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Abstract—In this paper, a mathematical framework for
studying robust control over uncertain communication channels
is introduced. The theory is developed by 1) Generalizing
the classical information theoretic measures to the robust
analogous, which are subject to uncertainty in the source
and the communication channel, 2) Deriving a lower bound
for the robust rate distortion, and 3) Finding a necessary
condition on the communication blocks subject to uncertainty
for reliable communication up to distortion level D,. By
invoking this mathematical framework, necessary conditions for
uniform asymptotic observability and stabilizability are derived
for the following uncertain plants controlled over uncertain

of Shannon entropy, channel capacity and the rate distortion
to the robust analogous, which are subject to uncertainty in
the source and the communication channel.

2. Deriving a lower bound for the robust rate distortion in
terms of the robust Shannon entropy.

3. Deriving necessary condition on the communication
blocks subject to uncertainty in order to ensure reliable
communication.

After extending the classical information theoretic measure
to the robust analogous, we show that the so called robust

transmission rate of the communication channel must be
lower bounded by the robust Shannon entropy of the source
in order to ensure reliable communication. Subsequently, we
find necessary conditions for uniform asymptotic observ-
ability and stabilizability of uncertain plants over uncertain
One of the issues that has begun to emerge in a number@mmunication channels. Our derived results give known
applications, such as sensor networking, large scale teleqgsylts [6] as special case.
eration, and etc., is how to control plants by communicating, Section |1, the precise notion of a robust communication
information reliably, through limited capacity channels, wherystem in the presence of feedback, and the corresponding
the subsystems are subject to uncertainty. Typical examplggormation theoretic measures which are necessary to an-
are applications in which a single dynamical system sendgyze this system are introduced. One of the fundamental
feedback information to a distant controller via a communiresults is the derivation of a lower bound for the robust rate
cation link with finite capacity. In the absence of uncertaintyjistortion. Furthermore, a robust version of the Information
in the plant and the communication channel, importanfransmission theorem is introduced. This theorem provides
results are derived in [1]-[5]. The aim of these articles is t@ necessary condition for reliable communication. In Section
find a necessary and sufficient condition for Stablllzablllty|||, the mathematical framework deve|oped in Section ||' is
when there are channel capacity and power constraints. Fplied to two different classes of uncertain plant controlled
finite dimensional linear discrete time-invariant SyStemS, it iéver uncertain communication channels to address necessary

shown that for controlling such systems over communicatiogonditions for uniform asymptotic observability and stabiliz-
constraints the transmission data rate (or channel capacityjlity.

is lower bounded by the summation of the logarithms of the
unstable eigenvalues. Il. ROBUST COMMUNICATION SYSTEMS
The objective of this paper is to address similar questiong, communication System

when there is uncertainty in the plant and the communication .
channel. In particular, to find necessary conditions on th Let (2, 7(&2),P) be a complete probability space.

channel capacity which ensure uniform asymptotic obser\§OnSIder the communication subsystems of the con-

” A : — . frol/communication system of Fig. 1. Lé}s, F()s)) de-
ability and stabilizability. The necessary steps in realizin ~ = !
such a study consists of the followings. éote the source alphabet set, d0&:, F(Vr)) be the source

1. Generalizing the classical information theoretic measuré%pmduc“on alphabet set. The channel input and output al-
phabet sets areZ(;, F(Z;)) and Eo, F(Z0)), respectively.
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of the decoder and inputs to the decoder, up to current
g ‘ time. That is, it is identified by a sequence of PDF’s

n—1

SATTR S e

7 Please note that deterministic encoders and decoders can be
modeled as sequences of PDF’s that are Dirac functions.
Here, we assume conditional independence between the
outputs of the information_source, encoder, channel and
decoder. That isy — Z — Z — Y forms a Markov chain.
el Often, it is necessary to impose certain limitation on the

Contraler H Decoder ‘ input to the channel (such as average channel input power).
7 These kinds of limitation are introduced by assuming the
PDF corresponding to the channel input belongs to a smaller
Fig. 1. Block diagram of control/communication system ClaSSon € Doy CD.

B. Robust Information Theoretic Measures
In this Section, we address the following questions. First,

A n— .
(2,F(2)) = (ZBom-1.Fin1)=xZo(Zr, F(Z1)),  we introduce robust analog of the Shannon entropy of the
> > AN 5 source, channel capacity and the rate distortion. Second, we
ZF(2) = (Zon1,F& 1) = x128( 2, F , . o .
( (2)) (Zo.n-1, Fo.n1) k=0 (Zk: F (k) find a lower bound for the robust rate distortion and finally
n o= 12..00, 1) a robust version of the Information Transmission theorem is

. - introduced.
where  (Vi, F(Vk)):  (Vk: FOh)),  (Zk, F(2x)), and 1) Robust Definition of Information Theoretic Measures:
(2x, F(Zk)) are exemplars of the source, reproductionyhe ropust definition of information theoretic measures are
channel Input and output alphabet sets respectively. given using the mutual information between two Random
Let Y© = (Yo,Y1,...Yr—1) € DJor-1, and Variables (R.Vs). For recalling the definition of the mutual
yr 2 (}70,}71,---,%71) € 1707T,1, be a sequences information, see [7] or [8]. We proceed by defining the robust
with length T' of source and reproduction of the sourceShannon entropy of the Source.

respectively, andz” 4 (Zo, Z1, ey Zn—1) € Zom_1 and f II|3efinition 2.1: The robust Shannon entropy is defined as
- ' ollows.

n 2 5 5 7z > ;
|Z tﬁ (Zof’ Zﬂl]’ o hZ”*)l € Z(t)’nild be tse?uences \t/_\ntr; i) Probabilistic Model. Let” be a R.V., andfy (y) € Dsy C
gng i ntho i" Cf inng k;rll[;‘[)u Dan _toquu ,t_respelcall:\)/gy the corresponding PDF, wherPgy is the set of all
enote the set of Probability Density Functions ( Slensities induced by the R.\K,.

A
on Yor—1 by D = {fyr(y") : Vor-1 — Ry A) Robust Shannon Entropy. The robust Shannon entropy

fyr is B(Yor-1) Borel measurablefyr(y”) > associated with the familpg; is defined by

0,Yy" € Yor-1, [y, fyr(y")dy" = 1}. Let also A

for (Vs, F(Vs)) = (&éd,B(%d)), P = {Sy(ejw) :C — Hyopust(fy) = sup  Hs(fy), 2)
RI*4: det Sy (1) > 0,Vel™ € C,w € [—m, ]} denote the Jy€Psu

set of Power Spectral Density (PSD’s). where Hg(.) denote the Shannon entropy [7].

Information Source. The information sourc&” € ), -—;  B) Robust Shannon Entropy Rate. The robust Shannon
induces a PDFfyr(yT) on (Vor-1,F) ;). In general, entropy rate associated with the familysyy of the joint
the source is uncertain, that igy+(y7) is unknown but PDF, Y is defined by

belongs to the source uncertainty get-(y?) € Dsy C D. A 1 .
Communication Channel. The communication channel is Hrobust (V) = im 7 Hrobust (fyr),
identified by a sequence of PDF{Ska\Zk,Zk—l o Since Hyopust(fyr) = sup  Hg(fyr) 3)
the channel, in general, is uncertain, the jomﬂg w zn fyrebsu

of the channel is uncertain and belongs to the channptovided the limit exists.

uncertainty seff 7., ;. € Dcu C D. i) Frequency Domain Model. Let{Y;;t € N,},

Encoder. An encoder is identified by a sequence of PDF's\ a {0,1,2,..}, Vi : (LFQ) — Vs, F(Vs)),

that is describing the probabilistic relationship betweenyg 7()s)) = (R? B(R%)) be a Wide Sense Stationary
the current output of the encoder and the previous outpU/SS) Gaussian process asg (e/*) € Pgy C P, where

of the encoder and inputs to the encoder, up to curremiy; is the set of all Power Spectral Densities (PSD's)
time. That is, it is identified by a sequence of PDF'§nduced by the random proce$s;;¢ € N}

n—1

{fzk‘yk Zh—1 . The robust Shannon entropy rate associated with the family
Decoder. A decoder is identified by a sequence of PDF'dsu is defined by
that is describing the probabilistic relationship between Hrobust(y)é sup  Hs(Sy), 4)

the current output of the decoder and the previous outputs Sy ePsy



where Hg(Sy) is the Shannon entropy rate of the WSSMoreover, if p is such that/ ePWdy < oo (s < 0), the

Gaussian random proce$¥;;t € N }. maximum overg € Gp is attained ay*(y), satisfying the
Next, we define the robust channel capacity in the present@lowing two conditions
of feedback. esp(v)
Definition 2.2: (Robust Channel Capacity in the Presence g (y) = T or@dy
of Feedback) When the channel is uncertain, the robust f%de =
channel capacity in the presence of feedback is defined by /W () g* (y)dy = D, (9)
Cropust = lim_ %Cn,robust (5) Itis also shown that ifR(D,) 2 limp_ o +Rr(D,) and

Hs(Y) 2 limp_, %Hs(fyT) exist, then the Shannon
~ lower bound is tight [9]. That islimp, .o (R(D,) —
2 jim 1 sup inf  I(Z" 2", ght [9] D 0( (Do)

n—=MN p,necDer PZn‘ZnG/.DCU . (Hs(Y) — Hs(g*))) = 0.
wherel(;;.) denote the mutual information. ~ 3) Robust Information Transmission Theorern this
Next we proceed by defining the robust rate distortion. Thigeaction by invoking the data processing inequality, we

is @ measure of the minimum rate under which an end erive a robust version of the Information Transmission
end transmission with distortion, up to distortion leve] is  heqrem. This theorem provides a necessary condition for

DOSSiF"?-_ _ _ end to end transmission up to a distortion leve] (e.g.
Definition 2.3: (Robust RaTte~TD|stort|on)~TLetDDcT =  Epr(YT;YT) < D,), when there is uncertainty on the
{q};T|yT;fy01T_1><)~}O,T_1 pr(y, U ) gy ryr (57 ) fyr(y) source as well as communication channel. In the next Sec-

dyTdy" < D, } be the set of distortion constraints, in whichtion, this theorem will be used to relate the robust channel

ayr|yr is @ PDF representing the probabilistic relationshigapacity required for uniform asymptotic observability and

betweenY” and Y7, D, > 0 is the distortion level, and stabilizability to the robust rate distortion.

pr : Yor—1 % )707T_1 — [0, 00) is the distortion measure.  Theorem 2.5:(Robust Information Transmission Theo-

The robust rate distortion is defined by rem) [9] A necessary condition for reproducing the source
outputY ™ up to distortion levelD,, by Y7 at the output of

Ry opust(Dy) = lim lRT,robust<Dv) 2 (6) the decoder for n-times channel use { n), when there is
T—oo T uncertainty on the source and communication channel, is
1 ~ Cn,robust 2 RT,robust(Dv)~ (10)
lim — inf sup I(YT;¥T).

T—oo L qgryr€DPDC f 1 €Dsy

2) Lower Bound for Robust Rate Distortior8ince the
explicit expression for the robust rate distortion is difficult I1l. N ECESSARYCONDITIONS FORUNIFORM
to obtain, it is desirable to have a lower bound which is easily ASYMPTOTIC OBSERVABILITY AND STABILIZABILITY
computed. Moreover, these lower bound will be used in the In this Section by invoking the mathematical frame-
next Section to address uniform asymptotic observability anglork developed in the previous Section, general neces-
stabilizability of control/communication system of Fig. 1. sary conditions for uniform asymptotic observability and

Lemma 2.4:(Lower Bound for Robust Rate Distortion) stabilizability are derived. Then the obtained results are
[9]. Let (Vs,F(Vs)) = (RYBRY), (Vr, F(Yr)) = applied to two different classes of uncertain plant. Through-
(R4, B(RY)) and fyr(y?) € Dsu, (yI' € Yor—1) de- out this Section, we assume that the control law at time
note the joint PDF corresponding to a sequence of R.V.s U; = u(t,Yo,...,Y:), is a non-anticipative functional
with length 7' produced by the source. Consider a sinof the decoder output up to timeé. The encoder law
gle letter distortion measure of the formq(y?;37) = attimet, Z, = &£(t,Yo,Y1,...Ys, 20, 21,....,Z;—1), IS &
%Zf:‘ol p(vi; U:), where p(ys;9:) = p(ys — 7:) : ®¢ —  non-anticipative functional of the information source out-
[0,00) is Borel measurable. Then a lower bound foput up to timet and the previous output of the en-

%RT’mbwt(DU) is given by coder up to timet — 1. Finally, the decoder _Iaw at time
1 1 t, Y, = A(t, Z(),Zl,...,Zt,Y(),Yl,...,)/t_l), IS a non-
Z Ry ropust(Dy) > sup  —Hs(fyr) anticipative fynctlonal of the channel output up to time
T fyreDsy T and the previous output of the decoder up to time1.
—gl"gg}; Hs(g), () A. Necessary Conditions for Uniform Asymptotic Observ-

ability and Stabilizability in Probability and r-Mean
In this Section, we find general necessary conditions for
Gp = {g: % — [O,oo);/ g(y)dy = 1, uniform observability and stabilizability in probability and
Rod r-mean.

whereGp is defined by

()a(y)dy < D ®) Consider the control/communication system of Fig. 1.
/md”” v < Do} Let (V5. F(¥s)) = (R%B(RY) and (Vr, F(Vr)) =



(R4, B(R4)). That is,Y; € R?, whereY; is the observation exists an encoder, decoder and controller such that (13)

from the uncertain plant obtained by sensors at titne is satisfied for a givenD, > 0 and p(X%,0) = || Xi —

The objective is to find a necessary condition for uniformd||.....,r > 0.

asymptotic observability and stabilizability in probability andNext, using Lemma 2.4 and Theorem 2.5, the main result of

r-mean defined as follows. this Section is presented in the following theorem.
Definition 3.1: (Uniform  Asymptotic ~ Observability ~ Theorem 3.3:[9]. i) For uniform asymptotic observability

in  Probabilty and r- Mean). Consider the and stabilizability in probability, a necessary condition on the

control/communication system of Fig. 1. robust channel capacity is

Uniform Asymptotic Observability in Probability The

uncertain plant is uniform asymptotic observable in Crobust > Hrobust (V) — llog[(gm)d detT,], (15)
probability over uncertain communication channel if there 2

exists an encoder and decoder such that whereH,..5us: () is the robust Shannon entropy rate of the
=1 B observed process and, is the covariance matrix of the
,Hm - sup EZEP(YMYk) < Dy, (11) Gaussian distributioy*(y) ~ N(0,Ty),(y € R?) which
Fye€Psu ¥ g satisfies
where fy:(y') is the joint PDF of Y* produced by the .
uncertain plant,D, > 0 is arbitrary small ando(Yk,ffk) /|y|>59 (y)dy = D, (16)

is defined by

in which D, > 0 is arbitrary small.

i) A necessary condition for-mean uniform asymptotic
observability and stabilizability is

oy [|[Ve — Yi|| > 6,
p(Yk, Yk) == B (12)
0 if |[Yi =Yyl <o,

d T d d
in which ||.|| is Euclidian norm, that isjly — || £ ((y — Crobust = Hropust(V) = — + log(idvdl“(i) (E)”')» 17
9"y — ﬂ)) andé > 0 is fixed. wherel'(.) is the gamma function arid; is the volume of the

Uniform Asymptotic Observability irMean The uncertain |, it sphere (e.gVy = Vol(Sy); S A {z € R ||z]| < 1}).
plant is uniform asymptotic observable irmean over un- Remark 3.4:We have the following remarks rega?ding the
certain communication channel if there exists an encoder a'&gove theorem.
decoder such that (11) is satisfied for a given fixed> 0
andp(Yk7Yk) = ||Yk — Yk||r7’l’ > 0.
Next, assume there is a linear relationship between the o
served signaly;, and the state variable,, of the uncertain
plant. That is,Y; = CX; + Y, whereY,, in general, is 1
subject to uncertainty and it is a function of time, control
signal and measurement noises. Under this assumption, the
uniform asymptotic stabilizability in probability an¢mean  \here o (t) 2 ft 1% du Using a table for this
is defined as follow. —e° V2 52
Definition 3.2: (Uniform  Asymptotic  Stabilizability 16
in  Probabilty and r- Mean). Consider the
control/communication system of Fig. 1.
Uniform Asymptotic Stabilizability in Probability.The

i) The robust Shannon entropy rate is a function of the control
ignal.
| For the cased = 1, condition (16) is reduced to

) = va (18)

integral, we notice that for an arbitrary smadh,, I'y =
should be used in (15).

i) Finally, it is pointed out that the necessary conditions
derived in Theorem 3.3, are practically important because

uncertain plant is uniform asymptotic stabilizable inthey give_f_lexik_)i_lity fo the designe_r _to relate the _observability
probability over the uncertain communication channel ifnd stab|I|za.b_|I|ty error to_ Fhe minimum Capacity necessary
there exists an encoder, decoder, and controller such that or observability and stabilizability.

t—1

1
lim sup = ZEp(Xk,O) <D,, (13)

t—oo fyt €Dsu t k=0

B. Uncertain Plants Defined via the Relative Entropy and
H* Constraints

In this Section, we apply Theorem 3.3 to the following

S0 . oV ,
whereD, > 0 is arbitrary small anch(.X, 0) is defined by uncertain plants. 1) The probabilistic uncertain plant defined

1 if || Xk = 0l|lgtre > 6, via relative entropy constraint and 2) The frequency domain
p(Xk,0) = (14) uncertain plant defined vi&/ > constraint.
0 if || Xk —0l|lctrc <0, We start by defining the probabilistic uncertain plant defined
A 1 via relative entropy constraint. L&t” = (Yo, Y1,...,Yr_1),
in which ||z — 0||circ £ (a:”C“’CJ;) . Yi o (L F(Q) — (R4 BRY), k = 0,1,..,T — 1 be a

Uniform Asymptotic Stabilizability in-Mean The uncertain sequence of R.V.'s with lengtl’ of observation process of
plant is uniform asymptotic stabilizable inmean if there uncertain plant andfy~(y?) € D denote the joint PDF



of YT, Let gy be the joint PDF ofy’” produced by the
following state space form. AW (D)
(ij:(Q)’ {]:}tZU’P) : A " °
X1 = AXy+ BW,+ NU;,  Xo :Xa(lg)
U Hy(2)

wheret € N, X; € R" is the unobserved (state) process,
Y; € R? is the observed process € R° is the control _ , o ,
signal, W, € ®™, V, ¢ ERI, in which {Wt;t c N+} is Fig. 2. Uncertain plant defined viBH°° constraint
Independent Identically Distributed (i.i.ek) N (0, I, xm),

{V};ﬁ S N+}, is i.i.d. ~ N(O,lel), Xog ~ N(i‘o,‘_/o), . .
{W,, Vi, Xo;t € N} are mutually independent anft # We repeat ([10], Proposition 3.3 and the result of Section

0. Here, it is assumed thatC,A) is detectable and !ll-B) here. _
(A, (BB”)%) is stabilizable. Proposition 3.7:[10]. The robust Shannon entropy rate of

Definition 3.5: (Probabilistic Uncertain Plant Defined via the uncontrolled (e.g.{U; = 0;¢ € N.}) uncertain plant
a Relative Entropy Constraint). The probabilistic uncertaifOrrésponding to the uncontrolled version of the nominal
plant is the one that its joint PDFy+(y”) € D, belongs to plant (19) via the relative entropy uncertainty set (20) is

the following relative entropy uncertainty set. d 14 s*

A Hrobust (y) - 5 IOg( s* ) + Hs(y)a
Dsu(gyr) = {fyr € D;H(fyr|gyr) <TR.}, A dl 11 det A 93
R. € (0,00), (20) Hs(Y) = 3 og(2me) + 5 logdet Ao, (23)
where H(.|.) denotes the relative entropy between two denwheres* > 0 is the unique solution aR. = — 2 log(1£:")+
sity functions [7]. % and A, is given by
Next, we consider Gaussian uncertain plants, in which the A = CV..C' + DD,

uncertainty is described via théf> norm linear space Vv AV AT AV OOV O 4 D]
model. Definef(1) 2 {22 € C,|2| < 1} and let H> < oo AT = AV CT[CVo O + )

denote the space of scalar, bounded, analytic functions of -QVwAtT +BB". . ) (24)
» € B(1). When this space is endowed with the norm Remark 3.8:We have the following obse_rvatlons rggard-
A - - o ing the robust Shannon entropy rate found in Proposition 3.7.
[|H||oo = SUP_ < p<r |[H(EY)|,(z =€), H € H®, then . :
L TTSwWsT i) The robust Shannon entropy rate is equal to the Shannon
(H*°,]|.]|s) is @ Banach space.

Definition 3.6: (Frequency Domain Uncertainty Plant De-eir:ézp%éaézslfe;'”fdgcoi 9 ,_?r 5 ;r(;z’s ag’nléésts)iﬁgcégge
fined via anH > Constraint). The uncertain plant is obtained® e 5 o0 P

by passing the control signals through an uncertain stab\(vhen there is a single source.

linear filter Hy; (z) and a stationary Gaussian random proceslgh(égn(szlg)e rc;ebsecilglrv\ézrzggli?:ftl(;?ﬁ;vﬁe:n 15‘322&;;& into
X (F () - (R,BR)),t € N4, with known power

spectral densitys x (e/*) : C — [0, 00), through an uncertain (23) to obtain the following results.

stable linear filterH (z), defined by (see Fig. 2) A) When B 70, . L )
He Moy 2 {ﬁ € H®,H(z) = H(z) + A(2)W(2), Hrobust(Y) > 3 log(%) +3 log(2meD?)
H(z),H(z),A(z),W(z) € H®, where + max{0, log |A|}. (25)
H(z),W(z) are fixed,A(z) is unknown and B) When B is arbitrary small § = 0),
1Al <1} @D M) = glos(t )+ L log(2neD?)
Here,Y; € R, H(z) is the nominal source transfer function + max{0, log|A|}. (26)

based on previous experience or belief, @)W (z) rep- Notice that (26) contains the termax{0, log|Al}. There-
resents the uncertain part of the source. Clearly, this additifere, the robust Shannon entropy rate is explicitly related to
uncertainty model impliesH (e’*) — H(e/")| < |W(e’v)|, the unstable eigenvalue of the system matfixThe general
Yw € [, ], and thus the size of uncertainty is controlledcase will be treated later, using the Bode integral formula.
by the fixed transfer functiof’(z). Proposition 3.9:[10]. The robust Shannon entropy rate of
Since {X,;t € N,} is stationary andH(z) is stable, the uncontrolled (e.gl/(z) = 0) uncertain plant defined via
Sy (e7®) = |H(e’™)|2Sx (¢/). Consequently, the set of all H> constraint is

PSD’s of such uncertain plants is given by Hoyopust (V) = %log(Zwe)

Psu = {Sy(e™) € PiSy(e/") = e | e
[H(e™) + A7) W () PSx (), b [ tow ((HE™)| + W) 2Sx (e dw.
1Al < 1} (22) (27)



Remark 3.10:For the uncertain plant described by the rel- +i /F log(|F(e’™)[2 + DD' + |G(ejw)|20‘2/v )dw
ative entropy constraint, from the chain rule for the Shannon dm ) _n ‘
entropy, it follow; that the robust Shannon entropy rate of the +} log(27e) — A, (28)
controlled plant is lower bounded by the Shannon entropy 2

rate of the uncontrolled plant. Also, it is easily shown thaivhere C<®? denote the AWGN channel capacity; > 0
the robust Shannon entropy rate of the controlled uncertaig given in Proposition 3.7F(e/*) = C(ei*] — A)~'B,
plant described byZ*° constraint is always lower bounded F(ei))? 2 F(e7W)Fr (e=9w), G(eiv) = P(e/) K, (/)
by the Shannon entropy rate of the uncontrolled uncertai,q IG(e7)[2 = G(e/*)G" (/™). Moreover, A could be

plant. equal toA = Llog T (§ > 0 is large enough) oA =
Next, since each lower bound for (15) or (17) represent a r (-1t
necessary condition for uniform asymptotic observability and 2T () Dy )

Remark 3.13:Condition (28) gives as special case the
sult of [6] in which a digital noiseless channel (with rate
, €.0.,,C? = R) is used. This follows from the results
of Corollary 3.12, condition (28), for = 2 and D,, large,
by letting the quantization parametéry found in [6] takes
. o o - the valueAy = exp {A}, and settin 0, D=1 and
ymptotic observability and stabilizability in probability andB — 0 for t%e pla%t{ aridH (2) = 1gaﬁé :W — 0 for the
f . . - c - c —

r-mean of uncc_arta_ln p_Iants described by the relatlvg entrc.)@ﬁannel, which implies that when these values are substituted
or H*> constraint is given by (15) and (17) respectively, iNnto (28), then
which H...pust () is given by Proposition 3.7 for uncertain '
plants described by relative entropy constraint, or by Propog > llog(Qwe) + Z log | Ai(A)| — log Ay. (29)
sition 3.9 for uncertain plants described B§*° constraint. 2 (sl (A >1}
Please note that the necessary conditions given in Corolla{}f
3.11 are independent of the control signals, so we do not neede
to be aware of the control signals to present the necessary REFERENCES
conditions, unlike [2]. . . [1] S. Tatikonda and S. Mitter, Control under Communication Constraints,
Next, we apply the results of Theorem 3.3 (by invoking the = IEEE Transaction on Automatic Controvol. 49, No. 7, pp. 1056-
Bode integral formula [11]) to the control/communication __ 1068, July 2004. _ _
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Corollary 3.12: Consider the probabilistic uncertain plant Automatic Contraivol. 49, No. 9, pp. 1585-1597, September 2004.
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