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Abstract: In this paper surface plasmon polaritons (SPP) that 
propagate along thin lossy metal films with surface 
irregularities are studied. Two cases of metal slab (with infinite 
width) and metal strip (with finite width) are considered. 
Surface roughness is modelled as a grating with deterministic 
profile. To analyze the slab structure the method of reduced 
Rayleigh equation is used. The results show that antisymmetric 
mode is strongly affected with roughness. Accuracy of the result 
is demonstrated through comparisons with HFSS simulations. 
The effect of surface roughness on the metal strip structure is 
only simulated by HFSS software. It shows that the attenuation 
of SPP modes is increased due to the surface roughness.  
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1. Introduction 

Surface Plasmon Polaritons (SPP) are surface 

electromagnetic waves that are bound to the interface 

between two media where the real part of their 

permittivity have opposite signs. The field components of 

SPP decay exponentially away from the interface in 

transverse direction such that the lateral dimension of 

these waves is smaller than the free space wavelength. 

Therefore, plasmonic waveguides have attracted a lot of 

attention for applications in high density integration of 

optical components. Nobel metals such as gold and silver 

exhibit negative dielectric constant at visible and infrared 

wavelengths, thus propagation of bound waves at metal 

dielectric interface has been widely studied in recent 

years [1]-[3]. 

A metal film sandwiched between dielectric layers 

with infinite width (slab) and finite width (strip) as shown 

in Fig.1 is often used as plasmonic waveguide. This 

structure, with smooth surface, was analyzed by Berini 

with semi-analytical method of line [1]. Berini 

characterized the effects of varying width, thickness and 

background permittivity on dispersion of the purely 

bound modes that supported by these waveguides. One of 

the fundamental modes of these structures is a long range 

mode that has a long propagation length.  The penetration 

depth of long range modes is less than penetration depth 

of short range ones so the attenuation due to absorption in 

the metal is reduced. 

Tight confinement of the field to the metal surface 

makes SPP very sensitive to surface roughness. There are 

several studies on the effect of surface irregularities on 

the dispersion curve of SPP modes that propagate on the 

interface of lossless metal and dielectric [4]-[7]. In this 

paper we investigate the effect of surface roughness on 

the dispersion relation of SPP modes that propagate along 

a lossy metallic slab or strip. Surface roughness is 

modelled as a periodic grating with sinusoidal profile. In 

the case of slab waveguide the analytical method of 

reduced Rayleigh equation is used to obtain the 

dispersion curve of symmetric and antisymmetric modes. 

This structure is also simulated with HFSS eigensolver 

and the results are in close agreement with the analytical 

method. 

 For the metal strip waveguide there is no analytical 

solution, thus only the HFSS eigensolver is used.   

 
Figure 1: (a) metal slab waveguide (b) metal strip waveguide with one 

grating boundary 

2. Slab waveguide 

2.1 Theory 

     The structure is shown in Fig.1. It consists of a slab 

waveguide (dielectric /metal/ dielectric) that has two 

different interfaces: one of them is smooth (flat) and the 

contains a periodic grating whose profile is ( )xζ . The 

thickness of the slab is t  and its relative permittivity 

is ( )
r ωε , surrounded by dielectric of relative permittivity  
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1rε  and 2rε  .  Only the SPP modes that propagate 

perpendicular to the grooves of grating (along x axis) are 

considered, so TM and TE polarizations are decoupled.  

As it is well known, the infinitely wide symmetric 

structure supports only two bound TM surface modes 

with field components yH , xE  and zE . The components 

of the fields in the plane perpendicular to the direction of 

propagation have either symmetric or antisymmetric 

spatial distributions with respect to the Y axis. The 

symmetric mode has small attenuation constant but 

antisymmetric mode exhibits large attenuation because its 

field penetrates more into the metal [1]. According to [4] 

the magnetic field can be presented as: 

for  z>t  
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with ( ){ } ( ){ }Re 0,  Im 0  , ,
m m m m m m

k kφ ω φ ω βφ α γ> < = . 

After applying the boundary conditions and some 

manipulations the following equations are obtained [4]: 
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Equation (5) is the so called reduced Rayleigh 

equation and Fourier coefficients in these equations are 

defined by: 
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After truncating the Floquet modes to N , dimension 

of the matrix becomes  2(2 1) 2(2 1)N N+ × +  . The 

dispersion relation of SPP is obtained by equating the 

determinant of the coefficients  mA  and mD   in (5) to 

zero. In this paper a sinusoidal profile function is 

considered, namely 0( ) cos(2 / )x x Lζ ζ π= . Thus, the 

Fourier coefficients become modified Bessel's functions: 
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2.2 Numerical results 
     To verify the formulation, we also reproduce the 

results of a smooth slab ( 1 2r rε ε= and 
0

0ζ =  ) and 

compare our results with those of Berini which were 

obtained with a different method. The free space 

wavelength is set to 0.633 mλ µ= , the relative 

permittivity of the silver film at this wavelength is 

( ) 19 0.53r jε ω = − + , and the permittivity of the 

surrounding media is assumed to be
1 2

4
r r

ε ε= = . The 

dispersion curve for a silver slab with 50 nmL =  and 

different values of
0 0 0

0, 0.1 , 0.2L Lζ ζ ζ= = =  were obtained. 

Figures 2 to 4 show the real and imaginary parts of 

0
/

x
k k   as a function of slab thickness t for symmetric-

like “ s ” and antisymmetric-like “ a ” modes. In order to 

achieve convergence, it is enough to choose 4N = .  For 

0
0ζ =  the surface becomes flat and the results are in 

good agreement with [1]. In [1] the problem is solved by 

method of line (MOL) which is an accurate semi 

analytical method. The attenuation of the ” a ” mode is 

increased with decreasing the thickness of the film 

because the fields penetrate more into the lossy silver 
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film. In the “ s ” mode with decreasing the thickness the 

attenuation is decreased and the mode evolves towards 

the TEM wave supported by the background. This mode 

is a long range SPP. 
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Figure 2: propagation constant 
0

/
x

k k in terms of silver slab thickness 

(a) real part (b) imaginary part for 
0
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Figure 3: propagation constant 
0

/
x

k k in term of silver slab thickness 

(a) real part (b) imaginary part for 
0

0.1Lζ =  
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Figure 4: propagation constant 
0

/
x

k k in term of silver slab thickness 

(a) real part (b) imaginary part for 
0

0.2Lζ =  

     In figures 3 and 4 it is observed that with increasing 

the depth of the grating (roughness) the real and 

imaginary parts of propagation constant xk of “ a ” mode 

are increased. However, the overall behaviour of “ s ” and 

“ a ” modes do not change, i.e. with decreasing the 

thickness of the film, the attenuation of a mode is 

increased and that of the “ s ” mode is decreased. As the 

separation between the top and bottom interfaces 

increases, the ” s ” and ” a ” modes split into a pair of 

uncoupled SPP modes localized at the silver /dielectric 

interface. For the flat interface, 
0

0ζ = , the “ s ” and ” a ” 

modes become degenerate but in the presence of surface 

roughness the degeneracy is broken such that the “ s ” 

mode converges to the SPP wave that propagates on a flat 

interface and the “ a ” mode converges to the SPP that 

propagates on a grating interface. When there is a grating 

in one side of the slab, the spatial distribution of the fields 

is not truly symmetric or antisymmetric about Y axis 

although they are localized near one of the interfaces. The 

“ s ” mode field distribution has a maximum at the flat 

interface while the “ a ” mode has a maximum at the 

grating interface. In the case 
0

0ζ ≠ the “ s ” mode has a 
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cut-off thickness, because the mode cannot evolve into a 

TEM wave supported by the background. 

 For comparison, the metal slab with 
0

0.2Lζ =  is also 

simulated with eigenvalue solver of HFSS software.  Fig. 

5 shows the magnitude of the electric field of “ s ” and 

“ a ” modes for 0.06 mt µ= . It is observed that the “ a ” 

mode fields are localized at the grating interface but the 

fields of “ s ” mode are localized at the flat interface 

therefore the propagation constant xk of “ a ” mode is 

sensitive to the height of grating or surface roughness. 

Moreover, with increasing the slab thickness the 

propagation constant of “ s ” and “ a ” modes converge 

toward two different values.  

 

 
             Mode a 

 
          Mode s 

Figure 5: Magnitude of electric field of symmetric and antisymmetric 

modes 

The dispersion curve that is obtained from HFSS 

simulation is shown in Fig.6. The results are in good 

agreement with results of reduced Rayleigh equation 

method.  
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Figure 6: propagation constant 
0

/
x

k k in term of silver slab thickness 

(a) real part (b) imaginary part for 
0

0.2Lζ = using HFSS 

 
Figure 7: unit cell for simulating metal strip waveguide with one grating 

boundary 

3. Strip waveguide 

3.1 Numerical method implementation 

      There is no analytical method for the analysis of the 

effect of grating on the metal strip with finite width 

embedded in lossless dielectric material, so only HFSS is 

employed. With the use of eigensolver module in HFSS 

the real and imaginary parts of the propagation constant 

can be calculated [8].The method that is used in this 

paper differs slightly with [8]. In [8] the permittivity of 

lossy silver is function of frequency as determined by 

Johnson and Christy [9].  But in this simulation in order o 

remain consistent with Berini results, only a single 

frequency is considered ( )0.633  mλ µ= , thus Silver is 

defined with permittivity ( ) 19 0.53
r

jε ω = − +  and 

dielectric host with constant permittivity
1

4
r

ε = . The 

structure is illustrated in Fig.1 (b), the symmetry can be 

used to reduce the computational domain, therefore, only 

half of the structure is analyzed as shown in Fig.7.  In the 

direction of propagation the periodic boundary conditions 

are used. Periodic boundary condition ensures that the 

fields in the slave plane differ from the fields in the 

master plane within a phase delay ϕ  so that the field 

components satisfy ( ) ( ) ( )expg z d i g zϕ+ =  where d  is 

the distance between the two planes. For each value of ϕ  

eigensolver provides a complex eigen frequency for each 

mode. The real part of the computed eigen frequency 

should be equal to frequency 0f that corresponds 

to 0.633 mλ µ= . Therefore, we must sweep the value of 

ϕ  and determine
0

ϕ that satisfies the above condition. 

Having determined 
0

ϕ , the real part of propagation 

constant can be found from 
0

/zrk dϕ= . The imaginary 

part of propagation constant is calculated according to 

{ }0Im /zi gk f v= where gv  is the group velocity given by 

{ }( ) /Reg zrv d f dk= . As mentioned in [3] d  should be 

chosen sufficiently small for non-periodic problem so that 

the folded dispersion curve in the Brillouin zone 

boundary occurs at frequency beyond the spectral range 

that is considered. Careful review of the field distribution 

is generally required to identify the modes of interest that 

have their fields localized close to the metallic strip. 
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Figure 8: unit cell for simulating flat strip waveguide of Berini 

 

3.2 Numerical results 

     To compare our results with [1] the flat silver strip is 

also simulated and some of the results reported by Berini 

in [1] are reproduced. The structure is shown in Fig.8. 

Utilizing the symmetry of the structure, only one quarter 

of the strip is simulated.  The so called E or M symmetric 

boundaries in HFSS are used to obtain different modes of 

strip waveguide. The modes are divided into four 

categories depending on the symmetry of their fields and 

are labelled according to the nomenclature proposed by 

Berini. Therefore, a pair of letters is used to indicate that 

yE  is symmetric or antisymmetric with respect to vertical 

or horizontal plane, respectively. The superscript 

indicates the number of maxima of yE  along the larger 

dimension and when there is no maximum no superscript 

is used. Here only the bound mode is considered so the 

subscript b  which means that the modes are bound to 

surface is eliminated. Simulation results for 1 mW µ=  

and 0.02 md µ= are depicted in Fig. 9. In the region that 

thickness of the film is small 0.04 mt µ<  the mode 

density becomes very large, with modes spaced closely in 

frequency thus identifying the solution of interest 

becomes difficult so the result is given for 0.04 mt µ≥ . 

The , ,ss aa sa , and as  modes are the fundamental modes 

supported by the structure.  The results have good 

agreement with Berini’s results. The fields related to the 

modes that are antisymmetric with respect to horizontal 

plane penetrate more into the lossy silver than symmetric 

modes, so these modes are highly attenuated. 

Simulation results of the structure that is depicted in 

Fig.7 are shown in Fig.10. Parameters of the sinusoidal 

grating are 50 nmL = and
0

0.2Lζ = . Comparison of Fig.9 

and Fig.10 shows that propagation constant of all six 

modes are increased due to the surface roughness. 

Imaginary parts of the propagation constant of these 

modes are also increased because of the grating on the 

metal strip. This means that with increasing roughness of 

the surface the bound SPP wave becomes leaky and 

attenuation is increased.  
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Figure 9: Simulation result of flat strip waveguide of Berini (a) real part 

(b) imaginary part of 
0

/
z

k k  

The field distribution of 2 1,aa sa modes at 0.14 mt µ=  

is shown in Fig.11 and Fig.12. As mentioned in [1] the 

modes supported by a metal film of finite width are in 

fact super modes which are created from a coupling of 

edge and corner modes supported by each metal/dielectric 

interface defining the structure. In this structure, Because 

of the existence of grating on one interface, the supper 

modes may be created from the coupling of dissimilar 

interface modes. The coupled modes should have similar 

propagation constants and share the field symmetry with 

respect to the center vertical axis. In Fig. 11 for instance, 

it is seen that the grating edge mode has two exterma and 

is of higher order than the flat edge mode which has no 

extermum. In this structure, the grating interface has a 

higher phase constant than the flat interface. Because a 

supermode is created from a coupling of edge modes 

having similar propagation constants, it should be 

expected that in this structure different edge modes may 

couple to create a supermode. Higher-order modes have, 

in general, smaller values of phase constant compared to 

lower-order modes, so in this structure all supermodes are 

comprised of a grating edge mode of the same order or 

higher than the flat edge mode, as shown in Fig. 11 and 

Fig. 12. 
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Figure 10: Simulation result of metal strip waveguide with one grating 

boundary (a) real part (b) imaginary part of 
0

/
z

k k  

         

Figure 11: field distribution of 2aa of grating strip with 0.14 mt µ=  

 

Figure 12: field distribution of 1sa of grating strip with 0.14 mt µ=  

4.  Conclusion 

In this paper the effects of surface roughness on SPP 

waves that propagate on two structures, a lossy metallic 

slab and a lossy metal strip are investigated. The results 

show that the roughness that is modelled by a grating of 

sinusoidal profile affects the modes that are 

antisymmetric with respect to horizontal plane. The real 

and imaginary parts of the propagation constant of these 

modes increase which means increased attenuation due to 

the roughness. In the case of slab waveguide the results of 

reduced Rayleigh equation method are compatible with 

HFSS results.  
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