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Abstract— In this paper we are concerned with uniform mean
square reliable data reconstruction and robust stability for a
class of dynamical systems over Additive White Gaussian Noise Y
(AWGN) channels, subject to the limited capacity constraints. . !
Specifically, the design of an encoder, decoder and controller Uncertain Plant »| Encoder
subject to the mean square reliable data reconstruction and (Information /7_,‘
stability, is considered for a class of dynamical systems. The Source) /,
class of dynamical systems which are described the uncertainty 1 /7
is modeled via a relative entropy constraint. /7
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Recently, there has been a significant progress in addressing
reliable data reconstruction (known as observability) and sta-
bility of dynamical systems which are controlled over limited
capacity communication channels [1]-[13] (throughout the —————~
capacity is measured in bits per source message which is \\l ———————— -
directly related to the transmission bit rate). In this paper, we N Zt
are concerned with the control/communication system of Fig. N
1. The control/communication system of Fig. 1 is defined ¥ Y
on a complete probability spa¢€, F(2), P) with filtration Controller
{Fhisoit € Ny 2 {0,1,2,...}, whereY;, Z;, Z,, Y; andU;,
t € N, are Random Variables (R.V.s) denoting the source Y,

message, channel input codeword, channel output codeword,

the reproduction of the source message, and the control ingyy 1 controlicommunication system subject to uncertainty in the source
to the source, respectively. The objective of this paper is

to design an encoder, decoder and controller which achieve

uniform mean square reconstruction and robust stability for

a class of dynamical systems, when the capacity of t|ﬂdnﬁ~ect|on ll, an e_ncod]ing scheme _for mean sg_uar\]re re(ljlable
communication channel is limited. ata reconstruction of an uncertain source which produces

The problem of uniform observability and robust stability2rthogonal processes, is proposed. Subsequently, in Section
Y, stability for a class of dynamical systems subject to

of fully observed uncertain dynamical systems subject to
bounded disturbance input is considered in [4], [9], [12duadratic constraints are investigated.
[13]. This paper complements the already existing results in 0
the literature since it addresses similar questions for a class of
dynamical system, which is described by a relative entropy
constraint (the class denotes the uncertainty description bf this  paper, ~we are concerned with the
the system). This uncertainty description is a generalizatigiPntrol/communication system  of Flg 1. Throughout,
of the sum quadratic uncertainty description considered #equences of R.V.s are denoted b’)? (Yo, Y1,..., Y1)
[14],[25], [4], [9], [12], [13], and it is shown to have nice for T € N.. log(.) denotes the natural logarithm arg
structure [16]. denotes identity matrix with dimensiog % ¢). A stochastic
This paper is organized as follows. In Section II, the problerkernel P(dF; z) is a mappingP : A x A — [0,1] which
formulation and mathematical preliminaries are given. Isatisfies i) For everyr € A, the set functionP(:;z) is a
probability measure omd, and ii) For everyF € A, the
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by the probability measure®(dY”) = fyrdY” which timet e N is described byZ; = Z,+ W, (E[Z,Z;] < P),
depends on the control sequence as shown in Fig. 1.uthereZ,, Z, € R are the channel input and output at time
is assumed that the density functigig- belongs to the and the stochastic proce$¥/; € Rt € N}~ N(0, W)

following relative entropy constraint. is an orthogonal zero mean Gaussian process independent of
A 1 Zt- 5 B
Jyr-1 EIDSU(gnyl):{fyT—l;TH(fyT—ngnyl) For an AWGN channelZ, = Z, + W;, Z, € R,
= E(Z?) < P, Wy ~ N(0,W,), the channel capacity with
<R+ Ejp . [ Z Yt/Mth]} (1) and without feedback is the same, and it is given(by-
2T = limy oo %Zf:_ol log(1 + %), nats, provided the limit

whereH(.||.) is the relative entropy [17yr—1 and fyr-.  EXIStS. _ _ .

are the joint density functions associated with observatida"coder: The encoder at t"’m)t/_t;mf_elNJr is modeled by
Y T-1 obtained from nominal and uncertain systems, respe@-Stochastic kemeb(dz; y*, v, 277).

tively, R. > 0 and M, = Mt' € R4xd s positive semi- Decoder: The decoder at any timec N is modeled by a

L7 . . . i V.. 5t g t—1
definite, and._,_, [] is the expectation with respect to theStochastic kerneP(dYy; 2%, u*=). .
joint density fu‘ﬁctionfypl_ Controller: The controller at any time¢ € N is modeled

The relative entropyH (fy=-:||lgyr—1) can be thought of DY @ stochastic kerndP(dUy; 2, u'~1).

as a measure of the difference between the nominal density ) o
function gy~ and the perturbed density functiofy«_:. In this paper, we construct encoding and stabilizing schemes

Typical perturbation allowed under the above relative entropj/Nich guarantee uniform mean square reconstruction and
constraint are the perturbations in the mean of the densigj@Pility (@s defined below) for the class of systems (2) when
function gy+—1 [18]. One example of such perturbations isthe perturbed noise process is subject to the sum quadratic

given by the following class of fully observed Gauss Markowonstraint (4).

systems. Definition 2.2: (Uniform Mean Square Reconstruction).
Consider the control/communication system of Fig. 1 over
(02, F(Q), P;{Fi}t>0) a class of dynamical systems. The sighdl is uniformly
{ Xiy1 = AXy + NU; + BW; + BW,;, X, = X(z) reconstructed using a mean square error criterion if there
Y, = Hy, H, =X, exist a control sequence, an encoder and decoder such that
where X; € R, U; € R°, W, € ™, W, € R™, Xy ~ 1 ~
N(zo, Vo), Hy € R4, Wy is iid. ~ N(0,Sy), Sy > 0, W,  Jlim  sup 72 ENi=Yi" <Dy, (®
is the perturbed noise random process whicfui§W,; };1 < Fyr=1€Psulgyr—1) = 1=0
t — 1} adapted, and{, is the signal to be controlled. for r = 2 and a finiteD, > 0.
The nominal system associated with the above uncertainDefinition 2.3: (Mean Square Robust Stability). Consider
system, is the following fully observed system. the control/communication system of Fig. 1 over a class of

dynamical systems. Lét; = H, + I, whereH, is the signal

to be controlled and’; is a function of measurement noise
(3) and uncertainty. The signd@l” is mean square stabilizable

if there exists an encoder, decoder and controller such that

(Q, F(), I {Fi}ixo0) :
X411 = AX, + NU, + BW,, X, = X,
Y, = Hy, H;=X;

It can be shown that for the sequenc&”—!, =
H(fyr-1llgyr-1) = %Ep[ = W, z;;v‘vtl. That ~ lim sup =) BIH|" <Dy, (6)
is, the relative entropy constraint (1) holds for the uncertain T fyra€Psulgyr-1) T o
system (2) with the nominal system (3), provided thdor » =2 and a finiteD, > 0.
following sum quadratic constraint holds. In [10], a general necessary condition for uniform observ-
T_9 T_1 ability and robust stability of an uncertain system described
Ep {L ( Z (WQEQ}WO _ Z (X;]\/[tXt)> via the relative entropy constraint (1) was derived. It is based
2T —0 =0 on the suitable application of the following lower bound
B Rci| <. 4) relating capacity and rate distortion.
- Theorem 2.4:Consider a communication system without

Remark 2.1:It is clear from above example that thefeedback equipped with an encoder and decoder (similar to
relative entropy uncertainty description (1) gives as a speciiig. 1 without feedback) in whic; € R¢. A necessary
case a constraint on the energy of the uncertainty. Sucondition forr-mean uniform reconstruction af” is given
uncertainty description has been considered in [14], [15]; arfdy
for continuous time systems (in the form of integral quadratic d - d
constraint uncertainty description) has been considered th> H,(Y) — — + IOg(id(T
[16], [19]-[21]. r dVal(7) Do
Communication Channel: The communication channel is whereC is the channel capacity measured in nats per source
an AWGN channel. That is, the communication channel ahessage}.,()) is the entropy rate for a class of sources

)g) é RS,T(‘DU)7 (7)



(see [10], Definition 2.1, in which the quantity is definedwhere I(.;.) is the mutual information [17] andM po =

as a maximization over the class of source of the entropyP(dK”~1;k7~1); L "IV E||K, — Ki||> < D, }.

rate),T'(.) is the gamma functionV; is the volume of the If we work on the space of probability measures induced by
unit sphere (e.9.Vy = Vol(Sq); Sa = {y € R ||y|]| <1}) the densities, then it can be shown that two constraint sets
and Rs,,.(D,) is the robust Shannon lower bound (see [10]are compact, and hence the problem is equivalent to

Lemma 2.4).

. , , RZP(D,) = f
Although, Theorem 2.4 is subject to the case of without 7" (Do) Frer— 16;1;5(9KT 1) P(dRT- 11,fnT DeMpe
feedback, the results can be extended to feedback channels I(KT BT 1l (10)

and sources which use feedback from the output of the
decoder to the input of the encoder (hence they are applicallecan be further shown that the maximizing set can be
to the system of Fig. 1), provided 1) The capacity of theestricted to orthogonal processes which are Gaussian.
channel with and without feedback are the same, 2) theor simplicity in analyzing, we consider the casefof € R.
rate distortion of a source without using feedback fronThe vector case is treated similarly.

the decoder to the encoder is the same as the one thaider assumption of (A;M;) < 1,Vt € {0,1,2,...,T—1},
uses such feedback, and the reconstruction kernel is caus@here(.) denotes the biggest singular value, we have
Conditions 1) is valid for the AWGN channel considered,

while condition 2) holds if the source output is an orthogonal Rsup _ —1 vy . .
process, which uses feedback. Bp"(Dy) = ; log D,’ Dy < tE{O,{I,I}.r,lT—l}\Ilt
Note that subject to conditions 1), 2) above, then (7) is also a 14 s* A,
necessary condition for uniform reconstruction and stability U= — TV (11)
of an innovation type encoder using definitions (5) and (6), y L
whenlim is replaced withlim sup. wheres* > 0 is the unique solution to the following equation
The results given in subsequent sections complement our T—1

- - . - 1+s* 1
previous results reported in [10] by proposing encoding—_ Jog - — +7 Zlog 1—AM,;) = R.. (12)
schemes which guarantee uniform mean square observability2 8

by transmittingC = Rs.,(Dy) bit.s per time, over .AWGN . Computation of Robust Shannon Lower Bound.It can
channels. From Theorem 2.4 it follows that this rate ig)

e easily shown that whedimr_, ., A7 = A, and
the minimum possible capacity for uniform mean squarﬁmTﬁOO My = M, the robust Shannon lower bound is given
reconstruction. by

1. UNCERTAIN SOURCEDESCRIBED VIA RELATIVE 1 1+3* . z]\\fA
ENTROPY CONSTRAINT Rs.(D,) = 3 log % (13)
v

In this section we first compute the robust rate distortion fo

a class of pre-processes sources whose encoder output s

class of orthogonal processes, in which the class is describ®d imSTh*“ My Ii MbanddhmT*“’ Ar ; Ao, the ;0' .

via the relative entropy constraint (1), having a Gaussi ?1 S annon lower ousr;p s an exact approximation o
SUu. SU. J—

nominal distribution. Then, it is shown that over ANGNE™? (D ) = limr—o TR (Dy). That is, R**P(D,) =

channel, there exist an encoder and decoder that guaranf&er (Dy) = Hy(K) — 5 log(2meD,).

mean square uniform reconstruction. Realization of a Commumcatlon Link Matched to the

Rate Distortion for a Class of SourcesConsider a class of Uncertain Source. Next, consider the following AWGN

sources which produce orthogonal zero mean encoder outsi@nnel

ih s, for D, < minen, 2 =441, under assumptions

processed K; € R4t € N, }, described via the following 7, = Zi +W,, W, orthogonak N (0, W,)
relative entropy constraint i e
Zy R, E(Z7) < P, (14)
1
Dsu(grr-1) = {frr-1; TH(fKT*IHQKT*l) where ¥, is independent ofZ;, Vt € N .
= Under assumptions oflimy ..My = M and
< Re+Epr o > KM K]} (8) limr_.Ar = A, it can be shown that if
=0 the encoder multiplies K, by o, = BV,
where the nominal density functiopyr-: is Gaussian (D, < minteNJrlj—f*lf]‘\‘tht pie., Z; = oK,
distributed. Thatisgxr-1 ~ N(0,diag{Ao, A1,...,Ar_1}). and transmits it under transmission power constraint
The rate distortion for the class is defined by the m|n|maE(ZQ): o2E(K?) < B 1+17f — ?/ItA £ p,, where
problem 77t > 0 is the unlque solution of the following equation
1+m 1 _ _
R (Dy) A inf sup log 7 + : + 5log(l — A¢M;) = R, we have
P(ART-1:kT-1)eMpe fror_1€Dsulger—) C = RIP(Dy)= Rsyr( »). On the other hand, if the

I(KT-Y KT, (9) decoder multiplies the channel outputs hy= /52 to



produceK; = v, Z;, for D, < mingen, 21— J‘t;A , we Next, consider the following AWGN channel

have an end to end transmission with distortion 7, = 7+ Wt, W, orthogonak N (0, ,),

E(K; - f(t)Q = B(K;—va Ky — %Wt)2 We = diag{Wh, ..., Wa},
= (1-B)*E(K}) + 7 EW?) Zy =24 ... th]/ eRY, B(ZE) <Py, 1<i<d
< a—&ﬁ“”“—ﬁlf ()
Pl = MA, .
5 It can be shown that whedimr_.. My = M and
+P B(W?) limr_oo A7 = Ao, uniform mean square observability
= (1-1+ *Di“[\f of such uncertain source over the AWGN channel (21) is
1}8 TR, obtained by transmitting = R**?(D,) (= Rs,(D,) for
147 Ay sufficiently smallD,) if the encoder and decoder are defined
ne 1 — MA, + B Dy as follows. The encoder multiplie&; = E;' K, by
D} 147 W W,
= s D, = dmg{\/”“ ! wt‘;, 4, (22)
s* 1—M.A; t =
D3
T igsr A wherenn =1- 5= and 2= < min; A};, V¢ and transmits
s* 1—MiA,
Vfxr-1 € Dsy(grr-1). = AK, under power constralnE(ZEZ) < ”“W A 2
(15) Pn, 1 < ¢ < d. On the other hand, the decoder multiplies
the channel outputs by
Thus, under assumption ofimr ., My = M and D, D.
limr oo Ar = A, for D, < mingen, &Tfl_%/\t B —dzag{\/ 77t1 \/ Ned (23)
using the proposed encoding scheme a uniform mean square d Wy -
observability in the form to producek’; = B;Z; and subsequentlm = E'K,.
T_1 Remark 3.1:From the results of this section and Theorem
lim sup sup 1 Z E(K, — K;)*> < D, 2.4, itis concluded that for a given distortion vallig (suffi-
T—00 fr—1€Dsu(gpr—1) T =0 B ciently small),C = Rg,,.(D,) is the minimum capacity under

(16) Which there exists an encoding scheme for uniform mean
_ _ _ _ square reliable data reconstruction of the procgss;t €
is obtained over the AWGN channel (14) with capacityN , 1, in which this capacity is achieved by choosidg and

Rs.(Dy). B., as described by (22) and (23), respectively.
The Vector Case K; € R¢. Extension of the above results

to the vector case, i.e., to the case where an uncertain sourlé/e
produces orthogonal zero mean procgk$ € R4t € N, },

UNCERTAIN FuLLY OBSERVED CONTROLLED GAUSS
MARKOV SYSTEM.

is straightforward. For the vector case Consider the control/communication system of Fig. 1 de-
scribed by the following AWGN channel
1, ddetsf D . I
Ry"(Dy) =) 5 log —5—", < min Ve (17) 7, = Zy + Wy, W, orthogonak N (0, W,.),
t=0 v W, = diag{W1, ... Wa}, Zy=[Zn .7Zd]
wherei = {1,2, ...,d}, B(Z%) <Py, i=1,2,..,d, (24)
S = diag{\y, s \ig} (18) and the following uncertain system
and (Qvf(Q)vpv {ft}tZO) :
Xiy1 = AXy + NUy + BW; + BW;, X, =
1 * / ’ 25
W= AL - MM = BSEE] (9) { Y, = H, H =X, s)

where X, € R*, U, € R°, W, € R™, W, € R™,
Xo ~ N(zo, Vo), H; € R is the signal to be controlledV;
is i.i.d. ~ N(0,Zw),Xw > 0, W, is the perturbed noise
random process which isoc{W;};1 < t — 1} adapted, and

in which ¢(A:M;) < 1, Ef is the unitary matrix that
diagonalize¥; and s* > 0 is the unique solution of the
following equation

d  1+s 4 1122 {Xo, Wy, W} are mutually independent.
—-log——— - + — Z log det(Ig — Ay M) The nominal system associated with the uncertain system

2 S . .

(25) is the following fully observed system
« T'—1
11 . .
+5 z tT(ZC Id — MtAt) (Id — AtMt)] (Q7 f(Q)a H7 {]:t}tzo) .

P2 Yooy = AXo+ NU + BWy, Xo =X, 0

= Re. (20) Y, = Hy, Hy = Xy



T—1
S ’
,,,,,,,,,,,,,,,,,,,,, +ﬁEp[§t:Oj v, M)} (29)

Y, i Encoder
Fully Observed Uncertain } ) .
Dynamical System bl Innovation Subsequently, the robust entropy rate is given by
(Source) /; Generator 1
/ ! . *,8"
* / | i K, ‘ He (V) = TIE%O THI'(fnyl)- (30)
| A\ 4 !
// :i AE Next, following the stochastic dynamic programming [22],
/ | 1 the solution to the robust entropy problem (29) is given in
______ / I 7 the following Theorem.
| v ro Theorem 4.1:Consider the robust entropy problem (29)
U | <:><— W and (30). LetB (BSwB')™'B < (1 + s)%y; for some
! | s> 0. Then,
_____ I i)
_\\ ZT - ’ ’ 1 1
\\ 777777 4 W) = —[B(BXwB) B-(1+sX,
N, | EB +B Ei 1B !B E 1 AX, (31)
N ~
N v f where=,; is a real symmetric solution of
Mean , , , ,
Controller 4 - Sauare | = = ASuA-AZ.B[B (BSwB ) 'B
X stimator _ [ — e
! - ~(14 8%} + BE41 B 'BE 1A+ sM
”eco pl ET—I = sM. (32)
and s > 0 is the minimizing solution of the following
equation
1 _
Fig. 2. Control/communication system subject to uncertainty in the source Z(s") = Iglggl{sRc + ﬁtrac(EOVO)

T-1
1 ,
+— g trac(B Z¢BXw)} (33)
The uncertain system (25) is subject to the following sum 2T =1

; ; A T=2. (7 T-2) < , /
quadratic uncertainty constraift{ Wi}, 9(W" ") <5 1o 4 pyis controllable,A and B (BSw B )1 B — (1+

. TT—2 A 1 T=27/ =117
0); gW*=2) = Eplsr( Ximo Wiy Wy — 5)%;,; are invertible, and3(n) > 0 for somen; || = 1
tT;ol X, MX,) - R where3(n) is the rational matrix function given by
For P(dYT™Y) = fyradYT"! and TI(dYT~1) = B(n) = B(BSwB) 'B-(1+s)S3'+B (14
gyr-1dYT~1 associated with the uncertain and nominal AVeM(nL — AV'B. s>0 34
systems (25) and (26), respectively, consider the following —A)sM(nla—4) » = (34)
robust entropy rate problem. Then
1 1 q 1 ,
ZH(fir ) = sup —Hs(fyr-1) (27) M (V) = sBe+ log(2me) + 5 logdet(BEw B )
T fyr-1€Dsu(gyr-1) T
Y Y

_ 1 .
where H,(.) is the Shannon differential entropy [17] and +I§121€{8R° + §tmc(B S BXw)}  (39)

Dsv(gyr-1) = {fyr-1; PAYT™") = fyrdyT, where =, is the solution of the following Algebraic Ric-
cati equation appearing in thE>° estimation and control

1
(Y™ ") = gyradY ™, 7H(PII) < R. problems
T—1 —_ ’ ’ / ’ 1
1 / oo = AELA—AZB[B (BXwB B—(1+s
+Eplo= Y Y, MY}, (28) e Z ASLBIE (B ) )
2T — X + BEWB| !B E A+ sM. (36)

Next, let U, € U, é {Ut : §Rt(o+q) — ERO;Ut € ggl};

gF = a{Yo, ..., Ys; Uy, ...,U; }. The objective is to design
an encoder, decoder and controller for mean square stability
subject to the following cost functional.

SupposeB' (BXw B )~'B < %} and consider the fol-
lowing unconstraint problem (here we assume existence
solution yielding a finite entropy).

1 1+s T—-2
—H,( 3*/778"71) = min sup { - EP[ i1 i E;VI lim inf sup
T 520 {Wt}tT;oz 2T ; T—oo UT=1elo xUy X... XU _1 {{Wf,}tT:}Q;g(WT*%SO}

1 1
Wi — TEP[IOg gyr-1] + sR. TJ(XO,Tfh Uo,r—1) (37)



where J(Xo1-1,Uor-1)

T—1
%EP 2o (1X:)? +

|U1%), (H >0).

Fig. 2 illustrates encoding and stabilizing schemes for un'[20]

form observability and robust stability of the uncertain sys-

tem (25) subject to the cost functional (37). The encodey, !
decoder and controller will be an extension of the results (S% ]
Section Il and the results of [11] and [23]; and hence w¢2]

omit the detail of the design of the encoding and stabiliziné3]

schemes due to the space limitation.
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