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Evaluation and Integration of the Thin Wire Kernel
Donald R. Wilton, Fellow, IEEE, and Nathan J. Champagne, Senior Member, IEEE

Abstract—New approaches for numerically computing the thin
wire kernel and wire potential integrals are presented. The singular
behavior of the kernel integral is removed by transforming the in-
tegration variable to produce a smooth integrand. Subsequent inte-
gration of the kernel to obtain potential integrals uses quadrature
schemes catering to its behavior. This technique allows standard
algorithms for numerical quadrature to be used with updated in-
tegration weights that account for the transformed behavior, obvi-
ating the need for singularity subtraction techniques. The result is
a procedure for evaluating the potential integrals that is indepen-
dent of the basis functions.

Index Terms—Exact kernel, numerical integration, singularity
analysis, wire.

I. INTRODUCTION

TRADITIONALLY, the singularity present in the method of
moments (MoM) analysis for wires has been evaluated an-

alytically using singularity extraction techniques [1]–[3]. In the
1990s, an approach that avoids singularity extraction by exactly
representing the wire kernel as an infinite series was proposed
[4]–[6]. In all these approaches, the basis function must be con-
sidered in the analysis. Thus, a new analysis is required for each
different basis function, making it difficult, for example, to treat
hierarchical bases.

A technique for numerically evaluating an exact expression of
the wire kernel was recently proposed [7], [8]. The approach is
described in more detail in this paper. Additionally, a procedure
using this new kernel expression for evaluating the potentials
when they are nearly singular is discussed. This new scheme
involves using variable transforms to create a smooth integrand
that may be evaluated numerically. Part of this process involves
using the quadrature scheme of [9]. Hence, this new approach
eliminates the need for singularity extraction, paving the way
for use of higher order basis functions on wires in a tractable
algorithm.

II. METHOD OF MOMENTS ANALYSIS

The currents on a wire structure are determined using the
electric field integral equation (EFIE), given by

(1)

where denotes the wire surface. The excitation may be
either an incident electric field or a voltage source. The scattered
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electric field is expressed in terms of the magnetic vector
and the electric scalar potentials as

(2)

The potentials are defined as

(3)

and

(4)

where is the distance between the observation and
source points, is the wavenumber of the medium,
the vector represents both the direction and complex am-
plitude of the total current, and is the (piecewise constant)
wire radius at . The quantities and are the permeability and
permittivity of the medium, respectively. The unknown current
on the wire structure is approximated as

(5)

where is the th unknown current coefficient and is a
vector basis function used to represent the current on the wire.
Note that the wire is considered to be thin so that has no
azimuthal component or variation. Now the potentials may be
written in terms of sums of partial potentials arising from the
bases as

(6)

and

(7)

where the wire radius is constant on each segment and has been
removed from the divergence in (7) since, as demonstrated in
[10], no condition on the charge at stepped-radius connections
between wires is necessary.

Equations (6) and (7) may be written in terms of the wire
segment geometry by letting , where is a
differential arc length along the wire axis and is an angle
differential measured about the wire circumference. The vector
and scalar potentials thus become

(8)
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and

(9)

where

(10)

is the wire kernel. In (8)–(10), is reinterpreted as a vector to a
point on the wire axis; is no longer , but is the distance
from to a point with angle parameter on the wire’s cross
section centered at . Since, under thin-wire assumptions, the
surface current (and basis) does not vary about the wire’s cross
section, the basis may be associated with .

The evaluation of (8) and (9) is usually reduced to its par-
tial contributions from each linear wire segment (element)
comprising the wire model. Since the vector bases for current
have constant direction on each linear segment, both required
potential integrals reduce to scalar integrals of the form

(11)

where is a scalar current or charge basis. The evaluation
of (11) requires two steps: first, the kernel (10) is eval-
uated, and then the integral (11) is performed. These steps are
discussed in the next two sections.

III. EVALUATION OF THE WIRE KERNEL

Because of the rotational symmetry of both sources and
their potentials about a linear tubular section, we can consider,
without loss of generality, an observation point in cylindrical
coordinates at and sources on a cylindrical tube of
constant radius centered along the axis and with a circum-
ferentially invariant, -directed current as shown in Fig. 1. The
wire kernel is defined as

(12)

where . The kernel
represents the potential of a scalar ring source of radius lo-
cated at . With the substitution and ap-
plication of standard trigonometric identities, may be written
as

(13)

where is the distance
to the farthest point on the tube cross section at and

. A geometrical visualization of quantities
forming the ratio , where is the

Fig. 1. Geometry used for wire kernel evaluation.

Fig. 2. Geometrical interpretation of � = 2� =R .

geometrical mean radius, is illustrated in Fig. 2. These expres-
sions may be substituted into (12), allowing the kernel to be
rewritten as

(14)

To cancel possible singularities present in (14), the following
transformation is used:

(15)

where is the incomplete elliptic integral of the first
kind; the corresponding inverse function is the Jacobi amplitude
function . Noting that

(16)

the wire kernel is thus transformed to

(17)

where is the complete elliptic integral of
the first kind, and and are
Jacobi elliptic functions.

One observes that the transformation (15) cancels potential
singularities in (14). Further, when the thin wire assumption
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holds, the resulting integrand of the transformed in-
tegral (17) is extremely smooth since the phase variation of

is at most , independent of observation
point. Hence, (17) is useful not only in computing singular (self)
terms, but also in computing near singular terms that arise from
closely spaced wires or between a wire and its image in a nearby
ground plane.

An excellent approximation of the exact kernel for thin wires
is readily obtained from (17) by expanding the integrand in the
following two term series

(18)

The resulting integrand may be integrated term by term, yielding

(19)
where the complete elliptic integral factor incorporates the log-
arithmic behavior of the kernel for observation points near the
ring source, while the spherical wave factor highlights its point-
source-like behavior far from the source. Use of approximate
forms is quite unnecessary in practice, however, as the integral
(17) may be efficiently evaluated numerically to essentially ar-
bitrary accuracy using Gauss-Legendre rules of relatively low
order. This is done by approximating (17) as

(20)

where and are weights and sample points, respec-
tively, for a -point Gauss-Legendre quadrature on the unit in-
terval (0,1). The complete elliptic integral and Jacobi elliptic
function are readily computed via algorithms given in [11] and
[12], respectively.

Examination of series representations for complete elliptic
integrals reveals that as behaves as

where and are
analytic functions of . Hence the integration along the tube
needed for an integral equation solution may be carried out
using the quadrature rules of [9]. (This approach can also be
extended to bodies of revolution since, in addition to the phase
factor , the integrand (17) contains only the additional
circumferential phase factor . This simply places a greater
burden on the circumferential integration.)

IV. INTEGRATION OF THE WIRE KERNEL

Next, the evaluation of the potential integral (11) is consid-
ered. As in the previous section, it is assumed that the wire seg-
ment is placed such that the wire axis is parallel to the axis as
shown in Fig. 3. The integral over the segment is parameterized
in terms of ; basis functions are generally expresssed in terms
of local normalized coordinates as defined later. When

Fig. 3. Geometry of a wire segment.

the observation point is far from the source, the required integral
is easily evaluated by numerical quadrature as

(21)

where is the segment length and is a
vector or scalar basis function expressed in normalized coordi-
nates on the wire segment

(22)

with , and is the wire kernel sampled
at source point at a fixed observation point . The weights
of an appropriate quadrature scheme such as Gauss-Legendre
on the normalized interval (0,1) are , and the corresponding
sample points are . The goal in the fol-
lowing is to develop an efficient quadrature rule for singular
and near-singular integrands that is formally identical to (21)
so that no changes need be made in defining or using the bases
and kernel; this greatly simplifies the structure and the writing
of object-oriented programs that incorporate these integrals. The
only caveat is that the new quadrature rule necessarily depends
on the observation point .

When the observation point is near or on the wire segment, the
location of its projection onto the wire segment axis needs to be
determined. In normalized segment coordinates, the projection
coordinates are written as

(23)

and are illustrated in Fig. 4. The integral in (21) is then split,
in general, into four regions according to the different kernel
behaviors on the wire subsegments as

(24)
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Fig. 4. Splitting of a wire segment into four subsegments.

where and are depicted in Fig. 4. The kernel is dom-
inated by a logarithmic behavior in a neighborhood ( and

) about the projection point. This must be accounted for in
the integrals and . Outside this neighborhood, however, the
wire kernel has essentially a behavior that is treated in
and .

In practice, we have found the choice
to be convenient. Hence, as the radius decreases, so does the sub-
segment length , which may be written in normalized coor-
dinates as . However, the behavior replacing
the logarithmic behavior over the remainder of the segment is
accurately determined using and . Hence, the analysis re-
mains valid even as the radius approaches zero.

The first integral

(25)

has a kernel dominated by a behavior. Canceling this be-
havior, hence smoothing the integrand, is achieved by letting

(26)

or, upon integrating

(27)

Since , (25) may now be written as

(28)

where

(29)

(30)

(31)

(32)

(33)

and

(34)

Since the integrand in the variable is smooth, the weights
and samples chosen are those of the Gauss-Le-
gendre scheme on the unit interval (0,1). The bracketed quan-
tity in (28) and expression (33) represent the new weights and
sample points, respectively, mapped back to the original integra-
tion domain. Additionally, the expression for in (34) con-
trols the upper limit of integration in (29). If the projected ob-
servation point falls such that , then (34) limits the
upper limit to . This results in identical upper and lower limits
so that . Correspondingly, we also set . When the
projected observation point falls past the opposite segment end-
point such that , then the upper limit of
integration in (29) is limited to , resulting in being evalu-
ated over the entire segment. The contributions from , and

are zero in this case.
The fourth integral is analogous to and may be similarly

evaluated, yielding

(35)

where and are defined as in (33), is defined as in
(32)

(36)

(37)

(38)

and

(39)

Here, as with , the bracketed quantity in (35) represents
the weights mapped back to the original integration domain.
Also, similar to , (39) controls the integration limits. When

in (36), the lower limit of integration
is such that covers the entire segment. When , the
fourth integral is zero , and we correspondingly set

.
The integral has a logarithmic singularity that may be

handled using the Ma, Rohklin, Wandzura (MRW) quadrature
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scheme [9]. With the substitution , the
integral becomes

(40)

where

(41)

and and are the weights and sample points,
respectively, of the MRW approach. Similarly, the expression
for is determined using the same approach as , yielding

(42)

where

(43)

When the projected observation point falls outside of and
within of a segment endpoint, then a nearly-singular kernel
results that may be difficult to evaluate accurately. For this situ-
ation, either and or and
is true as calculated using (34) and (39). The result is that the
domain of either or extends beyond the segment end-
point to the projected observation point. The remaining integral
negates this fictitious contribution from the projected observa-
tion point back to the segment endpoint. Thus, the near-singu-
larity is handled by introducing an artificial singularity at the
projected observation point in both integrals that permits using
the effective MRW scheme for both. Since the integration in-
tervals are necessarily different, the resulting cancellation does
not result in a loss of accuracy. Finally, both and are zero

if the projected observation point falls off
the segment and does not fall within of a segment endpoint
( or ).

The list of weights and sample points determined for subinter-
vals , and may be concatenated to produce weights
and sample points for a quadrature rule spanning the entire orig-
inal integration domain as follows:

Fig. 5. Imaginary part of wire current at dipole center as wire radius is
decreased.

(44)

and

(45)

The new weights and sample points, (44) and (45), which de-
pend on the observation point, may now be used in (21).

V. RESULTS

To demonstrate the robustness of this approach for extremely
thin wires, the current on a wire dipole is calculated for a
decreasing wire radius. Then, the current on a longer dipole is
determined and compared with results from MININEC [13],
which uses a method of moments formulation to solve for the
currents on a wire. Finally, results from a transmission line
are presented to test the formulation’s ability to model closely
spaced wires. Note that linear basis functions are used in all
these cases.

The imaginary part of the current at the center of a 25-cm
dipole is plotted versus the wire radius in Fig. 5. The dipole is
excited by a unit delta-gap source at 3 MHz. Only two segments
were used to model the dipole. The results from this formula-
tion are compared with data generated using an asymptotic ex-
pansion for the current [14]. There is good agreement between
the two approaches as indicated in the figure. Note that only the
imaginary part of the current is presented since the real part is
much less than the imaginary part.

A 1-meter dipole with a radius of 1 mm is excited at the
center by a unit delta-gap voltage source at 300 MHz. The for-
mulation presented in this paper is compared with MININEC.
The dipole is modeled with 20 straight segments. The real and
imaginary currents on the dipole are presented in Figs. 6 and 7.
The data generated using this formulation show good agreement
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Fig. 6. Real part of current on a 1.0-m dipole.

Fig. 7. Imaginary part of current on a 1.0-m dipole.

with MININEC in the figures. The small differences observed
may be due to slight differences in the testing quadrature scheme
or in the improved kernel evaluation of the present scheme.

A transmission line is composed of two parallel wires with
radii of 1 mm. The length of the line is 1 m. The separation be-
tween the wires is 3 mm, leaving a space between the wires of
only 1 mm. The parallel wires are connected at each end by two
wire segments, each of radius 1 mm. A unit delta-gap voltage
source is placed between one pair of segments at one end of the
transmission line, and a lumped 500 load is connected be-
tween the pair of wires at the other end. A total of 24 segments
is used to model the transmission line. The input resistance and
reactance of the line are shown in Figs. 8 and 9, respectively.
The simulation data are plotted along with data generated using
the standard formula for input impedance of the corresponding
transmission line section. The numerical data are clearly in ex-
cellent agreement with the formula. Note also that as the fre-
quency decreases, both the resistance and reactance data tend
toward their respective dc values.

VI. SUMMARY AND CONCLUSION

A procedure for evaluating the potential integrals on wires
as the distance between the source and observation points de-
creases has been presented. The new approach employs a recent
technique for numerically evaluating an expression for the exact
wire kernel. The formulation is stable for extremely thin and for

Fig. 8. Input resistance of a transmission line.

Fig. 9. Input reactance of a transmission line.

closely-coupled wires. Since the procedure is not dependent on
the form of the basis function, it is readily adapted to algorithms
using higher order basis functions. Furthermore, the formula-
tion sets the stage for using higher order wire segments without
singularity extraction as well. We expect to report on these de-
velopments in the near future.
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