our
previous results reported in [10] by proposing encoding
schemes which guarantee uniform mean square observability
by transmittingC = RS,r(Dv) bits per time, over AWGN
channels. From Theorem 2.4 it follows that this rate is
the minimum possible capacity for uniform mean square
reconstruction.

III. U NCERTAIN SOURCEDESCRIBED VIA RELATIVE

ENTROPY CONSTRAINT

In this section we first compute the robust rate distortion for
a class of pre-processes sources whose encoder output is a
class of orthogonal processes, in which the class is described
via the relative entropy constraint (1), having a Gaussian
nominal distribution. Then, it is shown that over AWGN
channel, there exist an encoder and decoder that guarantee
mean square uniform reconstruction.
Rate Distortion for a Class of Sources.Consider a class of
sources which produce orthogonal zero mean encoder output
processes{Kt ∈ <d; t ∈ N+}, described via the following
relative entropy constraint

DSU (gKT−1) = {fKT−1 ;
1
T

H(fKT−1 ||gKT−1)

≤ Rc + EfKT−1 [
1

2T

T−1∑
t=0

K
′
tMtKt]} (8)

where the nominal density functiongKT−1 is Gaussian
distributed. That is,gKT−1 ∼ N(0, diag{Λ0, Λ1, ..., ΛT−1}).
The rate distortion for the class is defined by the minimax
problem

RT,r(Dv)
4
= inf

P (dK̃T−1;kT−1)∈MDC

sup
fKT−1∈DSU (gKT−1 )

I(KT−1; K̃T−1), (9)

where I(.; .) is the mutual information [17] andMDC
4
=

{P (dK̃T−1; kT−1); 1
T

∑T−1
t=0 E||Kt − K̃t||2 ≤ Dv}.

If we work on the space of probability measures induced by
the densities, then it can be shown that two constraint sets
are compact, and hence the problem is equivalent to

Rsup
T (Dv) = sup

fKT−1∈DSU (gKT−1 )

inf
P (dK̃T−1;kT−1)∈MDC

I(KT−1; K̃T−1) (10)

It can be further shown that the maximizing set can be
restricted to orthogonal processes which are Gaussian.
For simplicity in analyzing, we consider the case ofKt ∈ <.
The vector case is treated similarly.
Under assumption of̄σ(ΛtMt) < 1, ∀t ∈ {0, 1, 2, ..., T −1},
whereσ̄(.) denotes the biggest singular value, we have

Rsup
T (Dv) =

T−1∑
t=0

1
2

log
Ψ∗t
Dv

, Dv < min
t∈{0,1,...,T−1}

Ψ∗t

Ψ∗t =
1 + s∗

s∗
Λt

1−MtΛt
(11)

wheres∗ > 0 is the unique solution to the following equation

−1
2

log
1 + s∗

s∗
+

1
s∗

+
1

2T

T−1∑
t=0

log(1− ΛtMt) = Rc. (12)

Computation of Robust Shannon Lower Bound. It can
be easily shown that whenlimT→∞ ΛT = Λ∞ and
limT→∞MT = M , the robust Shannon lower bound is given
by

RS,r(Dv) =
1
2

log
1+s∗

s∗
Λ∞

1−MΛ∞

Dv
(13)

Thus, for Dv < mint∈N+
1+s∗

s∗
Λt

1−MΛt
, under assumptions

of limT→∞MT = M , and limT→∞ ΛT = Λ∞, the ro-
bust Shannon lower bound is an exact approximation of

Rsup(Dv)
4
= limT→∞ 1

T Rsup
T (Dv). That is, Rsup(Dv) =

RS,r(Dv) = Hr(K)− 1
2 log(2πeDv).

Realization of a Communication Link Matched to the
Uncertain Source. Next, consider the following AWGN
channel

Z̃t = Zt + W̃t, W̃t orthogonal∼ N(0,Wc),
Zt ∈ <, E(Z2

t ) ≤ Pt, (14)

whereW̃t is independent ofZt, ∀t ∈ N+.
Under assumptions of limT→∞MT = M and
limT→∞ ΛT = Λ∞, it can be shown that if
the encoder multiplies Kt by αt =

√
βtWc

Dv

(Dv < mint∈N+
1+s∗

s∗
Λt

1−MtΛt
) ,i.e., Zt = αtKt,

and transmits it under transmission power constraint

E(Z2
t )= α2

t E(K2
t ) ≤ βtWc

Dv

1+η∗t
η∗t

Λt

1−MtΛt

4
= Pt, where

η∗t > 0 is the unique solution of the following equation
− 1

2 log 1+η∗t
η∗t

+ 1
η∗t

+ 1
2 log(1 − ΛtMt) = Rc, we have

C = Rsup(Dv)= RS,r(Dv). On the other hand, if the

decoder multiplies the channel outputs byγt =
√

Dvβt

Wc
to



produceK̃t = γtZ̃t, for Dv < mint∈N+
1+s∗

s∗
Λt

1−MtΛt
, we

have an end to end transmission with distortion

E(Kt − K̃t)2 = E(Kt − γtαtKt − γtW̃t)2

= (1− βt)2E(K2
t ) + γ2

t E(W̃ 2
t )

≤ (1− βt)2
1 + η∗t

η∗t

Λt

1−MtΛt

+γ2
t E(W̃ 2

t )

= (1− 1 +
Dv

1+s∗
s∗

Λt

1−MtΛt

)2

.
1 + η∗t

η∗t

Λt

1−MtΛt
+ βtDv

=
D2

v

( 1+s∗
s∗ )2 Λt

1−MtΛt

1 + η∗t
η∗t

+ Dv

− D2
v

1+s∗
s∗

Λt

1−MtΛt

∀fKT−1 ∈ DSU (gKT−1).
(15)

Thus, under assumption oflimT→∞MT = M and
limT→∞ ΛT = Λ∞, for Dv < mint∈N+

1+s∗
s∗

Λt

1−MtΛt

using the proposed encoding scheme a uniform mean square
observability in the form

lim sup
T→∞

sup
fKT−1∈DSU (gKT−1 )

1
T

T−1∑
t=0

E(Kt − K̃t)2 ≤ Dv

(16)

is obtained over the AWGN channel (14) with capacity
RS,r(Dv).
The Vector CaseKt ∈ <d. Extension of the above results
to the vector case, i.e., to the case where an uncertain source
produces orthogonal zero mean process{Kt ∈ <d; t ∈ N+},
is straightforward. For the vector case

Rsup
T (Dv) =

T−1∑
t=0

1
2

log
ddetΣ∗t

Dv
,

Dv

d
< min

i
λ∗ti, ∀t (17)

wherei = {1, 2, ..., d},
Σ∗t = diag{λ∗t1, ..., λ∗td} (18)

and

Ψ∗t =
1 + s∗

s∗
Λt(Id − ΛtMt)−1 = E∗

t Σ∗t E
∗′
t , (19)

in which σ̄(ΛtMt) < 1, E∗
t is the unitary matrix that

diagonalizeΨ∗t and s∗ > 0 is the unique solution of the
following equation

−d

2
log

1 + s∗

s∗
− d

2
+

1
2T

T−1∑
t=0

log det(Id − ΛtMt)

+
1

2T

1 + s∗

s∗

T−1∑
t=0

trac[(Id −MtΛt)−1(Id − ΛtMt)]

= Rc. (20)

Next, consider the following AWGN channel

Z̃t = Zt + W̃t, W̃t orthogonal∼ N(0,Wc),
Wc = diag{W1, ..., Wd},
Zt = [Zt1 ... Ztd]

′ ∈ <d, E(Z2
ti) ≤ Pti, 1 ≤ i ≤ d

(21)

It can be shown that whenlimT→∞MT = M and
limT→∞ ΛT = Λ∞, uniform mean square observability
of such uncertain source over the AWGN channel (21) is
obtained by transmittingC = Rsup(Dv) (= RS,r(Dv) for
sufficiently smallDv) if the encoder and decoder are defined
as follows. The encoder multiplies̄Kt = E∗′

t Kt by

At = diag{
√

ηt1W1

Dv

d

, ...,

√
ηtdWd

Dv

d

}, (22)

whereηti = 1 −
Dv
d

λ∗
ti

and Dv

d ≤ mini λ∗ti, ∀t and transmits

Zt = AtK̄t under power constraintE(Z2
ti) ≤ ηtiWi

Dv
d

λ∗ti
4
=

Pti, 1 ≤ i ≤ d. On the other hand, the decoder multiplies
the channel outputs by

Bt = diag{
√

Dv

d

ηt1

W1
, ...,

√
Dv

d

ηtd

Wd
} (23)

to produce ¯̃Kt = BtZ̃t and subsequently,̃Kt = E∗
t

¯̃Kt.
Remark 3.1:From the results of this section and Theorem

2.4, it is concluded that for a given distortion valueDv (suffi-
ciently small),C = RS,r(Dv) is the minimum capacity under
which there exists an encoding scheme for uniform mean
square reliable data reconstruction of the process{Kt; t ∈
N+}, in which this capacity is achieved by choosingAt and
Bt, as described by (22) and (23), respectively.

IV. U NCERTAIN FULLY OBSERVEDCONTROLLED GAUSS

MARKOV SYSTEM.

Consider the control/communication system of Fig. 1 de-
scribed by the following AWGN channel

Z̃t = Zt + W̃t, W̃t orthogonal∼ N(0,Wc),

Wc = diag{W1, ...,Wd}, Zt = [Zt1 ...Ztd]
′
,

E(Z2
ti) ≤ Pti, i = 1, 2, ..., d, (24)

and the following uncertain system

(Ω,F(Ω), P ; {Ft}t≥0) :{
Xt+1 = AXt + NUt + BWt + BW̄t, X0 = X,

Yt = Ht, Ht = Xt
(25)

where Xt ∈ <d, Ut ∈ <o, Wt ∈ <m, W̄t ∈ <m,
X0 ∼ N(x̄0, V̄0), Ht ∈ <d is the signal to be controlled,Wt

is i.i.d. ∼ N(0, ΣW ),ΣW > 0, W̄t is the perturbed noise
random process which is{σ{Wl}; l ≤ t − 1} adapted, and
{X0,Wt, W̄t} are mutually independent.
The nominal system associated with the uncertain system
(25) is the following fully observed system

(Ω,F(Ω),Π; {Ft}t≥0) :{
Xt+1 = AXt + NUt + BWt, X0 = X,
Yt = Ht, Ht = Xt

(26)
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Fig. 2. Control/communication system subject to uncertainty in the source

The uncertain system (25) is subject to the following sum
quadratic uncertainty constraint{{W̄t}T−2

t=0 ; g(W̄T−2) ≤
0}; g(W̄T−2)

4
= EP [ 1

2T

( ∑T−2
t=0 (W̄

′
t Σ

−1
W W̄t −

∑T−1
t=0 X

′
tMXt

)
−Rc].

For P (dY T−1) = fY T−1dY T−1 and Π(dY T−1) =
gY T−1dY T−1 associated with the uncertain and nominal
systems (25) and (26), respectively, consider the following
robust entropy rate problem.

1
T

Hr(f∗Y T−1) = sup
fY T−1∈DSU (gY T−1 )

1
T

HS(fY T−1) (27)

whereHs(.) is the Shannon differential entropy [17] and

DSU (gY T−1) = {fY T−1 ; P (dY T−1) = fY T−1dY T−1,

Π(dY T−1) = gY T−1dY T−1,
1
T

H(P ||Π) ≤ Rc

+EP [
1

2T

T−1∑
t=0

Y
′
t MYt]}. (28)

SupposeB
′
(BΣW B

′
)−1B ≤ Σ−1

W and consider the fol-
lowing unconstraint problem (here we assume existence of
solution yielding a finite entropy).

1
T

Hr(f
∗,s∗
Y T−1) = min

s≥0
sup

{W̄t}T−2
t=0

{
− 1 + s

2T
EP [

T−2∑
t=0

W̄
′
t Σ

−1
W

.W̄t]− 1
T

EP [log gY T−1 ] + sRc

+
s

2T
EP [

T−1∑
t=0

Y
′
t MYt]

}
. (29)

Subsequently, the robust entropy rate is given by

Hr(Y) = lim
T→∞

1
T

Hr(f
∗,s∗
Y T−1). (30)

Next, following the stochastic dynamic programming [22],
the solution to the robust entropy problem (29) is given in
the following Theorem.

Theorem 4.1:Consider the robust entropy problem (29)
and (30). LetB

′
(BΣW B

′
)−1B < (1 + s)Σ−1

W for some
s ≥ 0. Then,
i)

W̄ ∗
t = −[B

′
(BΣW B

′
)−1B − (1 + s)Σ−1

W

+B
′
Ξt+1B]−1B

′
Ξt+1AXt (31)

whereΞt is a real symmetric solution of

Ξt = A
′
Ξt+1A−A

′
Ξt+1B[B

′
(BΣW B

′
)−1B

−(1 + s)Σ−1
W + B

′
Ξt+1B]−1B

′
Ξt+1A + sM

ΞT−1 = sM. (32)

and s ≥ 0 is the minimizing solution of the following
equation

Z(s∗) = min
s≥0

{sRc +
1

2T
trac(Ξ0V̄0)

+
1

2T

T−1∑
t=1

trac(B
′
ΞtBΣW )} (33)

ii) If ( A,B) is controllable,A andB
′
(BΣW B

′
)−1B− (1+

s)Σ−1
W are invertible, andβ(η) > 0 for someη; |η| = 1

whereβ(η) is the rational matrix function given by

β(η) = B
′
(BΣW B

′
)−1B − (1 + s)Σ−1

W + B
′
(η−1Id

−A
′
)sM(ηId −A)−1B, s ≥ 0. (34)

Then

Hr(Y) = sRc +
q

2
log(2πe) +

1
2

log det(BΣW B
′
)

+min
s≥0

{sRc +
1
2
trac(B

′
Ξ∞BΣW )} (35)

where Ξ∞ is the solution of the following Algebraic Ric-
cati equation appearing in theH∞ estimation and control
problems

Ξ∞ = A
′
Ξ∞A−A

′
Ξ∞B[B

′
(BΣW B

′
)−1B − (1 + s)

.Σ−1
W + B

′
Ξ∞B]−1B

′
Ξ∞A + sM. (36)

Next, let Ut ∈ Ut
4
= {Ut : <t(o+q) → <o;Ut ∈ GU

t−1};
GU

t
4
= σ{Y0, ..., Yt; U0, ..., Ut}. The objective is to design

an encoder, decoder and controller for mean square stability
subject to the following cost functional.

lim
T→∞

inf
UT−1∈U0×U1×...×UT−1

sup
{{W̄t}T−2

t=0 ;g(W̄ T−2)≤0}
1
T

J(X0,T−1, U0,T−1) (37)



where J(X0,T−1, U0,T−1) = 1
2EP

∑T−1
t=0 (||Xt||2 +

||Ut||2H), (H > 0).
Fig. 2 illustrates encoding and stabilizing schemes for uni-
form observability and robust stability of the uncertain sys-
tem (25) subject to the cost functional (37). The encoder,
decoder and controller will be an extension of the results of
Section III and the results of [11] and [23]; and hence we
omit the detail of the design of the encoding and stabilizing
schemes due to the space limitation.
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