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Abstract—In this paper decentralized controllers are de- data reconstruction and mean square stability. Encoders
signed for mean square stability of large scale systems with and decoders are obtained using Source-Channel matching
linear time-invariant distributed subsystems. The subsystems iacpnique [7]. And the stabilizing controllers are obtained
are SUbjeCt to Gaussian process and measurement noise. FOI’]c boobti | trol luti In desi . th trol
the stability analysis of the system we also consider the effects rom a suboptima Co_n ro sop '_On' n es!gnlng € C(_)n ro
of noisy and limited Capacity communication channels used |aWS the effeCtS Of n0|sy a.nd I|m|ted CapaCIty Of transmission
for exchanging information between subsystems. Hence, the are considered. Hence, the proposed scheme is suitable for
proposed scheme is suitable for controlling networks of Micro controlling networks of MEMS.

Electro Mechanical Systems (MEMS). The paper is organized as follows: In Section Il, problem
I. INTRODUCTION formulation is described. In this section we also present a

TDMA scheme. In Section Ill, we present the dynamic model

Development in electronics has given birth to small Siz?or the large scale system; and in Section IV we present
embedded systems such as Micro Electro Mechanical Syéﬁcoders decoders and controllers

tems (MEMS). These embedded systems, in general, consist
of sensors, data processor, communication and actuator. As Il. PROBLEM FORMULATION

discussed in [1] distributed parameter systems (which affhroughout the paper we adopt the following notations:
described by partial differential/difference equations) can b@ogarithm of base2 is denoted bylog(-). The transpose
approximated by a large number of interconnected finitgs 4 \where A can be either matrix or vector is denoted
dimensional systems. In recent years, technological develogy 4’ Eyclidean norm with weight? on any finite

ment in MEMS has made it possible the idea of placing thesgmensional space is denote by- ||z. The space of all
devices in each interconnected subsystem for efficient contrglatrices A € Rex° is denoted byM(q x o). The inverse
(of distributed parameter systems). As discussed in [1] somg 5 square matrixd € M(q x q) is denoted byA~!; and
examples are: distributed flow control for drag reduction angmg(,) denotes block diagonal matrix. The covariance of
smart mechanical structures. o _ ~ a Random Variable (R.V.X is denoted byCov(X). The
Due to limited power supply, the transmission of information,;oss covariance matrix of two R.VE andY is denoted
from MEMS is subject to short distance, noise, and Iimite%y Cov(X,Y). The nominal (Gaussian) density function
capacity. References [1]-[6] can be viewed as an attempt \%ﬂth meanz and covarianceV is denoted byN(z, V).

address some of the technical issues concerning COMMURz,ssian R. VX described by the density functia¥i(z, V)
cation and control of distributed finite dimensional systemg; jenoted byX ~ N(z,V)

equipped with these microscopic embedded systems.

In the present paper we address similar questions by devgynamic System: Consider a large scale system with

oping a uniform Time Divisipn Multiple_ Access (TDMA) M interconnected subsystems. téf) € ®" be the state,
scheme and use of information theoretic tools for analys%.(i) c R4 be the control andut(i) € B9 be the process

. . P t
TD':/IA scher?r:je |sdqsicri].to avoid CO”',S',[on'thi !Ergt]edsﬁal%qise of theith subsystemi( € {1,2,..,M}). Also, let
system considered in this paper consists of distributed lineari) _ wun, pa the observation andt(l) c Rh be the

time-invariant partially observed subsystems with Gaussi M easurement noise. Moreover, let the sgtlenote the set

process and measurement noise. The information is ex; ) :
. . " -Of subsystems that can affect thi#h subsystem dynamics
changed between subsystems via slow fading Additive White ; . )
. . . Via their state variables and control signals. In many
Gaussian Noise (AWGN) channels subject to path loss. Thus, .~ . S . . .
. o . applications, such as applications involving MEMS, it is
dynamic model and communication channel considered | .
i . . mqre reasonable to assume that itesubsystem is affected
this paper are the major generalization of the ones addressoe

in [2]-[6], in which the dynamic system and channel are) t_he .neighbqring .sqbsystems.. In_other word.s, in .SUCh
' %pcgllcatlons,oi is a finite set which includes neighboring

u

e

noiseless. For the linear large scale system, as describ . -
systems. It is also assumed that each subsystem is linear

above, the quadratic cost functional is used. Encoders, de- "~ . ) .

. . ! |me-|nvar|ant subject to Gaussian process and measurement
coders and decentralized controllers are designed for reliable. - )

noise, as described below:
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where xik) e R (k € o;) is the state anmgk) € R4 all subsystems in groug; and we follow this procedure

is the control signal of theith subsystem that affect the until we allocate theN;th time slot to all subsystems in
ith subsystem dynamicsd; € M(n; x n;) is the system group N; to broadcast information about control signals
matrix and B; € M (n; x d;) is the control matrix of simultaneously. We follow similar procedure for time
the ith subsystem. MatricedD;;, € M(n; x ng) and slots Ny + 1,..., N,; and we broadcast information about
E;i € M(n; x di) are interconnection matrices. Moreover,observation signals.
C; € M'(m X gz)! F; € M(ml X m) andG; € _M(ml X hi)
Gaussiaan.V.g(i) is described by the density function Communication Channel: The communication link
N, Vi), Furthermore, w(” iid. ~ N(0,5{)) from theith subsystem to thgth neighboring subsystem
and o/ iid. ~ N(0,20). RWs {&,w® o(?} is modeled by a multi input, multi output AWGN channel
(i,p,q € {1,2,..,M}) are mutually independent. with channel input (i.e., transmitter output of thih
Also, {w” w?} and {709} G € {1,.. M}, subsystem)Tt(Z) and channel output (i.e., receiver input
J(# 1) € il,...,M}) are mutually independent. But R.\Vs of the jth subsystem)R{’”. This channel is subject to
501) and foj) may be stochastically dependent with knowrPath loss and slow fading. Depending on'the_ transmitted
cross covariance matri€ov (¢, €§7)). signal, the channel input is eithef!” = fi(y(1)) or
T = ei(u@(t)), where fi(-) and ei(-) are encoding
Time Division Multiple Access (TDMA) Scheme: functions (ft”(~) and ei’)(-) are invertible functions and in
Each subsystem broadcasts information about observatiganeral they can be nonlinear).
and control signal to neighboring subsystems. Therefor¥/hen the information about observation signal is transmitted
there is a possibility of collision in the broadcastedhrough the channel (i.eZ}” = fi(y()(t))) the channel is
information; and in order to avoid such collision we neediescribed by
to employ an appropriate technique. y iy Y y
As it has been discussed in [8], in problems such as MEMS RE] )= h_gj : ft( )(y( ')+ Ct(J )’ -
with components having access to limited power supply, 71" = f{”(y(t)) € ®?', RY" € R, UV € R,
TDMA based schemes may be more energy efficient than EHTt(i)H2 < Pt(i)’ t(ji) idid. ~ N(()’l"(ji)), 2)
other protocols. Therefore, we employ a TDMA scheme, as

described below, to avoid collision. in which the channel gaihgjj’) is given by

Based on the communication range of the broadcasted NN

. ) . h(ﬂ) 2 (]Z)/(d”)(quj A3)
information about control signals, the large scale system t @y gi)

can be decomposed into disj(_)int groups of subsyst_errwhere d;; is the line of sight distance andaj;
denoted by groupsl,2,..., Ny, in which subsystems in (, =< 1012 .}) is the path loss factor. The random
each group have non-overlapping communication rangt; atrix agji) having components with Rayleigh distribution

Similarly, based on the communication range of the . . i)
broadcasted information about observation signals, thrgpresents the fad|r_19 effect Ir_1 expression (2.) R;y
resents the additive Gaussian channel noise aHbl

large scale system can be decomposed into disjoint grougg0

N; +1,..., No. Note that for two groups € {1,2,..., N1} hnotei the c;hgnnel mpu(tj pﬁwerhconstramt. L h |
and j(# i) € {1,2,., N1} or i € {Ny + 1,..,No} Throughout, it is assumed that the communication channe

and j(# i) € {N, + 1,.., N}, the seti N j is empty. is subject tp s(,I%w fading. That is, at any.timae N, thg
But for i € {1,2,..,N,} andj € {N; + 1,.., N}, the channel gaim,”" is known to both transmitter and receiver.
seti N j may be non-empty. Subsystems in each groupurthermore, it is assumed thaim, . af? = alid
can broadcast information about control or observatioflmost surly, whereal’") is fixed. The communication
signals simultaneously. At the same time the neighboringiodel similar to (2) has been used in networks of MEMS
subsystems are waiting to receive this information; and the§nd sensor networks, in which the path loss faetor= 3

will receive the broadcasted information without collision.as been used (e.g., see [8]).

Following this fact, we divide each time step int%, equal

size, non-overlapping time slots. In the fid time slots Objective: Mean square stabilty means that the
we exchange information about control signals and in thefate variables have bounded second moment. The
rest of time step we exchange information about observatidipiective of this paper is to find control sequence
Signa]s’ as described below: {utL i =1,2,...,.M, t € N+} to stabilize all Subsystems
We allocate the first time slot to all subsystems in graup ~ diven by (1) in the mean square sense. That is,

broadcast information about control signals simultaneously. ONE )

At this time the transmitters of all subsystems in other tzlll\aEth I <00, Wi {l,2,., M} “)

groups (i.e2,3,..., N1) are shut down; while the receivers . . ) . .
of the neighboring subsystems of the systems in group Information Available at Each subsystem:The information

are on; and they are waiting to receive the broadcastt%]ya"able Tt .theztlz(i?ubsys.tem \?/h'Ch IS us;zd to producg
information. Similarly, we allocate the second time slot tghe control signalu,~ consists of its past observation an
past control signal as well as a noisy version of the past



observation and past control signals of the neighboringusterS,. is described by the following dynamic model
Subsystems. ") _ A0 x® 4 BOFT L ooy ™

It is well known that for a linear system with a quadratic Xppr = AWX + BWU + CW

cost functional having positive weighting matrices, the op- DD XY 4 Oy Ny (6)
timal/suboptimal control solution results in the mean squard v, = Fx" + ¢V r=1,2,..,1,

stability. For large scale linear systems, when the controllers ) i i
have limited access to the observation and control signals ¥f1€ré matncesA@, B™, ¢, FV, and G™") represent
other subsystems, the optimal solution is unknown. Therd?® interconnection amongl subsystemsl of clusfer In-
fore, in addressing the stability question of such systenf§rconnection ma_trlcesD(T* ) and M(_TJF ) represent the
we look for a suboptimal solution. Hence, the stabilizingffect of state variables and control signals of clusigr,,
controllers for system (1) subject to available information, a€SPectively, on the subs)/lstems of clusgr. Similarly,
indicated above, can be obtained from a suboptimal contrJtérconnection matrix\V"~1) represent the effect of the

. . . . . i +1) _
solution with the following quadratic payoff functional control signals of clustes, ;. Note that_D( ) = 0,
MY =0, and N© = 0. Also note that interconnection
1 Z M . 4 matrices mostly contain zero components because of the
J= lim = ZE[Z(HxE’H 2 4 1W?12,)],  (5) weak interconnection among clusters.
T—oo T ‘ ‘ ¢ . . .
t=0 =1 Thus, the overall system is described by the following system

) - ) o of equations.
where K; = K/ € M(n; x n;) is positive semi-definite and

H; = H] € M(d; x d;) is positive definite. X1 = AXy + BU, + CW, %
Y, = FX; + GV,
Ill. DYNAMIC MODEL FOR LARGE SCALE where X; = (X0 _ x') is the state of the full
SYSTEM (large scale) systent/; = (Ut(l)l Ut(l)/)' is the control
As discussed in [9] a large scale system can be decompos&$tor, Wi = (Wt(l/) W) is the process noise,
into clusters of subsystems, in which each cluster includas = (v, .. ;") is the measurement noise, and

subsystems which are strongly coupled. The overall systep;tl — (v oy ) is the observation vector. In () =
is then represented as a system of weak interconnection &Eg(C(f) C‘('z‘)_._t c)y, F = diag(FV F@ . FO)
the resulting clusters. and G = diag (G G® ... V). Furthermore, matrices

In this paper we are concerned with the large scale system ;.4 5 are given by the following block matrices:
(1) which can be decomposed into disjoint clust&fsr =

1,2,...,1, where each cluster includes a set of neighboring AD D0 0 0 0
subsystems which are strongly interconnected. Clusfers 0 A® DB 0 0 0
andsS,; weakly affect their dynamics. Clustéy., ; weakly a—| 0 0 - 00 0
affects the dynamics of clusté;,. via its state variables and 0 0 o - 0 0 |’
control signals; and cluste$, affects weakly the dynamics 0 0 o 0 - DU
of clusterS, ., via its control signals. We level the full (large 0 0 0 0 0 A®
scale) system as follows: Clustel; includes subsystems B M@ 0 0 0 0
{a1,...h1} (a1 = 1, by > ay), clusterS, includes subsystems N® - B®@ o p®) 0 0 0
{as,...ha} (a2 = bi+1, by > ay), ..., and clustess; includes  _ [ 0 0 . 0 0 0
Subsystemi{al, ...,bl} (a; =b_1+1,b, =M > a;). Note 0 0 0 : 0 0
that subsystemu,, (r € {1,2,...,1 — 1}) is the closest 0 0 0 N2 : MO
0 0 0 0 NUD pO

subsystem of clustef,.,; to the subsystems of clustér.

The information about control and observation signal of each
subsystem of cluste, (r € {1,2,...,1}) is available at V. CONTROL THROUGH COMMUNICATION CHANNELS
other subsystems of this cluster. Moreover, information about WITH LIMITED POWER

those control signals of clustets. and S, which affect |, some applications such as sensor networks and applica-
their dynamics is available at the subsystems of clusters  (ions involving MEMS with components having access to
and S, which are affected. Furthermore, information aboufimited power supply, the power for transmission is limited.
control signal of subsystemy., in clusterS,.., is available  ence  the transmission is subject to limited capacity and
at the subsystems of clustét. which are affected by the \gise  Therefore, in such applications, it is important to
state variables of cluste, ;. exchange all or at least some information under minimum
Let X;” denote the vector of state variables of all subsyscapacity (power). This is the subject of study in this section.
tems of clusterS, at timet. Similarly, let U\” denote the Here, for simplicity of analysis, we assume information about
vector of control signalsiV,” the vector of process noises, control sequences is exchanged without communication con-
Yt(’") the vector of observation signals ab(gﬁr) the vector of straints. But, information about observation sequences is
measurement noises of all subsystems of cluSterThen, exchanged via AWGN channel (2) subject to limited power.



We also assume the observation signg{i@’s are scalar. The messag@“t(ﬂ) is broadcasted via the AWGN channel (2)
Also, the AWGN channel (2) is single input, single output.to the neighboring subsystems and it receives at subsystem
In this section, we present a methodology for designing.

encoders and decoders for reliable transmission of the oBubsysteny receivesk’? £ hVITY) 4 (0D ¢ R, where

servation sequences when the capacity (power) used o) ig the received signalh\’” is the channel gain as

transmission is minimum. We also present decentralizg§hscribed by expression (3), and the channel nQ,iéié is
controllers for mean square stability. Note that the informasy, i g. sequence with distributial (0, [G9))

tion available at each subsystem is available at the encod
decoder, and controller of that subsystem.

Consider system (7). In view of the system decomposed
suggested above, the payoff functional (5) for system (7) ¢
now be written as follows

?F\_e_ decoding function for this subsystem jjéji) =
fﬂ)(ift(”)), wherey’” is the reconstructed version of the
£ servation signayt(z) at subsysterny; and

IO 2 RO 4 Rl <
— 7 (2) O] —(75) A i1 (i) 7 (§i
J=JV + Y 4+ L+ TV, (8) kij) :(hE])) l,yt(J )ng) € R, (11)
where forr =1,2,...,1 —(ii) . . .
TT S where k") is the reconstructed version of the innovation
T (2) :
i, 1 )2 2 sequencek, ’/, at sub-systenj.
T = TIEEOTZE(”Xt g, + 11U [I7,); Note that the decoding function (11) involves the state
=0 estimationz!"”. As it will be shown later this estimation is
available at subsysternvia the control signal of subsystem

corresponds to cluste$,. The steps taken to design decen? - Also, note that the encoder and decoder, as described
tralized control laws are described below: For each clust@bove, are causal functions of the source messages.

we choose the control vector in an appropriate way suchontrol Law for Subsystem j in Cluster S,.: For eacht >

that we compensate the weak interconnection effects frofh in addition of the observation signg}”’, a noisy version
other clusters. For cluste, this compensation is achieved Of the observation signal of subsysteis* j) € {a,,a, +
using the information available from clustets,_; and 1, ...,b.} is available at subsysterh That is, the following

Q, = diag(K,,...Kp,), R, = diag(H,,...Hp,) (9)

S,.1 which is used to regulate the dynamics of clusfer  observation vectow,”? 2 (59" . 4@ gty is
Then, the stabilizing controllers for clustéy. are obtained available. A 4
independently by finding a suboptimal control solution for_et Zf”) = (2, .. 2 ..z, ), wherez; = yt(]), 2 =

the payoff functional/("). Finally, the stability of the whole (%) 4 ,Ygﬂ)ﬂt(ﬂ)}igggii) ~ Fi. Also, let
system, when these controllers are enforced, is proved.

i i i I rj) A . j Q- j Q- jbr jby
Accc_)rc_ilng to the_ mterconnectlon_ mgtncﬂsandB of system Ft( 2 dzag('yt(j )ﬁt“ )Far...Fj...%(] )ﬂt(J )Fbr)
(7), it is convenient to start designing stabilizing controllers () A ) , D .

. . G rj) & dia ( (Jar)ﬁ(Jar)G LG (J r)ﬁ(] ’7~)G )
from clusterS; which is affected only by the control vector t A t ap--Gj t br
of clusterS;_;. We then design stabilizing controllers for 9D & (U | gan" by i)

clusterS;_1, clusterS;_s, ..., till clusterS;. @ji) _ (hgji)),l%(ji)ct(ﬁ)'
A. Control Law For ClustetS, (r =1,...,1 i , /

, _ ( ) _ The control vector/\” = (u{*"" ... u{")")" is applied by
Consider clustesS,., as described by expression (6). In thethe subsystems of clusté.. Control signam(‘”) is applied
followings we present a methodology for designing encoder Y subsystem and the control si nal&’f) is applied
decoders, and stabilizing controllers, for mean square stabjl? b y m;""" _ N. B g h v U(PTF)) )
ity such that the capacity (power) used for transmission gy su syst_e rattimet c Ny By c 00sIng®, ~In
minimum an appropriate way, we can compensate the interconnection
Linear Encoders and Decoders for Subsystems of Cluster effects caused by cluste&._; and Sr41. Hence, we can

S.: The information about observation sig@éi) of subsys- design controllers for clustesS, independently of other

. - . . clusters.
temi € {a,,a, + 1,...,b,.} in clusterS, is transmitted to .
subsystemj(+£ i) € {ay,a, +1,...,b,} in this cluster via Recall that at timet, those control sequences of clusters

i . i) S,-—1 and S,.,1 which affect the subsystems of clusi&y
AWGN channel (2). Let the non-negative scalas” and via matricesN ("= and M ("1 respectively, are available

(i) ; . . .
Tt 8)9 the encoding and decoding gain, respectively. AlsQy 1,6 g nsystems which are affected. Therefore, subsystems
let 7, ", denote the available information at subsystefor ¢ |uster S, can use this information to regulate their

eacht € N,. Subsystemi uses this information and pro- dynamics.

. (i) A i i
duces the mean square state estimatigh = E[x| )‘fé—)l]' The appropriate choice for control sigrif” is given by
This estimation is used in the encoding functiar/” = ) , , }
77 ("), where U =0 + B (BO B (- MOy
.. . .. . . . .. r S(r+1 ari1 r— r—1
ft(jz)(y(z)) A Bt(ﬂ)kt(z) € R, k,t(z) 2 y(z) . Fifci“) € R. (10) _ne +1)Xt( +1) _ ¢ 1)Ut( ))7 (12)

t t



where the new control vecta” = (a{®)" ... @*""y
is available at all subsystems of clustér.. Note that

variables of clustesS,; produced at subsyste..; (in

clusterS,.;). This estimation is available at those subsysfR, + B A" B())-1

minimizes the payoff functional/(") follows from the

standard LQG results [10]. The optimal control is given
X+t er+1) is the mean square estimation of the statby o) =

@ g gy = — A XD
where the controller gainA(T) is given by A(") _
("' AM AT with A being

tems of clusterS, which are affected by the state vari-the unigue positive semi- deflmte solution of the following

ables of cIusterSTH, via the control S|gnalut“r“) =

~A,, ., X+l e where A, ., is the controller gain
(it WI|| be defined shortly). Hence, these subsystems c
compute X" @) = (A, Aa )TN, af;

and therefore can use it in (12). Note that for clusfer

we seti\™ ) =0, MU+D =0 and DU+D = 0.

Using the state dynamics (6) and by substituting the control

_A(T)X(T)+
r=1,.

vectorUt(T), as given by (12), we havﬁft(_?1
B(T)Ut(r) + C(T)Wt(r) + D(7>+1)Et(7‘+1 (LT+1)’
ELST-‘rl ary1) é Xt(rJrl)

b 7

— X" @41 “where the estimation

+1 a, . . .
errorEt(““ “+1) s an orthogonal Gaussian sequence with

distribution N'(0,Z{" ™" “~+))_ Note that for thelth cluster
we set=!""! ) 0.

FoIIowmg the information available at the subsystems of
clusterS,, we use the dynamic model (13), as given below,

and we design the control law for subsystém

X =A0X" 4 BOU + cOw
D) prtt arss) (13)
2090 — EOD x4 GUDye) | i)
Let J) denote the payoff functional J("), as

given by expression (9), where the control
Ut(r) has been replaced byJ; (") For above system
with the payoff functional J), we follow LQG
methodology [10] an_d, we find, the optimal control
o = @l L al @y in which just the
control S|gnalu(7*) is applied at timef.

Here, we shall assumey(”) and 5,5”) asymptotically
converge to fixed limitsyU? and U9, respectively. Fol-
lowing this assumption we havém,_.. F"? = F) 2
diag(yUer) U F, . Fy .y gUN ) limy o
G,Eji) = Ggui & diag(vUe) UG, ... Gy ... 'y(jb")ﬂt(jbr)
.Gy,).  Moreover, , I Cov(CUY)
(yt(”)(dji)“ﬂ/agﬁv U9 in which under assumption that
the limit, limy_ oo a(j') = a9 exists, which was made
earlier, the limits(%) £ hmHOO E(“) exists and it is given
by £ — (Wz)(dﬁ)aﬂ Jali ) TG,

The optimal controlf]t(r*) is obtained under the following

assumptions:

(al) : The pair(A™, B(") is stabilizable.

(a2) : The palr(F(”) AM) is detectable.

(a3) : The palr(Q, ,A(M) is detectable.

(ad):  The  pair (AD (csPom 4
DU+DET e pr+1))3)  is  stabilizable  where
E(T) C’ov(W(r)) and =0 )= Jimy o HETH art1)

Under above assumptions,

Algebraic Riccati equa‘uonA(T)

vector

the optimal control whicIfunctions (10) and (11),

A AT A
VAM AT 4 Q, .

A A BO(BOAOBO) 4 R, )‘1

Note that the controller gainA(") has the following

representation.
Aq

r

A = M((dar ot dj o dp,) X

AV

(Ra, + oo+ 15+ oo + nb,p)),

WhereAj S M(dj X (’I”Lar +ootFn 4+ an))(14)
herefore, 7" @’ . gd )
A(T)X(T’J) <:> A X(’I"j) | ] c {ar,ar +

1,...,b.}, where the state estlmatloMF’J) is given by the
following recursive equation

T _4
ﬂE]*)

XD = A X9 4 gl @ gty
+L,§”>(Z§”> . Ft(TJ)Xt(TJ)),

(g _(ar)’ _(b)’ ~(g* (g
DG S RS SN 7 )
j€{ar,ar+1,..,b.}. (15)

In above expression the estimation gaiﬂgrj) is

given by Lgrj) A(r)EgTJ)Ft(TJ) (Ft(TJ)EETJ)Ft(”) +
N\ —1 . .

GUISPGeN £ ) 2 ConwfY)) =

diag(=y*) 2P owPt), =P = 0, with

the covariance of the estimation err@!” being the

solution of the following Riccati equatlon_im) =

A :(M)A(r)' A(r)Egm)Ft(TJ) (Ft(rj)'—‘grj)Ft(rj) T
ra _1 r y p— a r !’

F(TJ)E(T)F( 3)' + TEU) Ft( J):EU)A( ) +

C(T)E%)C(r) + D(r+1)5§r+1 a'r'+1)D(r+1)/7 Eérj) _
Cov(gé‘“)' 5(()1”)/)’, 2 = Cov(V,"). Note that, as we
discussed earlier, just the control signal™ = —A; X
is applied at time. Also, note that the state est|mat|®§1

is available at subsystenj via u§> —AX.
Subsystem j uses this information and computes
X0 = @ gy — —ajan) A

Selection
t(ji)

of the Encoding and Decoding Gain
and yt(J’): Consider the encoding and decoding
respectively. The encoding and



decoding gainﬂ(jl) and ~ (j“ are chosen such that i) simillar The only difference comes from covariance matrices

Elly? — g7712= EIkY - K712 = DY where YV = dzag(z(J“'> B VLU 5/ Cd M I ()
DY >0 |s the desired distortion level (it is an auxiliary andT(' I = digg(xi ) E(J“ i+ EUH by,
parameter). ii) The capacity used for transmission |(;§;§J+1 i+1) 0). But, V9 = (1 — D(JA))DI(}JZ; and

@
minimum. Y

Solution to above problem is obtained using Source-Chanri@erefore V‘ihffl)the di(e;[_g)rtion level’” is sufficiently small,
matching technlque [7]. Applying this technique we havéVe haveL Ly ~0.

111 50 — ()" TGO iy | al? WDW Next, mthefollowmgtheorem under assumptions of Lemma
[ ]5t m) poo Tt _(dji)aji\/ D)

4.1, the stability of the whole system is proved.
ngﬁ) A ,\31/%1:, where \Dgi) A Fz*@ff)F{ n Gizq(f G Theorem 4.2:(Stability of Full System): Consider the
(i € {ar,ar + 1,...,b,}), in which ©” € M(n; x n;)

large scale system (7) and suppose assumptiahy(a4)
is the (¢ — a, + 1)th matrix on the diagonal of the block 1, ...}, i(#

hold. Also, let the distortion leveDY" (j € {a,,a, +
Jj) € {ap,ar +1,..,b.}, v = 1,2,....1) be
matrix =" € M((n,h, 4o+ i+ oo+ mp) % (ng, +  Sufficiently small (as described in Lemma 4.1). Then, subject
_ to the control laws as indicated in Lemma 4.1, the subsystems

.+ ni + ..+ m,)), as described above. Note thalyf i |arge scale system (7) given by (1) are stable in the
under the stablllzablllty and detectability assumphonenean square sense.
(a2) and (a4) we havelim,_. =" = =%, where proof: It follows from stability of clustersS,. The complete
ng is the unique positive semi-definite solution ofproof can be found in [11].

the following Algebraic Riccati equanon”(”) = Note that the results of this paper can be extended to also

AN A A(’”)Eggj)F(f’i)’( FrNz) pri)’ 4 account for the cases where the information about control
() N -1 ) , signals is transmitted with finite power.
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