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Abstract— In this paper, a mathematical framework for
studying robust control over uncertain communication channels
is introduced. The theory is developed by 1) Generalizing
the classical information theoretic measures to the robust
analogous, which are subject to uncertainty in the source
and the communication channel, 2) Deriving a lower bound
for the robust rate distortion, and 3) Finding a necessary
condition on the communication blocks subject to uncertainty
for reliable communication up to distortion level Dv. By
invoking this mathematical framework, necessary conditions for
uniform asymptotic observability and stabilizability are derived
for the following uncertain plants controlled over uncertain
communication channels. 1) A probabilistic uncertain plant
defined via a relative entropy constraint and 2) A frequency
domain uncertain plant defined via anH∞ constraint.

I. I NTRODUCTION

One of the issues that has begun to emerge in a number of
applications, such as sensor networking, large scale teleop-
eration, and etc., is how to control plants by communicating
information reliably, through limited capacity channels, when
the subsystems are subject to uncertainty. Typical examples
are applications in which a single dynamical system sends
feedback information to a distant controller via a communi-
cation link with finite capacity. In the absence of uncertainty
in the plant and the communication channel, important
results are derived in [1]-[5]. The aim of these articles is to
find a necessary and sufficient condition for stabilizability,
when there are channel capacity and power constraints. For
finite dimensional linear discrete time-invariant systems, it is
shown that for controlling such systems over communication
constraints the transmission data rate (or channel capacity)
is lower bounded by the summation of the logarithms of the
unstable eigenvalues.
The objective of this paper is to address similar questions,
when there is uncertainty in the plant and the communication
channel. In particular, to find necessary conditions on the
channel capacity which ensure uniform asymptotic observ-
ability and stabilizability. The necessary steps in realizing
such a study consists of the followings.
1. Generalizing the classical information theoretic measures
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of Shannon entropy, channel capacity and the rate distortion
to the robust analogous, which are subject to uncertainty in
the source and the communication channel.
2. Deriving a lower bound for the robust rate distortion in
terms of the robust Shannon entropy.
3. Deriving necessary condition on the communication
blocks subject to uncertainty in order to ensure reliable
communication.
After extending the classical information theoretic measure
to the robust analogous, we show that the so called robust
transmission rate of the communication channel must be
lower bounded by the robust Shannon entropy of the source
in order to ensure reliable communication. Subsequently, we
find necessary conditions for uniform asymptotic observ-
ability and stabilizability of uncertain plants over uncertain
communication channels. Our derived results give known
results [6] as special case.
In Section II, the precise notion of a robust communication
system in the presence of feedback, and the corresponding
information theoretic measures which are necessary to an-
alyze this system are introduced. One of the fundamental
results is the derivation of a lower bound for the robust rate
distortion. Furthermore, a robust version of the Information
Transmission theorem is introduced. This theorem provides
a necessary condition for reliable communication. In Section
III, the mathematical framework developed in Section II, is
applied to two different classes of uncertain plant controlled
over uncertain communication channels to address necessary
conditions for uniform asymptotic observability and stabiliz-
ability.

II. ROBUST COMMUNICATION SYSTEMS

A. Communication System

Let (Ω,F(Ω), P ) be a complete probability space.
Consider the communication subsystems of the con-
trol/communication system of Fig. 1. Let(YS ,F(YS)) de-
note the source alphabet set, and(ỸR,F(ỸR)) be the source
reproduction alphabet set. The channel input and output al-
phabet sets are (ZI ,F(ZI)) and (Z̃O,F(Z̃O)), respectively.
Consider the case when the source and reproduction of the
source measurable spaces correspond to the sequences with
lengthT , and the channel input and output measurable spaces
correspond to the sequences with lengthn (T ≤ n). That is

(Y,F(Y)) = (Y0,T−1,FY0,T−1)
4
= ×T−1

k=0 (Yk,F(Yk)),

(Ỹ,F(Ỹ)) = (Ỹ0,T−1,F Ỹ0,T−1)
4
= ×T−1

k=0 (Ỹk,F(Ỹk)),
T = 1, 2, ...,∞.
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Fig. 1. Block diagram of control/communication system

(Z,F(Z)) = (Z0,n−1,FZ0,n−1)
4
= ×n−1

k=0(Zk,F(Zk)),

(Z̃,F(Z̃)) = (Z̃0,n−1,F Z̃0,n−1)
4
= ×n−1

k=0(Z̃k,F(Z̃k)),
n = 1, 2, ...,∞, (1)

where (Yk,F(Yk)), (Ỹk,F(Ỹk)), (Zk,F(Zk)), and
(Z̃k,F(Z̃k)) are exemplars of the source, reproduction,
channel input and output alphabet sets respectively.

Let Y T 4
= (Y0, Y1, ..., YT−1) ∈ Y0,T−1, and

Ỹ T 4
= (Ỹ0, Ỹ1, ..., ỸT−1) ∈ Ỹ0,T−1, be a sequences

with length T of source and reproduction of the source

respectively, andZn 4
= (Z0, Z1, ..., Zn−1) ∈ Z0,n−1 and

Z̃n 4
= (Z̃0, Z̃1, ..., Z̃n−1) ∈ Z̃0,n−1 be sequences with

length n of the channel input and output, respectively.
Denote the set of Probability Density Functions (PDF’s)

on Y0,T−1 by D 4
= {fY T (yT ) : Y0,T−1 → <+ :

fY T is B(Y0,T−1) Borel measurable, fY T (yT ) ≥
0, ∀yT ∈ Y0,T−1,

∫
Y0,T−1

fY T (yT )dyT = 1}. Let also

for (YS ,F(YS)) = (<d,B(<d)), P = {SY (ejw) : C →
<d×d; detSY (ejw) ≥ 0, ∀ejw ∈ C, w ∈ [−π, π]} denote the
set of Power Spectral Density (PSD’s).
Information Source. The information sourceY T ∈ Y0,T−1

induces a PDFfY T (yT ) on (Y0,T−1,FY0,T−1). In general,
the source is uncertain, that is,fY T (yT ) is unknown but
belongs to the source uncertainty setfY T (yT ) ∈ DSU ⊆ D.
Communication Channel. The communication channel is
identified by a sequence of PDF’s

{
fZ̃k|Zk,Z̃k−1

}n−1

k=0
. Since

the channel, in general, is uncertain, the joint PDFfZ̃n|Zn

of the channel is uncertain and belongs to the channel
uncertainty setfZ̃n|Zn ∈ DCU ⊆ D.
Encoder. An encoder is identified by a sequence of PDF’s
that is describing the probabilistic relationship between
the current output of the encoder and the previous outputs
of the encoder and inputs to the encoder, up to current
time. That is, it is identified by a sequence of PDF’s{
fZk|Y k,Zk−1

}n−1

k=0
.

Decoder. A decoder is identified by a sequence of PDF’s
that is describing the probabilistic relationship between
the current output of the decoder and the previous outputs

of the decoder and inputs to the decoder, up to current
time. That is, it is identified by a sequence of PDF’s{

fỸk|Z̃k,Ỹ k−1

}n−1

k=0
.

Please note that deterministic encoders and decoders can be
modeled as sequences of PDF’s that are Dirac functions.
Here, we assume conditional independence between the
outputs of the information source, encoder, channel and
decoder. That is,Y → Z → Z̃ → Ỹ forms a Markov chain.
Often, it is necessary to impose certain limitation on the
input to the channel (such as average channel input power).
These kinds of limitation are introduced by assuming the
PDF corresponding to the channel input belongs to a smaller
classfZn ∈ DCI ⊆ D.

B. Robust Information Theoretic Measures

In this Section, we address the following questions. First,
we introduce robust analog of the Shannon entropy of the
source, channel capacity and the rate distortion. Second, we
find a lower bound for the robust rate distortion and finally
a robust version of the Information Transmission theorem is
introduced.

1) Robust Definition of Information Theoretic Measures:
The robust definition of information theoretic measures are
given using the mutual information between two Random
Variables (R.V.’s). For recalling the definition of the mutual
information, see [7] or [8]. We proceed by defining the robust
Shannon entropy of the Source.

Definition 2.1: The robust Shannon entropy is defined as
follows.
i) Probabilistic Model. LetY be a R.V., andfY (y) ∈ DSU ⊆
D the corresponding PDF, whereDSU is the set of all
densities induced by the R.V.,Y .
A) Robust Shannon Entropy. The robust Shannon entropy
associated with the familyDSU is defined by

Hrobust(f∗Y )
4
= sup

fY ∈DSU

HS(fY ), (2)

whereHS(.) denote the Shannon entropy [7].
B) Robust Shannon Entropy Rate. The robust Shannon
entropy rate associated with the familyDSU of the joint
PDF, Y T is defined by

Hrobust(Y)
4
= lim

T→∞
1
T

Hrobust(f∗Y T ),

Hrobust(f∗Y T ) = sup
fY T ∈DSU

HS(fY T ) (3)

provided the limit exists.
ii) Frequency Domain Model. Let{Yt; t ∈ N+},
N+

4
= {0, 1, 2, ...}, Yt : (Ω,F(Ω)) → (YS ,F(YS)),

(YS ,F(YS)) = (<d,B(<d)) be a Wide Sense Stationary
(WSS) Gaussian process andSY (ejw) ∈ PSU ⊆ P, where
PSU is the set of all Power Spectral Densities (PSD’s)
induced by the random process{Yt; t ∈ N+}.
The robust Shannon entropy rate associated with the family
PSU is defined by

Hrobust(Y)
4
= sup

SY ∈PSU

HS(SY ), (4)



whereHS(SY ) is the Shannon entropy rate of the WSS
Gaussian random process{Yt; t ∈ N+}.
Next, we define the robust channel capacity in the presence
of feedback.

Definition 2.2: (Robust Channel Capacity in the Presence
of Feedback) When the channel is uncertain, the robust
channel capacity in the presence of feedback is defined by

Crobust = lim
n→∞

1
n

Cn,robust (5)

4
= lim

n→∞
1
n

sup
PZn∈DCI

inf
PZ̃n|Zn∈DCU

I(Zn; Z̃n),

whereI(.; .) denote the mutual information.
Next we proceed by defining the robust rate distortion. This
is a measure of the minimum rate under which an end to
end transmission with distortion, up to distortion levelDv is
possible.

Definition 2.3: (Robust Rate Distortion) LetDDC =
{q

Ỹ T |Y T ;
∫
Y0,T−1×Ỹ0,T−1

ρT (yT , ỹT )qỸ T |Y T (ỹT )fY T (yT )
.dyT dỹT ≤ Dv} be the set of distortion constraints, in which
qỸ T |Y T is a PDF representing the probabilistic relationship

betweenY T and Ỹ T , Dv ≥ 0 is the distortion level, and
ρT : Y0,T−1 × Ỹ0,T−1 → [0,∞) is the distortion measure.
The robust rate distortion is defined by

Rrobust(Dv) = lim
T→∞

1
T

RT,robust(Dv)
4
= (6)

lim
T→∞

1
T

inf
qỸ T |Y T ∈DDC

sup
fY T ∈DSU

I(Y T ; Ỹ T ).

2) Lower Bound for Robust Rate Distortion:Since the
explicit expression for the robust rate distortion is difficult
to obtain, it is desirable to have a lower bound which is easily
computed. Moreover, these lower bound will be used in the
next Section to address uniform asymptotic observability and
stabilizability of control/communication system of Fig. 1.

Lemma 2.4:(Lower Bound for Robust Rate Distortion)
[9]. Let (YS ,F(YS)) = (<d,B(<d)), (ỸR,F(ỸR)) =
(<d,B(<d)) and fY T (yT ) ∈ DSU , (yT ∈ Y0,T−1) de-
note the joint PDF corresponding to a sequence of R.V.’s
with length T produced by the source. Consider a sin-
gle letter distortion measure of the formρT (yT ; ỹT ) =
1
T

∑T−1
i=0 ρ(yi; ỹi), where ρ(yi; ỹi) = ρ(yi − ỹi) : <d →

[0,∞) is Borel measurable. Then a lower bound for
1
T RT,robust(Dv) is given by

1
T

RT,robust(Dv) ≥ sup
fY T ∈DSU

1
T

HS(fY T )

− max
g∈GD

HS(g), (7)

whereGD is defined by

GD = {g : <d → [0,∞);
∫

<d

g(y)dy = 1,
∫

<d

ρ(y)g(y)dy ≤ Dv}. (8)

Moreover, if ρ is such that
∫

esρ(y)dy < ∞ (s < 0), the
maximum overg ∈ GD is attained atg∗(y), satisfying the
following two conditions

g∗(y) =
esρ(y)

∫
<d esρ(y)dy∫

<d

ρ(y)g∗(y)dy = Dv. (9)

It is also shown that ifR̄(Dv)
4
= limT→∞ 1

T RT (Dv) and

HS(Y)
4
= limT→∞ 1

T HS(fY T ) exist, then the Shannon

lower bound is tight [9]. That is,limDv→0

(
R̄(Dv) −

(HS(Y)−HS(g∗))
)

= 0.
3) Robust Information Transmission Theorem:In this

Section by invoking the data processing inequality, we
derive a robust version of the Information Transmission
theorem. This theorem provides a necessary condition for
end to end transmission up to a distortion levelDv (e.g.
EρT (Y T ; Ỹ T ) ≤ Dv), when there is uncertainty on the
source as well as communication channel. In the next Sec-
tion, this theorem will be used to relate the robust channel
capacity required for uniform asymptotic observability and
stabilizability to the robust rate distortion.

Theorem 2.5:(Robust Information Transmission Theo-
rem) [9] A necessary condition for reproducing the source
outputY T up to distortion levelDv by Ỹ T at the output of
the decoder for n-times channel use (T ≤ n), when there is
uncertainty on the source and communication channel, is

Cn,robust ≥ RT,robust(Dv). (10)

III. N ECESSARYCONDITIONS FORUNIFORM

ASYMPTOTIC OBSERVABILITY AND STABILIZABILITY

In this Section by invoking the mathematical frame-
work developed in the previous Section, general neces-
sary conditions for uniform asymptotic observability and
stabilizability are derived. Then the obtained results are
applied to two different classes of uncertain plant. Through-
out this Section, we assume that the control law at time
t, Ut = µ(t, Ỹ0, . . . , Ỹt), is a non-anticipative functional
of the decoder output up to timet. The encoder law
at time t, Zt = E(t, Y0, Y1, ..., Yt, Z0, Z1, ..., Zt−1), is a
non-anticipative functional of the information source out-
put up to time t and the previous output of the en-
coder up to timet − 1. Finally, the decoder law at time
t, Ỹt = A(t, Z̃0, Z̃1, ..., Z̃t, Ỹ0, Ỹ1, ..., Ỹt−1), is a non-
anticipative functional of the channel output up to timet
and the previous output of the decoder up to timet− 1.

A. Necessary Conditions for Uniform Asymptotic Observ-
ability and Stabilizability in Probability and r-Mean

In this Section, we find general necessary conditions for
uniform observability and stabilizability in probability and
r-mean.
Consider the control/communication system of Fig. 1.
Let (YS ,F(YS)) = (<d,B(<d)) and (ỸR,F(ỸR)) =



(<d,B(<d)). That is,Yt ∈ <d, whereYt is the observation
from the uncertain plant obtained by sensors at timet.
The objective is to find a necessary condition for uniform
asymptotic observability and stabilizability in probability and
r-mean defined as follows.

Definition 3.1: (Uniform Asymptotic Observability
in Probability and r- Mean). Consider the
control/communication system of Fig. 1.
Uniform Asymptotic Observability in Probability. The
uncertain plant is uniform asymptotic observable in
probability over uncertain communication channel if there
exists an encoder and decoder such that

lim
t→+∞

sup
fY t∈DSU

1
t

t−1∑

k=0

Eρ(Yk, Ỹk) ≤ Dv, (11)

where fY t(yt) is the joint PDF of Y t produced by the
uncertain plant,Dv ≥ 0 is arbitrary small andρ(Yk, Ỹk)
is defined by

ρ(Yk, Ỹk)
4
=





1 if ||Yk − Ỹk|| > δ,

0 if ||Yk − Ỹk|| ≤ δ,

(12)

in which ||.|| is Euclidian norm, that is,||y − ỹ|| 4=
(
(y −

ỹ)tr(y − ỹ)
) 1

2
andδ ≥ 0 is fixed.

Uniform Asymptotic Observability inr-Mean. The uncertain
plant is uniform asymptotic observable inr-mean over un-
certain communication channel if there exists an encoder and
decoder such that (11) is satisfied for a given fixedDv ≥ 0
andρ(Yk, Ỹk) = ||Yk − Ỹk||r, r > 0.
Next, assume there is a linear relationship between the ob-
served signal,Yt, and the state variable,Xt, of the uncertain
plant. That is,Yt = CXt + Υt, where Υt, in general, is
subject to uncertainty and it is a function of time, control
signal and measurement noises. Under this assumption, the
uniform asymptotic stabilizability in probability andr-mean
is defined as follow.

Definition 3.2: (Uniform Asymptotic Stabilizability
in Probability and r- Mean). Consider the
control/communication system of Fig. 1.
Uniform Asymptotic Stabilizability in Probability.The
uncertain plant is uniform asymptotic stabilizable in
probability over the uncertain communication channel if
there exists an encoder, decoder, and controller such that

lim
t→∞

sup
fY t∈DSU

1
t

t−1∑

k=0

Eρ(Xk, 0) ≤ Dv, (13)

whereDv ≥ 0 is arbitrary small andρ(Xk, 0) is defined by

ρ(Xk, 0)
4
=





1 if ||Xk − 0||CtrC > δ,

0 if ||Xk − 0||CtrC ≤ δ,
(14)

in which ||x− 0||CtrC
4
=

(
xtrCtrCx

) 1
2
.

Uniform Asymptotic Stabilizability inr-Mean. The uncertain
plant is uniform asymptotic stabilizable inr-mean if there

exists an encoder, decoder and controller such that (13)
is satisfied for a givenDv ≥ 0 and ρ(Xk, 0) = ||Xk −
0||rCtrC , r > 0.
Next, using Lemma 2.4 and Theorem 2.5, the main result of
this Section is presented in the following theorem.

Theorem 3.3:[9]. i) For uniform asymptotic observability
and stabilizability in probability, a necessary condition on the
robust channel capacity is

Crobust ≥ Hrobust(Y)− 1
2

log[(2πe)d det Γg], (15)

whereHrobust(Y) is the robust Shannon entropy rate of the
observed process andΓg is the covariance matrix of the
Gaussian distributiong∗(y) ∼ N(0,Γg), (y ∈ <d) which
satisfies

∫

||y||>δ

g∗(y)dy = Dv, (16)

in which Dv ≥ 0 is arbitrary small.
ii) A necessary condition forr-mean uniform asymptotic
observability and stabilizability is

Crobust ≥ Hrobust(Y)− d

r
+ log(

r

dVdΓ(d
r )

(
d

rDv
)

d
r ), (17)

whereΓ(.) is the gamma function andVd is the volume of the

unit sphere (e.g.,Vd = V ol(Sd); Sd
4
= {x ∈ <d; ||x|| ≤ 1}).

Remark 3.4:We have the following remarks regarding the
above theorem.
i) The robust Shannon entropy rate is a function of the control
signal.
ii) For the cased = 1, condition (16) is reduced to

2Φ(− δ√
Γg

) = Dv, (18)

where Φ(t)
4
=

∫ t

−∞
1√
2π

e−
u2
2 du. Using a table for this

integral, we notice that for an arbitrary smallDv, Γg = δ2

16
should be used in (15).
iii) Finally, it is pointed out that the necessary conditions
derived in Theorem 3.3, are practically important because
they give flexibility to the designer to relate the observability
and stabilizability error to the minimum capacity necessary
for observability and stabilizability.

B. Uncertain Plants Defined via the Relative Entropy and
H∞ Constraints

In this Section, we apply Theorem 3.3 to the following
uncertain plants. 1) The probabilistic uncertain plant defined
via relative entropy constraint and 2) The frequency domain
uncertain plant defined viaH∞ constraint.
We start by defining the probabilistic uncertain plant defined

via relative entropy constraint. LetY T 4
= (Y0, Y1, ..., YT−1),

Yk : (Ω,F(Ω)) → (<d,B(<d)), k = 0, 1, ..., T − 1 be a
sequence of R.V.’s with lengthT of observation process of
uncertain plant andfY T (yT ) ∈ D denote the joint PDF



of Y T . Let gY T be the joint PDF ofY T produced by the
following state space form.

(Ω,F(Ω), {F}t≥0, P ) :{
Xt+1 = AXt + BWt + NUt, X0 = X,
Yt = CXt + DVt + MUt.

(19)

wheret ∈ N+, Xt ∈ <n is the unobserved (state) process,
Yt ∈ <d is the observed process,Ut ∈ <o is the control
signal, Wt ∈ <m, Vt ∈ <l, in which {Wt; t ∈ N+} is
Independent Identically Distributed (i.i.d.)∼ N(0, Im×m),
{Vt; t ∈ N+}, is i.i.d. ∼ N(0, Il×l), X0 ∼ N(x̄0, V̄0),
{Wt, Vt, X0; t ∈ N+} are mutually independent andD 6=
0. Here, it is assumed that(C, A) is detectable and
(A, (BBtr)

1
2 ) is stabilizable.

Definition 3.5: (Probabilistic Uncertain Plant Defined via
a Relative Entropy Constraint). The probabilistic uncertain
plant is the one that its joint PDF,fY T (yT ) ∈ D, belongs to
the following relative entropy uncertainty set.

DSU (gY T )
4
= {fY T ∈ D;H(fY T |gY T ) ≤ TRc},

Rc ∈ (0,∞), (20)

whereH(.|.) denotes the relative entropy between two den-
sity functions [7].
Next, we consider Gaussian uncertain plants, in which the
uncertainty is described via theH∞ norm linear space

model. Defineβ(1)
4
= {z; z ∈ C, |z| ≤ 1} and let H∞

denote the space of scalar, bounded, analytic functions of
z ∈ β(1). When this space is endowed with the norm

||H||∞ 4
= sup−π≤w≤π |H(ejw)|, (z = ejw), H ∈ H∞, then

(H∞, ||.||∞) is a Banach space.
Definition 3.6: (Frequency Domain Uncertainty Plant De-

fined via anH∞ Constraint). The uncertain plant is obtained
by passing the control signals through an uncertain stable
linear filterHU (z) and a stationary Gaussian random process
Xt : (Ω,F(Ω)) → (<,B(<)), t ∈ N+, with known power
spectral densitySX(ejw) : C → [0,∞), through an uncertain
stable linear filterH̃(z), defined by (see Fig. 2)

H̃ ∈ Had
4
=

{
H̃ ∈ H∞; H̃(z) = H(z) + ∆(z)W (z),

H̃(z), H(z),∆(z),W (z) ∈ H∞, where

H(z),W (z) are fixed,∆(z) is unknown and

||∆||∞ ≤ 1
}

. (21)

Here,Yt ∈ <, H(z) is the nominal source transfer function
based on previous experience or belief, and∆(z)W (z) rep-
resents the uncertain part of the source. Clearly, this additive
uncertainty model implies|H̃(ejw)−H(ejw)| ≤ |W (ejw)|,
∀w ∈ [−π, π], and thus the size of uncertainty is controlled
by the fixed transfer functionW (z).
Since {Xt; t ∈ N+} is stationary andH̃(z) is stable,
SY (ejw) = |H̃(ejw)|2SX(ejw). Consequently, the set of all
PSD’s of such uncertain plants is given by

PSU
4
= {SY (ejw) ∈ P; SY (ejw) =

|H(ejw) + ∆(ejw)W (ejw)|2SX(ejw),
||∆||∞ ≤ 1}. (22)

)(
~

zH

)()( zWz

)(zX ++)(zH

)(zY

)(zU )(zHU

Fig. 2. Uncertain plant defined viaH∞ constraint

We repeat ([10], Proposition 3.3 and the result of Section
III.B) here.

Proposition 3.7: [10]. The robust Shannon entropy rate of
the uncontrolled (e.g.,{Ut = 0; t ∈ N+}) uncertain plant
corresponding to the uncontrolled version of the nominal
plant (19) via the relative entropy uncertainty set (20) is

Hrobust(Y) =
d

2
log(

1 + s∗

s∗
) +HS(Y),

HS(Y)
4
=

d

2
log(2πe) +

1
2

log det Λ∞, (23)

wheres∗ > 0 is the unique solution ofRc = −d
2 log( 1+s∗

s∗ )+
d

2s∗ andΛ∞ is given by

Λ∞ = CV∞Ctr + DDtr,

V∞ = AV∞Atr −AV∞Ctr[CV∞Ctr + DDtr]−1

.CV∞Atr + BBtr. (24)
Remark 3.8:We have the following observations regard-

ing the robust Shannon entropy rate found in Proposition 3.7.
i) The robust Shannon entropy rate is equal to the Shannon
entropy rate if eitherRc → 0, or s∗ →∞, as it is expected
since the case,Rc → 0 or s∗ →∞, corresponds to the case
when there is a single source.
ii) Consider the scalar version of (19), withn = 1 andd = 1.
Then (24) can be solved explicitly and then substituted into
(23) to obtain the following results.
A) When B 6= 0,

Hrobust(Y) ≥ 1
2

log(
1 + s∗

s∗
) +

1
2

log(2πeD2)

+ max{0, log |A|}. (25)

B) WhenB is arbitrary small (B ∼= 0),

Hrobust(Y) =
1
2

log(
1 + s∗

s∗
) +

1
2

log(2πeD2)

+ max{0, log |A|}. (26)
Notice that (26) contains the termmax{0, log |A|}. There-
fore, the robust Shannon entropy rate is explicitly related to
the unstable eigenvalue of the system matrixA. The general
case will be treated later, using the Bode integral formula.

Proposition 3.9: [10]. The robust Shannon entropy rate of
the uncontrolled (e.g.,U(z) = 0) uncertain plant defined via
H∞ constraint is

Hrobust(Y) =
1
2

log(2πe)

+
1
4π

∫ π

−π

log
(
(|H(ejw)|+ |W (ejw)|)2SX(ejw)dw.

(27)



Remark 3.10:For the uncertain plant described by the rel-
ative entropy constraint, from the chain rule for the Shannon
entropy, it follows that the robust Shannon entropy rate of the
controlled plant is lower bounded by the Shannon entropy
rate of the uncontrolled plant. Also, it is easily shown that
the robust Shannon entropy rate of the controlled uncertain
plant described byH∞ constraint is always lower bounded
by the Shannon entropy rate of the uncontrolled uncertain
plant.
Next, since each lower bound for (15) or (17) represent a
necessary condition for uniform asymptotic observability and
stabilizability, from Theorem 3.3, Propositions 3.7, 3.9 and
Remark 3.10, we have the following corollary as necessary
conditions for observability and stabilizability of uncertain
plants described by the relative entropy andH∞ constraints.

Corollary 3.11: A necessary condition for uniform as-
ymptotic observability and stabilizability in probability and
r-mean of uncertain plants described by the relative entropy
or H∞ constraint is given by (15) and (17) respectively, in
whichHrobust(Y) is given by Proposition 3.7 for uncertain
plants described by relative entropy constraint, or by Propo-
sition 3.9 for uncertain plants described byH∞ constraint.
Please note that the necessary conditions given in Corollary
3.11 are independent of the control signals, so we do not need
to be aware of the control signals to present the necessary
conditions, unlike [2].
Next, we apply the results of Theorem 3.3 (by invoking the
Bode integral formula [11]) to the control/communication
system of Fig. 1, in which the channel is Additive White
Gaussian Noise (AWGN) channel, and the encoder and de-
coder are linear time-invariant with transfer functions equal
to 1. We shall recover the results derived in [6] as special
case.

Corollary 3.12: Consider the probabilistic uncertain plant
described via a relative entropy constraint, in which the cor-
responding nominal plant is the special case of the nominal
plant (19) with Xt ∈ <n, Wt ∈ <m, Yt ∈ <, Ut ∈ <,
Vt ∈ <l, and M = 0. Assume this system is controlled
over a linear time-invariant single-input single-output dis-
crete time, additive Gaussian noise stable channel. That is,
in compact notation,̃Y (z) = Hc(z)Y (z) + Wc(z), where
Hc(z) (the channel transfer function) has poles inside unit
circle andWc(z) is the frequency response of the channel
noise{Wc(t); t ∈ N+} which is AWGN process with mean
zero and varianceσ2

Wc
and it is mutually independent of

{X0, Wt, Vt; t ∈ N+}. Assume the controller is stable linear
time-invariant. That is, the controller transfer functionKc(z)
has poles inside unit circle. Moreover, assume the open
loop transfer functionL(z) = P (z)Kc(z)Hc(z), P (z) =
C(zI −A)−1N is strictly proper transfer function.
An application of Bode integral formula [11] implies that
for uniform asymptotic stabilizability inr-mean, the required
channel capacity must satisfy

Ccap ≥ 1
2

log(
1 + s∗

s∗
) +

∑

{i;|λi(A)|≥1}
log |λi(A)|

+
1
4π

∫ π

−π

log(|F (ejw)|2 + DDtr + |G(ejw)|2σ2
Wc

)dw

+
1
2

log(2πe)−∆, (28)

where Ccap denote the AWGN channel capacity,s∗ > 0
is given in Proposition 3.7,F (ejw) = C(ejwI − A)−1B,

|F (ejw)|2 4
= F (ejw)F tr(e−jw), G(ejw) = P (ejw)Kc(ejw)

and |G(ejw)|2 = G(ejw)Gtr(ejw). Moreover,∆ could be
equal to∆ = 1

2 log πeδ2

8 , (δ > 0 is large enough) or∆ =
1
r − log

(
r

2Γ( 1
r )

( 1
rDv

)
1
r

)
.

Remark 3.13:Condition (28) gives as special case the
result of [6] in which a digital noiseless channel (with rate
R, e.g.,Ccap = R) is used. This follows from the results
of Corollary 3.12, condition (28), forr = 2 and Dv large,
by letting the quantization parameter∆y found in [6] takes
the value∆y = exp {∆}, and setting,Rc → 0, D = 1 and
B = 0 for the plant andHc(z) = 1 and σWc

= 0 for the
channel, which implies that when these values are substituted
into (28), then

R ≥ 1
2

log(2πe) +
∑

{i;|λi(A)|≥1}
log |λi(A)| − log ∆y. (29)

Clearly, (29) is precisely the condition derived in [6].
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