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Abstract— In this paper decentralized controllers are de-
signed for mean square stability of large scale systems with
linear time-invariant distributed subsystems. The subsystems
are subject to Gaussian process and measurement noise. For
the stability analysis of the system we also consider the effects
of noisy and limited capacity communication channels used
for exchanging information between subsystems. Hence, the
proposed scheme is suitable for controlling networks of Micro
Electro Mechanical Systems (MEMS).

I. I NTRODUCTION

Development in electronics has given birth to small size
embedded systems such as Micro Electro Mechanical Sys-
tems (MEMS). These embedded systems, in general, consist
of sensors, data processor, communication and actuator. As
discussed in [1] distributed parameter systems (which are
described by partial differential/difference equations) can be
approximated by a large number of interconnected finite
dimensional systems. In recent years, technological develop-
ment in MEMS has made it possible the idea of placing these
devices in each interconnected subsystem for efficient control
(of distributed parameter systems). As discussed in [1] some
examples are: distributed flow control for drag reduction and
smart mechanical structures.
Due to limited power supply, the transmission of information
from MEMS is subject to short distance, noise, and limited
capacity. References [1]-[6] can be viewed as an attempt to
address some of the technical issues concerning communi-
cation and control of distributed finite dimensional systems
equipped with these microscopic embedded systems.
In the present paper we address similar questions by devel-
oping a uniform Time Division Multiple Access (TDMA)
scheme and use of information theoretic tools for analysis.
TDMA scheme is used to avoid collision. The large scale
system considered in this paper consists of distributed linear
time-invariant partially observed subsystems with Gaussian
process and measurement noise. The information is ex-
changed between subsystems via slow fading Additive White
Gaussian Noise (AWGN) channels subject to path loss. Thus,
dynamic model and communication channel considered in
this paper are the major generalization of the ones addressed
in [2]-[6], in which the dynamic system and channel are
noiseless. For the linear large scale system, as described
above, the quadratic cost functional is used. Encoders, de-
coders and decentralized controllers are designed for reliable
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data reconstruction and mean square stability. Encoders
and decoders are obtained using Source-Channel matching
technique [7]. And the stabilizing controllers are obtained
from a suboptimal control solution. In designing the control
laws the effects of noisy and limited capacity of transmission
are considered. Hence, the proposed scheme is suitable for
controlling networks of MEMS.
The paper is organized as follows: In Section II, problem
formulation is described. In this section we also present a
TDMA scheme. In Section III, we present the dynamic model
for the large scale system; and in Section IV we present
encoders, decoders and controllers.

II. PROBLEM FORMULATION

Throughout the paper we adopt the following notations:
Logarithm of base2 is denoted bylog(·). The transpose
of A where A can be either matrix or vector is denoted
by A

′
. Euclidean norm with weightR on any finite

dimensional space is denote by|| · ||R. The space of all
matricesA ∈ <q×o is denoted byM(q × o). The inverse
of a square matrixA ∈ M(q × q) is denoted byA−1; and
diag(·) denotes block diagonal matrix. The covariance of
a Random Variable (R.V.)X is denoted byCov(X). The
cross covariance matrix of two R.V.’sX and Y is denoted
by Cov(X, Y ). The nominal (Gaussian) density function
with mean x̄ and covarianceV̄ is denoted byN(x̄, V̄ ).
Gaussian R. V.X described by the density functionN(x̄, V̄ )
is denoted byX ∼ N(x̄, V̄ ).

Dynamic System: Consider a large scale system with
M interconnected subsystems. Letx

(i)
t ∈ <ni be the state,

u
(i)
t ∈ <di be the control andw(i)

t ∈ <gi be the process
noise of theith subsystem (i ∈ {1, 2, ...,M}). Also, let
y
(i)
t ∈ <mi be the observation andv(i)

t ∈ <hi be the
measurement noise. Moreover, let the setoi denote the set
of subsystems that can affect theith subsystem dynamics
via their state variables and control signals. In many
applications, such as applications involving MEMS, it is
more reasonable to assume that theith subsystem is affected
by the neighboring subsystems. In other words, in such
applications,oi is a finite set which includes neighboring
subsystems. It is also assumed that each subsystem is linear
time-invariant subject to Gaussian process and measurement
noise, as described below:
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where x
(k)
t ∈ <nk (k ∈ oi) is the state andu(k)

t ∈ <dk

is the control signal of thekth subsystem that affect the
ith subsystem dynamics.Ai ∈ M(ni × ni) is the system
matrix and Bi ∈ M(ni × di) is the control matrix of
the ith subsystem. MatricesDik ∈ M(ni × nk) and
Eik ∈ M(ni × dk) are interconnection matrices. Moreover,
Ci ∈ M(ni× gi), Fi ∈ M(mi×ni) andGi ∈ M(mi×hi).
Gaussian R.V.ξ(i) is described by the density function
N(x̄(i)

0 , V̄
(i)
0 ). Furthermore, w

(i)
t i.i.d. ∼ N(0,Σ(i)

w )
and v

(i)
t i.i.d. ∼ N(0,Σ(i)

v ). R.V.’s {ξ(i)
0 , w

(p)
t , v

(q)
t }

(i, p, q ∈ {1, 2, ...,M}) are mutually independent.
Also, {w(i)

t , w
(j)
t } and {v(i)

t , v
(j)
t } (i ∈ {1, ...,M},

j(6= i) ∈ {1, ...,M}) are mutually independent. But R.V.’s
ξ
(i)
0 and ξ

(j)
0 may be stochastically dependent with known

cross covariance matrixCov(ξ(i)
0 , ξ

(j)
0 ).

Time Division Multiple Access (TDMA) Scheme:
Each subsystem broadcasts information about observation
and control signal to neighboring subsystems. Therefore,
there is a possibility of collision in the broadcasted
information; and in order to avoid such collision we need
to employ an appropriate technique.
As it has been discussed in [8], in problems such as MEMS
with components having access to limited power supply,
TDMA based schemes may be more energy efficient than
other protocols. Therefore, we employ a TDMA scheme, as
described below, to avoid collision.
Based on the communication range of the broadcasted
information about control signals, the large scale system
can be decomposed into disjoint groups of subsystems,
denoted by groups1, 2, ..., N1, in which subsystems in
each group have non-overlapping communication range.
Similarly, based on the communication range of the
broadcasted information about observation signals, the
large scale system can be decomposed into disjoint groups
N1 + 1, ..., N2. Note that for two groupsi ∈ {1, 2, ..., N1}
and j(6= i) ∈ {1, 2, ..., N1}; or i ∈ {N1 + 1, ..., N2}
and j(6= i) ∈ {N1 + 1, ..., N2}, the seti ∩ j is empty.
But for i ∈ {1, 2, ..., N1} and j ∈ {N1 + 1, ..., N2}, the
set i ∩ j may be non-empty. Subsystems in each group
can broadcast information about control or observation
signals simultaneously. At the same time the neighboring
subsystems are waiting to receive this information; and they
will receive the broadcasted information without collision.
Following this fact, we divide each time step intoN2 equal
size, non-overlapping time slots. In the firstN1 time slots
we exchange information about control signals and in the
rest of time step we exchange information about observation
signals, as described below:
We allocate the first time slot to all subsystems in group1 to
broadcast information about control signals simultaneously.
At this time the transmitters of all subsystems in other
groups (i.e.,2, 3, ..., N1) are shut down; while the receivers
of the neighboring subsystems of the systems in group1
are on; and they are waiting to receive the broadcasted
information. Similarly, we allocate the second time slot to

all subsystems in group2; and we follow this procedure
until we allocate theN1th time slot to all subsystems in
group N1 to broadcast information about control signals
simultaneously. We follow similar procedure for time
slots N1 + 1, ..., N2; and we broadcast information about
observation signals.

Communication Channel: The communication link
from the ith subsystem to thejth neighboring subsystem
is modeled by a multi input, multi output AWGN channel
with channel input (i.e., transmitter output of theith
subsystem)T (i)

t and channel output (i.e., receiver input
of the jth subsystem)R(ji)

t . This channel is subject to
path loss and slow fading. Depending on the transmitted
signal, the channel input is eitherT (i)

t = f i
t (y

(i)(t)) or
T

(i)
t = ei

t(u
(i)(t)), where f i

t (·) and ei
t(·) are encoding

functions (f (i)
t (·) and e

(i)
t (·) are invertible functions and in

general they can be nonlinear).
When the information about observation signal is transmitted
through the channel (i.e.,T (i)

t = f i
t (y

(i)(t))) the channel is
described by

R
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t = h
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t · f (i)

t (y(i)(t)) + ζ
(ji)
t ,

T
(i)
t = f

(i)
t (y(i)(t)) ∈ <pi , R

(ji)
t ∈ <qi , ζ

(ji)
t ∈ <qi ,

E||T (i)
t ||2 ≤ P

(i)
t , ζ

(ji)
t i.i.d. ∼ N(0,Γ(ji)), (2)

in which the channel gainh(ji)
t is given by

h
(ji)
t

4
= α

(ji)
t /(dji)aji , (3)

where dji is the line of sight distance andaji

(aji ∈ {0, 1, 2, ...}) is the path loss factor. The random
matrix α

(ji)
t having components with Rayleigh distribution

represents the fading effect. In expression (2) R.V.ζ
(ji)
t

represents the additive Gaussian channel noise andP
(i)
t

denotes the channel input power constraint.
Throughout, it is assumed that the communication channel
is subject to slow fading. That is, at any timet ∈ N+, the
channel gainh(ji)

t is known to both transmitter and receiver.
Furthermore, it is assumed thatlimt→∞ α

(ji)
t = α(ji),

almost surly, whereα(ji) is fixed. The communication
model similar to (2) has been used in networks of MEMS
and sensor networks, in which the path loss factoraji = 3
has been used (e.g., see [8]).

Objective: Mean square stability means that the
state variables have bounded second moment. The
objective of this paper is to find control sequence
{u(i)

t ; i = 1, 2, ...,M, t ∈ N+} to stabilize all subsystems
given by (1) in the mean square sense. That is,

sup
t∈N+

E||x(i)
t ||2 < ∞, ∀i ∈ {1, 2, ...,M}. (4)

Information Available at Each subsystem:The information
available at theith subsystem which is used to produce
the control signalu(i)

t consists of its past observation and
past control signal as well as a noisy version of the past



observation and past control signals of the neighboring
subsystems.
It is well known that for a linear system with a quadratic
cost functional having positive weighting matrices, the op-
timal/suboptimal control solution results in the mean square
stability. For large scale linear systems, when the controllers
have limited access to the observation and control signals of
other subsystems, the optimal solution is unknown. There-
fore, in addressing the stability question of such systems
we look for a suboptimal solution. Hence, the stabilizing
controllers for system (1) subject to available information, as
indicated above, can be obtained from a suboptimal control
solution with the following quadratic payoff functional

J = lim
T→∞

1
T

T∑
t=0

E
[ M∑

i=1

(||x(i)
t ||2Ki

+ ||u(i)
t ||2Hi

)
]
, (5)

whereKi = K ′
i ∈ M(ni × ni) is positive semi-definite and

Hi = H ′
i ∈ M(di × di) is positive definite.

III. DYNAMIC MODEL FOR LARGE SCALE
SYSTEM

As discussed in [9] a large scale system can be decomposed
into clusters of subsystems, in which each cluster includes
subsystems which are strongly coupled. The overall system
is then represented as a system of weak interconnection of
the resulting clusters.
In this paper we are concerned with the large scale system
(1) which can be decomposed into disjoint clustersSr, r =
1, 2, ..., l, where each cluster includes a set of neighboring
subsystems which are strongly interconnected. ClustersSr

andSr+1 weakly affect their dynamics. ClusterSr+1 weakly
affects the dynamics of clusterSr via its state variables and
control signals; and clusterSr affects weakly the dynamics
of clusterSr+1 via its control signals. We level the full (large
scale) system as follows: ClusterS1 includes subsystems
{a1,...,b1} (a1 = 1, b1 ≥ a1), clusterS2 includes subsystems
{a2,...,b2} (a2 = b1 +1, b2 ≥ a2), ..., and clusterSl includes
subsystems{al, ..., bl} (al = bl−1 + 1, bl = M ≥ al). Note
that subsystemar+1 (r ∈ {1, 2, ..., l − 1}) is the closest
subsystem of clusterSr+1 to the subsystems of clusterSr.
The information about control and observation signal of each
subsystem of clusterSr (r ∈ {1, 2, ..., l}) is available at
other subsystems of this cluster. Moreover, information about
those control signals of clustersSr and Sr+1 which affect
their dynamics is available at the subsystems of clustersSr+1

andSr which are affected. Furthermore, information about
control signal of subsystemar+1 in clusterSr+1 is available
at the subsystems of clusterSr which are affected by the
state variables of clusterSr+1.
Let X

(r)
t denote the vector of state variables of all subsys-

tems of clusterSr at time t. Similarly, let U
(r)
t denote the

vector of control signals,W (r)
t the vector of process noises,

Y
(r)
t the vector of observation signals andV

(r)
t the vector of

measurement noises of all subsystems of clusterSr. Then,

clusterSr is described by the following dynamic model
X

(r)
t+1 = A(r)X

(r)
t + B(r)U

(r)
t + C(r)W

(r)
t +

D(r+1)X
(r+1)
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(r+1)
t + N (r−1)U

(r−1)
t

Y
(r)
t = F (r)X

(r)
t + G(r)V

(r)
t , r = 1, 2, ..., l,

(6)

where matricesA(r), B(r), C(r), F (r), and G(r) represent
the interconnection among subsystems of clusterSr. In-
terconnection matricesD(r+1) and M (r+1) represent the
effect of state variables and control signals of clusterSr+1,
respectively, on the subsystems of clusterSr. Similarly,
interconnection matrixN (r−1) represent the effect of the
control signals of clusterSr−1. Note that D(l+1) = 0,
M (l+1) = 0, andN (0) = 0. Also note that interconnection
matrices mostly contain zero components because of the
weak interconnection among clusters.
Thus, the overall system is described by the following system
of equations.{

Xt+1 = AXt + BUt + CWt,
Yt = FXt + GVt,

(7)

where Xt =
(
X

(1)′

t ... X
(l)′

t

)′
is the state of the full

(large scale) system,Ut = (U (1)′

t ... U
(l)′

t )
′

is the control

vector, Wt =
(
W

(1)′

t ... W
(l)′

t

)′
is the process noise,

Vt =
(
V

(1)′

t ... V
(l)′

t

)′
is the measurement noise, and

Yt =
(
Y

(1)′

t ... Y
(l)′

t

)′
is the observation vector. In (7)C =

diag(C(1) C(2)... C(l)), F = diag ( F (1) F (2) ... F (l) )
and G = diag (G(1) G(2) ... G(l) ). Furthermore, matrices
A andB are given by the following block matrices:

A =


A(1) D(2) 0 0 0 0
0 A(2) D(3) 0 0 0
0 0 · 0 0 0
0 0 0 · 0 0
0 0 0 0 · D(l)

0 0 0 0 0 A(l)

 ,

B =


B(1) M (2) 0 0 0 0
N (1) B(2) M (3) 0 0 0

0 0 · 0 0 0
0 0 0 · 0 0
0 0 0 N (l−2) · M (l)

0 0 0 0 N (l−1) B(l)


IV. CONTROL THROUGH COMMUNICATION CHANNELS

WITH L IMITED POWER

In some applications such as sensor networks and applica-
tions involving MEMS with components having access to
limited power supply, the power for transmission is limited.
Hence, the transmission is subject to limited capacity and
noise. Therefore, in such applications, it is important to
exchange all or at least some information under minimum
capacity (power). This is the subject of study in this section.
Here, for simplicity of analysis, we assume information about
control sequences is exchanged without communication con-
straints. But, information about observation sequences is
exchanged via AWGN channel (2) subject to limited power.



We also assume the observation signalsy
(i)
t ’s are scalar.

Also, the AWGN channel (2) is single input, single output.
In this section, we present a methodology for designing
encoders and decoders for reliable transmission of the ob-
servation sequences when the capacity (power) used for
transmission is minimum. We also present decentralized
controllers for mean square stability. Note that the informa-
tion available at each subsystem is available at the encoder,
decoder, and controller of that subsystem.
Consider system (7). In view of the system decomposed as
suggested above, the payoff functional (5) for system (7) can
now be written as follows

J = J (1) + J (2) + ... + J (l), (8)

where forr = 1, 2, ..., l

J (r) = lim
T→∞

1
T

T∑
t=0

E(||X(r)
t ||2Qr

+ ||U (r)
t ||2Rr

),

Qr = diag(Kar
...Kbr

), Rr = diag(Har
...Hbr

) (9)

corresponds to clusterSr. The steps taken to design decen-
tralized control laws are described below: For each cluster
we choose the control vector in an appropriate way such
that we compensate the weak interconnection effects from
other clusters. For clusterSr this compensation is achieved
using the information available from clustersSr−1 and
Sr+1 which is used to regulate the dynamics of clusterSr.
Then, the stabilizing controllers for clusterSr are obtained
independently by finding a suboptimal control solution for
the payoff functionalJ (r). Finally, the stability of the whole
system, when these controllers are enforced, is proved.
According to the interconnection matricesA andB of system
(7), it is convenient to start designing stabilizing controllers
from clusterSl which is affected only by the control vector
of clusterSl−1. We then design stabilizing controllers for
clusterSl−1, clusterSl−2, ..., till clusterS1.

A. Control Law For ClusterSr (r = l, ..., 1)

Consider clusterSr, as described by expression (6). In the
followings we present a methodology for designing encoders,
decoders, and stabilizing controllers, for mean square stabil-
ity such that the capacity (power) used for transmission is
minimum.
Linear Encoders and Decoders for Subsystems of Cluster
Sr: The information about observation signaly

(i)
t of subsys-

tem i ∈ {ar, ar + 1, ..., br} in clusterSr is transmitted to
subsystemj(6= i) ∈ {ar, ar + 1, ..., br} in this cluster via
AWGN channel (2). Let the non-negative scalarsβ

(ji)
t and

γ
(ji)
t be the encoding and decoding gain, respectively. Also,

let F (i)
t−1 denote the available information at subsystemi for

eacht ∈ N+. Subsystemi uses this information and pro-

duces the mean square state estimationx̂
(ii)
t

4
= E[x(i)

t |F (i)
t−1].

This estimation is used in the encoding function,T
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The messageT (ji)
t is broadcasted via the AWGN channel (2)

to the neighboring subsystems and it receives at subsystem
j.
Subsystemj receivesǩ(ji)

t
4
= h

(ji)
t T

(ji)
t + ζ

(ji)
t ∈ <, where

ǩ
(ji)
t is the received signal,h(ji)

t is the channel gain as
described by expression (3), and the channel noiseζ

(ji)
t is

an i.i.d. sequence with distributionN(0,Γ(ji)).
The decoding function for this subsystem is̄y(ji)

t =
f̄

(ji)
t (ǩ(ji)

t ), where ȳ
(ji)
t is the reconstructed version of the

observation signaly(i)
t at subsystemj; and

f̄
(ji)
t (ǩ(ji)

t )
4
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4
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t )−1γ
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t ǩ
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where k̄
(ji)
t is the reconstructed version of the innovation

sequencek(i)
t , at sub-systemj.

Note that the decoding function (11) involves the state
estimationx̂

(ii)
t . As it will be shown later this estimation is

available at subsystemj via the control signal of subsystem
i . Also, note that the encoder and decoder, as described
above, are causal functions of the source messages.
Control Law for Subsystem j in Cluster Sr: For eacht ≥
0, in addition of the observation signaly

(j)
t , a noisy version

of the observation signal of subsystemi(6= j) ∈ {ar, ar +
1, ..., br} is available at subsystemj. That is, the following

observation vector̄Y (rj)
t

4
= (ȳ(jar)′

t ... y
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(jbr)′

t )′ is
available.
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The control vectorU (r)
t = (u(ar)′

t ... u
(br)′

t )′ is applied by
the subsystems of clusterSr. Control signalu(ar)

t is applied
by subsystemar,..., and the control signalu(br)

t is applied
by subsystembr at time t ∈ N+. By choosingU

(r)
t in

an appropriate way, we can compensate the interconnection
effects caused by clustersSr−1 and Sr+1. Hence, we can
design controllers for clusterSr independently of other
clusters.
Recall that at timet, those control sequences of clusters
Sr−1 and Sr+1 which affect the subsystems of clusterSr

via matricesN (r−1) andM (r+1), respectively, are available
at the subsystems which are affected. Therefore, subsystems
of cluster Sr can use this information to regulate their
dynamics.
The appropriate choice for control signalU

(r)
t is given by

U
(r)
t = Ũ

(r)
t + B(r)′(B(r)B(r)′)−1

(
−M (r+1)U
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t

−D(r+1)X̂
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, (12)



where the new control vector̃U (r)
t = (ũ(ar)′

t ... ũ
(br)′

t )′

is available at all subsystems of clusterSr. Note that
X̂

(r+1 ar+1)
t is the mean square estimation of the state

variables of clusterSr+1 produced at subsystemar+1 (in
clusterSr+1). This estimation is available at those subsys-
tems of clusterSr which are affected by the state vari-
ables of clusterSr+1, via the control signalũ(ar+1)

t =
−∆ar+1X̂

(r+1 ar+1), where ∆ar+1 is the controller gain
(it will be defined shortly). Hence, these subsystems can
compute X̂

(r+1 ar+1)
t = −(∆

′

ar+1
∆ar+1)

−1∆
′

ar+1
ũ

(ar+1)
t ;

and therefore can use it in (12). Note that for clusterSl,
we setũ(al+1)

t = 0, M (l+1) = 0 andD(l+1) = 0.
Using the state dynamics (6) and by substituting the control
vectorU (r)

t , as given by (12), we haveX(r)
t+1 = A(r)X

(r)
t +

B(r)Ũ
(r)
t + C(r)W

(r)
t + D(r+1)E

(r+1 ar+1)
t , r = l, ..., 1,

E
(r+1 ar+1)
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4
= X
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t − X̂

(r+1 ar+1)
t , where the estimation

error E
(r+1 ar+1)
t is an orthogonal Gaussian sequence with

distribution N(0,Ξ(r+1 ar+1)
t ). Note that for thelth cluster

we setΞ(r+1 ar+1)
t = 0.

Following the information available at the subsystems of
clusterSr, we use the dynamic model (13), as given below,
and we design the control law for subsystemj.
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(13)

Let J̃ (r) denote the payoff functional J (r), as
given by expression (9), where the control vector
U

(r)
t has been replaced bỹU (r)

t . For above system
with the payoff functional J̃ (r), we follow LQG
methodology [10] and we find the optimal control
Ũ

(r∗)
t = (ũ(ar∗)′

t ... ũ
(j∗)′
t ... ũ

(bl∗)′
t )′, in which just the

control signalũ(j∗)
t is applied at timet.

Here, we shall assumeγ(ji)
t and β

(ji)
t asymptotically

converge to fixed limitsγ(ji) and β(ji), respectively. Fol-

lowing this assumption we havelimt→∞ F
(rj)
t = F (rj) 4=

diag(γ(jar)β(jar)Far
... Fj ... γ(jbr)β(jbr)Fbr

), limt→∞

G
(ji)
t = G(ji) 4= diag(γ(jar)β(jar)Gar

... Gj ... γ(jbr)β
(jbr)
t

.Gbr ). Moreover, Σ(ji)
t

4
= Cov(ζ̄(ji)

t ) =(
γ

(ji)
t (dji)aji/α

(ji)
t

)2

Γ(ji), in which under assumption that

the limit, limt→∞ α
(ji)
t = α(ji) exists, which was made

earlier, the limitΣ(ji) 4= limt→∞Σ(ji)
t exists and it is given

by Σ(ji) =
(
γ(ji)(dji)aji/α(ji)

)2

Γ(ji).

The optimal controlŨ (r∗)
t is obtained under the following

assumptions:
(a1) : The pair(A(r), B(r)) is stabilizable.
(a2) : The pair(F (rj), A(r)) is detectable.

(a3) : The pair(Q
1
2
r , A(r)) is detectable.

(a4) : The pair (A(r), (C(r)Σ(r)
W C(r)′ +

D(r+1)Ξ(r+1 ar+1)
∞ D(r+1)′)

1
2 ) is stabilizable where

Σ(r)
W = Cov(W (r)

t ) andΞ(r+1 ar+1)
∞ = limt→∞ Ξ(r+1 ar+1)

t .
Under above assumptions, the optimal control which

minimizes the payoff functionalJ̃ (r) follows from the
standard LQG results [10]. The optimal control is given
by Ũ

(r∗)
t = (ũ(ar∗)′

t ... ũ
(j∗)′
t ... ũ

(br∗)′
t )′ = −∆(r)X̂

(rj)
t

where the controller gain∆(r) is given by ∆(r) =
(Rr + B(r)′Λ(r)B(r))−1B(r)′Λ(r)A(r), with Λ(r) being
the unique positive semi-definite solution of the following
Algebraic Riccati equationΛ(r) = A(r)′Λ(r)A(r) −
A(r)′Λ(r)B(r)

(
B(r)′Λ(r)B(r) + Rr

)−1

B(r)′Λ(r)A(r) + Qr.

Note that the controller gain∆(r) has the following
representation.

∆(r) =



∆ar

.

.

.
∆j

.

.

.
∆br


∈ M

(
(dar

+ ... + dj + ... + dbr
)×

(nar
+ ... + nj + ... + nbr

)
)
,

where∆j ∈ M(dj × (nar + ... + nj + ... + nbr )).(14)

Therefore, Ũ
(r∗)
t = (ũ(ar∗)′

t ... ũ
(j∗)′
t ... ũ

(br∗)′
t ) =

−∆(r)X̂
(rj)
t ⇔ ũ

(j∗)
t = −∆jX̂

(rj)
t , j ∈ {ar, ar +

1, ..., br}, where the state estimation̂X(rj)
t is given by the

following recursive equation

X̂
(rj)
t+1 = A(r)X̂

(rj)
t + B(r)(ũ(ar)′

t ... ũ
(j∗)′
t ... ũ

(br)′

t )′

+L
(rj)
t (Z̄(rj)

t − F
(rj)
t X̂

(rj)
t ),

X̂
(rj)
0 = (x̄(ar)′

0 ... x̄
(br)′

0 )′, ũ
(j∗)
t = −∆jX̂

(rj)
t ,

j ∈ {ar, ar + 1, ..., br}. (15)

In above expression the estimation gainL(rj)
t is

given by L
(rj)
t = A(r)Ξ(rj)

t F
(rj)′

t

(
F

(rj)
t Ξ(rj)

t F
(rj)′

t +

G(rj)Σ(r)
V G(rj)′ + Υ(rj)

t

)−1

, Υ(rj)
t

4
= Cov(ϑ(rj)

t ) =

diag(Σ(jar)
t ...Σ(jj)

t ... Σ(jbr)
t ), Σ(jj)

t = 0, with
the covariance of the estimation errorΞ(rj)

t being the
solution of the following Riccati equationΞ(rj)

t+1 =
A(r)Ξ(rj)

t A(r)′ − A(r)Ξ(rj)
t F

(rj)′

t

(
F

(rj)
t Ξ(rj)

t F
(rj)′

t +

F
(rj)
t Σ(r)

V F
(rj)′

t + Υ(rj)
t

)−1

F
(rj)
t Ξ(rj)

t A(r)′ +

C(r)Σ(r)
W C(r)′ + D(r+1)Ξ(r+1 ar+1)

t D(r+1)′ , Ξ(rj)
0 =

Cov(ξ(ar)′

0 ... ξ
(br)′

0 )′, Σ(r)
V = Cov(V (r)

t ). Note that, as we
discussed earlier, just the control signalũ

(j∗)
t = −∆jX̂

(rj)
t

is applied at timet. Also, note that the state estimationx̂
(ii)
t

is available at subsystemj via ũ
(i)
t = −∆iX̂

(ri)
t .

Subsystem j uses this information and computes
X̂

(ri)
t = (x̂(iar)′

t ... x̂
(ii)′

t ...x̂
(ibr)′

t )′ = −(∆′
i∆i)−1∆

′

iũ
(i)
t .

Selection of the Encoding and Decoding Gain
β

(ji)
t and γ

(ji)
t : Consider the encoding and decoding

functions (10) and (11), respectively. The encoding and



decoding gainβ
(ji)
t and γ

(ji)
t are chosen such that i)

E||y(i)
t − ȳ

(ji)
t ||2= E||k(i)

t − k̄
(ji)
t ||2 = D

(ji)
v where

D
(ji)
v ≥ 0 is the desired distortion level (it is an auxiliary

parameter). ii) The capacity used for transmission is
minimum.
Solution to above problem is obtained using Source-Channel
matching technique [7]. Applying this technique we have

[11] β
(ji)
t = (dji)

aji

α
(ji)
t

√
Γ(ji)η

(ji)
t

D
(ji)
v

,γ(ji)
t = α

(ji)
t

(dji)
aji

√
η
(ji)
t D

(ji)
v

Γ(ji) ,

η
(ji)
t

4
= 1 − D(ji)

v

Ψ
(i)
t

, where Ψ(i)
t

4
= FiΘ

(i)
t F

′

i + GiΣ
(i)
v G′i

(i ∈ {ar, ar + 1, ..., br}), in which Θ(i)
t ∈ M(ni × ni)

is the (i − ar + 1)th matrix on the diagonal of the block

matrix Ξ(ri)
t ∈ M

(
(nar + ... + ni + ... + nbr ) × (nar +

... + ni + ... + nbr )
)

, as described above. Note that
under the stabilizability and detectability assumptions
(a2) and (a4) we have limt→∞ Ξ(ri)

t = Ξ(ri)
∞ , where

Ξ(ri)
∞ is the unique positive semi-definite solution of

the following Algebraic Riccati equationΞ(rj)
∞ =

A(r)Ξ(rj)
∞ A(r)′ − A(r)Ξ(rj)

∞ F (rj)′
(
F (rj)Ξ(rj)

∞ F (rj)′ +

F (rj)Σ(r)
V F (rj)′ + Υ(rj)

)−1

F (rj)Ξ(rj)
∞ A(r)′ +

C(r)Σ(r)
W C(r)′ + D(r+1)Ξ(r+1 ar+1)

∞ D(r+1)′ , Υ(rj) =
limt→∞Υ(rj)

t = diag(Σ(jar) ... Σ(jj) ... Σ(jbr)), Σ(jj) = 0.

Following above selection forβ(ji)
t and γ

(ji)
t , we have

[11] E||y(i)
t − ȳ

(ji)
t ||2 = E||k(i)

t − k̄
(ji)
t ||2 = D

(ji)
v

and C(ji)
y = C(ji)

k = Ry,ȳ
SRD(D(ji)

v )= Rk,k̄
SRD(D(ji)

v ) =
Rk,k̄(Dji

v )= 1
2 log Ψ(i)

∞

D
(ji)
v

, where C(ji)
y and C(ji)

k are the

capacity used for transmission of sequence{y(i)
t , t ∈ N+}

and {k(i)
t , t ∈ N+}, respectively, from subsystemi to

j, Ry,ȳ
SRD(D(ji)

v ) and Rk,k̄
SRD(D(ji)

v ) are sequential rate
distortion [12], and Rk,k̄(D(ji)

v ) is the rate distortion
function [13] with single letter mean square distortion
measure. Note thatΨ(i)

∞ = limt→∞Ψ(i)
t and the capacity

used for reliable data reconstruction up to the distortion
level D(ji)

v , as described above, is minimum.

B. Stability Analysis

The stability of subsystems of clusterSr, when the con-
trollers as indicated above are enforced, is shown in the
following lemma.

Lemma 4.1:(Stability of Clusters Sr, r = l, ...,1): Con-
sider clusterSr and suppose assumptions(a1)-(a4) hold.
Also, let the distortion levelD(ji)

v (j ∈ {ar, ar + 1, ..., br},
i(6= j) ∈ {ar, ar+1, ..., br}, r = l, ..., 1) be sufficiently small
such that the following condition holds:L

(r j+1)
t −L

(rj)
t ≈ 0.

Then, the subsystems of clusterSr are stable in the mean
square sense when the controllers , as indicated by expression
(12) with ũ

(j∗)
t = −∆jX̂

(rj)
t and X̂

(rj)
t as given by (15),

are enforced.
Proof: It follows by employing a similar methodology as
used in [14]. The complete proof can be found in [11].
Note that from the expression for the estimation gainL

(rj)
t

follows that the estimation gainsL(rj)
t and L

(r j+1)
t are

similar. The only difference comes from covariance matrices
Υ(rj)

t = diag(Σ(jar)
t ... Σ(jj)

t ... Σ(jbr)
t ), (Σ(jj)

t = 0)
andΥ(r j+1)

t = diag(Σ(j+1 ar)
t ...Σ(j+1 j+1)

t ... Σ(j+1 br)
t ),

(Σ(j+1 j+1)
t = 0). But, Σ(ji)

t = (1 − D(ji)
v

Ψ
(i)
t

)D(ji)
v ; and

therefore when the distortion levelD
(ji)
v is sufficiently small,

we haveL
(r j+1)
t − L

(rj)
t ≈ 0.

Next, in the following theorem, under assumptions of Lemma
4.1, the stability of the whole system is proved.

Theorem 4.2:(Stability of Full System): Consider the
large scale system (7) and suppose assumptions(a1)-(a4)
hold. Also, let the distortion levelD(ji)

v (j ∈ {ar, ar +
1, ..., br}, i(6= j) ∈ {ar, ar + 1, ..., br}, r = 1, 2, ..., l) be
sufficiently small (as described in Lemma 4.1). Then, subject
to the control laws as indicated in Lemma 4.1, the subsystems
of the large scale system (7) given by (1) are stable in the
mean square sense.
Proof: It follows from stability of clustersSr. The complete
proof can be found in [11].
Note that the results of this paper can be extended to also
account for the cases where the information about control
signals is transmitted with finite power.
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