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Fig. 6. H-plane mutual coupling ( 2 2 1  = R + jX) between dipoles versus 
normalized separation length, AY?/A,, for d = 0.15 A,, E, = 2.55, L = 
0.295 A,,. 

V. CONCLUSION 
This paper has presented a study of mutual coupling between 

two printed antennas. Emphasis was placed on the unexpected non- 
monotonic behavior of the mutual coupling magnitude observed 
primarily in the H-plane. This anomalous behavior underscores 
the point that the decay of mutual coupling with separation is a 
complicated function of the substrate parameters, and that a simple 
rule cannot be established in general. Fortunately, mutual coupling 
can be efficiently calculated using an asymptotic form of the Green’s 
function. This work has implications for phased array design where 
it is useful to have some intuitive understanding of the behavior of 
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Techniques for Evaluating the Uniform 
Current Vector Potential at the Isolated 

Singularity of the Cylindrical Wire Kernel 

D. H. Werner, J. A. Huffman, and P. L. Werner 

Abstract- The cylindrical wire kernel possesses a singularity which 
must he properly treated in order to evaluate the uniform current 
vector potential. Traditionally, the singular part of the kernel is extracted 
resulting in a slowly varying function which is convenient for numerical 
integration. This paper provides some new accurate and computationally 
efficient methods for evaluating the remaining singular integral. It is 

- 
culated coupling, but were mistakenly dismissed as inaccuracies 
caused by numerical integrations [ 121. This work thus underscores 
the point that analytic results still have an important role to play in 
the understanding of electromagnetic phenomena. 

in various approximations. Also presented is a highly convergent exact 
series representation of the integral which is valid except in the immediate 
vicinity of the singularity. Finally, a new approximation is derived which 
is found to be an improvement over the classical thin wire approximation. 
It is demonstrated that each of these methods provides extremely accurate 
as well as efficient results for a wide range of wire radii and field point 
locations. ACKNOWLEDGMENT 
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The expression for the cylindrical wire kernel possesses a sin- 

gularity which must be properly treated in order to evaluate the 
cylindrical antenna integral equation. Several approximations to the 
kernel in the electric field integral eauation are discussed in 111. 
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I _  . _  

More recently, an exact expansion for the cylindrical wire kernel 
has been found [2]. Common procedure is to extract the singular 
part of the kernel which results in a slowly karying function that 
is amenable to efficient numerical integration. Various techniques for 
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evaluating the integral of the extracted singularity have been reported. 
Schelkunoff [3] transformed the singular part of the kemel into an 
elliptic integral of the first kind and showed that the asymptotic 
behavior in the immediate vicinity of the singularity is an integrable 
logarithmic term. Pearson [4] pointed out that by expanding the 
elliptic integral in a series form, the logarithmic term which gives 
rise to this asymptotic behavior is extracted. However, the resultant 
infinite series is complicated by the presence of additional integrals 
which must be evaluated numerically. Wilton and Butler [5] also 
avoided the singular nature of the kernel by directly replacing the 
singularity with the integrable asymptotic logarithm term and then 
extracting it from the kemel. The disadvantage of this approach 
is that the remaining integrand, although very smooth, cannot be 
evaluated at the singularity because the logarithm function as well 
as the elliptic integral are unbounded at this point. Also, evaluation 
at all other points requires double numerical integration. In another 
communication, Butler [6] presents a different form of the extracted 
integrable singularity and expands it in a highly convergent power 
series which is valid in the vicinity of the singularity for thin wires 
with piecewise constant current. For thin wires in which the radius 
is much less than the wire length and the wavelength, the reduced 
kernel approximation is widely used [7] .  This form is independent 
of azimuthal variation and hence requires evaluation of only a single 
integral. When the current is uniform, the integrable singularity can 
be evaluated analytically. 

This paper presents some computationally efficient and accurate 
alternatives for computing an integral of the extracted singularity 
associated with the vector potential of a uniform current cylindrical 
wire antenna. An intermediate approximation, which is valid for 
thin wires with piecewise constant current, is shown to be more 
accurate than the classical thin wire approximation while maintaining 
computational simplicity. For thicker wires, it is shown that the 
term containing the extracted singularity can be cast into a single 
integral form which is amenable to numerical integration. Also, 
a highly convergent exact series solution to the integral of the 
extracted singularity is presented which is valid for all cases except 
in the vicinity of the singularity. The results given here can be 
directly implemented in a moment method solution in which the 
unknown current is represented by pulses or by more complicated 
basis functions which contain a constant term, such as trigonometric 
or polynomial [8], [9]. 

11. THEORY 

of length A and radius a centered about the z-axis is given by [7] 
The vector potential associated with a cylindrical wire (segment) 

where 

represents the cylindrical wire kemel, in which 

The integrand in (2) contains a singularity which may be extracted 
by expressing the cylindrical wire kernel in the form [3] 

For the situation in which the current is assumed to be uniformly 
distributed over the surface of the wire, Le., I z ( ; ' )  = 10, the 
expression for the vector potential (1) reduces to 

;I; = - p I 0  { - 1 JA/' S_: dg'd;' 
4 ~ r  2 ~ r  R(2 - s ' .Q ' )  

R( 2 - 2 ' .  0') 

( 5 )  

The second integral has a very slowly varying integrand and may be 
readily evaluated numerically. The first integral, however, possesses 
a singular integrand when p = a ,  2 = 2' and d' = 0. For this reason, 
methods for evaluating integrals of the form 

are of considerable interest from the computational point of view. 
This paper will introduce and compare several new techniques 
developed for evaluating integrals of the type given in (6). 

If the change of variables 5 = z - I' is applied to the integral 
(6 ) ,  then it follows that 

(7) 

Interchanging the order of the integration in (7) and using the fact that 

results in 

Introducing the variable change, v = (2/n)o' - 1, (11) may be 
transformed into (12), shown at the bottom of the page. On the surface 
of the antenna where {J = n,  (7) reduces to 

where 

R(E.8) = d w  
c = 2a siu 0.  
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As before, by interchanging the order of integration in (13) and 
making use of (IO),  it can be shown that 

- 2 = .  LT" ~n [I + J m ] d ~ .  z > ~ / 2  

(16) 

where (11 = 2a/E1 and cy2 = 2a/E2. The restriction on the range 
of validity of (16) to positive values of z only, i.e., z > A/2, can 
be easily removed to include negative values of z as well by making 
use of the symmetry relationship I ( a ,  z ,  A )  = I ( n ,  IzI, A) ,  which is 
valid for 121 > A/2. We next introduce another change of variables 
2' = ( 4 / ~ ) 8 -  1 which may be used to transform (16) into 

1 + 1 + ctz sin2(v + 1); 

1 + J 1 + n: sin2(u + 1); 

z > A/2. (17) 

4 ] d v .  

A similar procedure can be followed for the special case where z = 
0. The result for this case is found to be 

(18) 

where (t  = 4n/A. Equations (12), (17), and (18) are in a convenient 
form for application of numerical integration techniques because their 
integrands are relatively smooth and do not contain singularities. 
The form of these integrals are particularly well-suited for numerical 
integration using a Gaussian quadrature technique [lo], [ I  I ] .  One 
significant advantage offered by (17) and (18), when compared with 
the conventional form of I [ 5 ] ,  is that they do not require the 
evaluation of elliptic integrals. 

A useful approximation to I may be obtained by applying the 
transformation U = sin0 to the integrals contained in (16). This 
yields the expression 

1 Ill [ 1 + JiTq7] 
I ( a 7 z , A ) = I n ( 2 ) + ; I  dm du 

(19) 

Assuming that (n lu) '  << 1 and ( ( Y z u ) '  << 1 ,  we introduce the 
approximations 

which may be used to reduce (19) to 

Use is now made of the fact that 

in order to arrive at the following simple result 

I ( a ,  z ,  A) = In 2 + 21,1,,, (a ,  z .  A),  z > A/2 (24) 

where Ithln is the well-known classical thin-wire approximation given 

(:2 ) 
by U21 

Hence, (24) may be thought of as an extended thin-wire or 
intermediate-wire approximation. Similarly, it can be shown that 
when 2 = 0, the intermediate-wire approximation takes the form 

where 

is the corresponding thin-wire approximation. 
A power series expansion of I was derived by Butler [6] for the 

z = 0 case, which converges provided A / a  > 4. This expansion 
is given by 

A useful approximation may be obtained from (28) by retaining the 
logarithmic term and the first two terms of the series expansion. This 
leads to 

I (u ,O ,A)  w 2 In ( f )  - $ 4  [;I' - - (29) 

An exact expression for the integral I may be found which is 
valid for p # a or when p = a and ( z (  > A/2. The first step in 
the derivation of this exact solution is to make use of the fact that 
the singular part of the cylindrical wire kernel may be expressed in 
the form 

where 

is a complete elliptic integral of the first kind and 

(32) 
x.= 2&ii 

d(z - z ! ) 2  + ( p  + a):r' 

A useful infinite series representation for F (  5, k )  is [13] 

which converges, provided that 0 5 k < 1. Substituting (33) into (3O), 
integrating term by term with respect to .( and introducing the change 
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of variables s = [ / ( p  + n )  results in an exact series representation 
for I which is given by 

where 

in which I /  = d m ,  11 = E l / ( p  + n )  and sz = < 2 / ( p  + a ) .  A 
recurrence relation exists which provides a computationally efficient 
method for calculating the integrals F,, defined in (35). The form of 
this recurrence relation was found to be 

where 

(37) 

in whch I L I  = d m  and U' = ,/W. An approximation of 
1 may be obtained by retaining the logarithmic term and the first two 
terms in the series expansion (34). The resulting expression is 

(38) 

When p = n ,  (34) reduces to 

where .rl = 5, / 2 n  and 1'2 = 52/20. The corresponding expression 
for (38) when p = n is given by 

which is primarily useful when A./. 2 4 and 2 -1 2 1. 

111. RESULTS 
At the point : = 0, four methods were used to evaluate the uniform 

current vector potential integral of the isolated singularity associated 
with the cylindrical wire kernel. Equation (18) was computed using 
a three point Gaussian quadrature numerical integration technique, 
while (26), (27), and (29) give the intermediate approximation, the 
thin wire approximation and the three term approximation of the 
power series expansion derived by Butler [6], respectively. Plots 
of the relative percent error for the various methods versus the 
segment length-to-radius ratio, A/n,  are shown in Fig. 1. As a basis 
of comparison, (18) was numerically integrated to a sufficiently 
high degree of accuracy. Clearly, the intermediate approximation 
and the three term Butler series have lower percent errors than 
the thin wire approximation across the entire range of A / a .  This 
becomes significant as A/. approaches 4 (thicker wires) where the 
error associated with the thin wire approximation exceeds 1%. The 
three term Butler series proves to be extremely accurate and has the 

A la 

Relative percent error versus A/a associated with various techniques Fig 1 
for evaluating the integral (6) when /J = ( I  and 4 = 0 

lowest error of the four methods for very thin wires (A/o 2 30). 
However, the three point Gaussian quadrature and the intermediate 
approximation also give acceptable errors in this range. For thicker 
wires, the three point Gaussian quadrature is superior and, because no 
assumptions were made in modifying the integral to the form shown 
in (18), A l a  can be extended below the ratio of 4 and still achieve 
very accurate results. 

When 2 is not in the immediate vicinity of the singularity, the 
Butler series expansion is no longer valid, but can be replaced by the 
three term approximation of the exact series representation defined in 
(40). Also, a three point Gaussian quadrature numerical integration of 
(17) is valid as well as the intermediate and thin wire approximations 
of (24) and (25) ,  respectively. Contour plots of the relative percent 
error as a function of Aln and 21-1 for the various methods of 
computing the integral are shown in Figs. 2-5. For all cases, the 
percent error decreases as i / A  or A/u increases. The contour plot for 
the thin wire approximation (Fig. 2) depicts the highest errors across 
the entire range and exceeds 1% when .z/A is less than 2 and Ala 
approaches 4. As shown in Fig. 3, the intermediate approximation 
is much more accurate and the error remains below 1% for most of 
the smaller A l a  and :/A values. The contour plot of the three term 
approximation of the exact series representation is shown in Fig. 4. 
The percent error decreases rapidly as :/A or A/(/ increases and 
the error never exceeds 1% when A/a 2 4. Also, note that the error 
associated with the three term approximation decreases more rapidly 
for thinner wires and larger z/A than the errors associated with the 
other approximations. For the three point Gaussian quadrature, the 
range of A / n  is extended to 2 in order to illustrate the validity of 
this method for thicker wires. Fig. 5 shows that very good accuracy 
is achieved for a wide range of z / A  and A/ii when using a simple 
numerical integration technique. 

IV. CONCLUSION 

Accurate evaluation of integrals in the form represented by (6) 
are important in the computation of cylindrical antenna integral 
equations. However, direct numerical integration of (6) is complicated 
by the singular nature of the integrand when p = n ,  : = z' and 4' = 
0. This paper offers some new accurate as well as efficient methods 
for treating this fundamental integral. The intermediate approximation 
was shown to be superior to the classical thin wire formulation, 
achieving a high degree of accuracy while maintaining computational 
simplicity. This approximation was found to be primarily useful 
when A/n 2 4. For these reasons, it is recommended that the 
new intermediate approximation be used in place of the classical 
thin-wire approximation. The three term Butler series approximation 
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Fig. 2. 
approximation (25). 

Contour plot of the relative percent error associated with the thin-wire 
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Fig. 3. 
mediate approximation (24). 

Contour plot of the relative percent error associated with the inter- 

A 
1,ow 

A la 

Fig. 4. 
three-term approximation (40). 

Contour plot of the relative percent error associated with the 

also provides very accurate results for the special case when 2 = 
0. A very useful form of the integral was presented for which 
the singularity in the integrand was removed by interchanging the 
order of integration and evaluating the inner integral. This approach 
resulted in a relatively smooth integrand which is well-suited for 
efficient numerical integration as well as avoids the need to evaluate 
elliptic integrals. Since no assumptions were made in transforming the 
integral, a significant advantage is that there are no restrictions placed 
on the ranges of A/o and z/A for which it is valid. A new exact 

1,wo 
A la 

Fig. 5. Contour plot of the relative percent error associated with the 
three-point Gaussian quadrature approximation of ( 17). 

series solution of the integral was presented which is valid provided 
p # n or when p = o and l i l  > A/ 2. The series converges rapidly 
and is computationally efficient due to a recurrence relation for 
computing the higher order terms. This series solution in conjunction 
with the Butler series solution, which is valid in the vicinity of the 
singularity, provides a complete exact solution when A/o > 4 for 
integrals of the form given by (6). The three term approximation 
of the series solution offers another computationally efficient and 
accurate alternative to numerical integration when It1 > A/  2 and 
A/a 2 4. 
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