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First of Two Parts

NTRODUCTION in which it has been assumed that the current distribution
Many aspects of antenna array theory, particularly for has anlémfouzlp rotg;iisiwinp ??tsfé go{;eiiiigg;he'r%ﬁ:ﬁa:

_uniform element spacing, are so widely known that they @, and A SyMMETrical amplitude s ' o
form a standard body of knowledge in textbooks.* In the
case of linear arrays, general formulas for beamwidth

and directivity have been established. However, in the ; Pligs 60 0)

case of planar arrays only the case of uniform excitation

has been extensively investigated.®®  Surprisingly, no .

great advantage has been taken of the use of a Fourier
eries representation of the aperture distribution. -Such
a representation yields useful results of fairly general
validity in the case of planar arrays, and even enhances
the well known aspects of the linear theory. It is a pus-
pose of the present paper to exhibit the advantages of
such a representation. ~

L

LINEAR ARRAY THEORY ‘ ;

spacing d,, as suggested by Figure 1. The conventional )
relation between spherical and rectangular coordinates is

ten .i_,
" &

N, N, <
A(Q)::ZIH em (kd, cosawaz):Z £ (D) _E.x_
o >

n=-N, —N,

This study was suppovted. under a consulting. arrangement with
Lockheed Aivcraft Corp., Burbank; Cal. Figure 1 -— Linear array geometry.
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118 pure real for all values of b k:gf? is. the wave

number.

Bquation (1) can be interpreted as a symmetrical fam-
ily of phasors, fanned out in the complex plane as shown
in Figure 2. The separation - angle between adjacent
phasors. is Y=kd, cos §—ay and thus varies with 0. At
an angle ¢, defined by

r=kd, cosfo— o, =0 {2)

all the phasors are-aligned and thus

N,
Awu)::ZL, (3)
MNZ

is the maximum value of the array factor. Thetefore, 6,
defines the direction of the main beam.

Figure 2 — Phasor representation of linear arfay pattern;

As- ¢ depatts from ¢, the phasors spread out in the
complex- plane.  For large arrays, an angle 0;<6; is
reached at which the sum of the phasors is zero, defining
the first null on one side of the main beam. Continuing,
an angle ;< ¢, is reached at which the phasors are even
further spread out, and their sum is once again zero. This
defines the second null on one side of the main beam.
Intermediate between §, and ¢, there is an angle at which
the phasors sum to a secondary maximum, defining the
height of the first -sidélobe. - As '§is decreased still fur-
ther, subsequent sidelobes and nulls are traced our.

Similarly, if § departs in the other direction from ¢,
a sequence of angles §,<0,< 0, <. .. is reached at which
array “pattern nulls are obtained, with sidelobes in be:

b4

tween. Bemuse the axmy pattem is symmemml in th
variable r=kd, cos 0~ a, the heights of the sidelobe

‘on the two sides of the main beam are symmetrical also

but their positions are not necessarily symmetrical in g
Since-A () is independent of ¢, the three dimensiony
agray pattern consists of -conical lobes whose ditection
nest among the succession of angles . . . 04,0,,04,6,.0,," .

It is conceivable that the phasors of Equation () ca
spread out so far that they are once again aligned. Thl
will occur if kd, cos 0 —a,===2x. If this is not to oce
before the limits of real space are reached; then use .
(2) establishes the conditions

[cos O]+ —- >1

A
d,

[cos 0| — ~d§,,—<_—

The second of these inequalities is more stringent an
requires that

”d}? <TF] 1

cos 6]
Equation (4) is often referred- to as the condition f
avoidance of multiple main beams. It is a result w
is independent of current distribution.* If the princip
main beam is to be scanned close to endfire, s0 th
[cos B,]~>1, it is evident that the elements must be spac
only a half wavelength apast if a second main beam is
be avoided. In what follows, only linear arrays causit
a single main beam ‘will be conmdercd.

Beamwidth

The half-power beamwidth of a linear array is define
as-the angular separamon between the two directions, o
on-each side of the main beam maximum, at which t
power density is reduced by half. Let @=¢,—¢,
this beamwidth, in which ¢, and §’; aie the two valu
of ¢/ which satisfy the relation

N, ,
A(0")=0.707 A(0,) = Z 1 (kd, cos 0" —a,) |

__Nz

The amplitude distribution I, can be represented b
Fourier series, viz., .

P . 2an
1= Zap L TN

p=-—P

in which P is the highest spatial harmonic needed t
represent the distribution. a,=a_; is pure real becau
the distribution is symmetric. Inserting (2) and (6) 1
(5) gives

#Bxrepi, of conrse; thai the .currens distribution iv symmeirl
and the phase is uniform progressive.
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sidelobes
‘ieal a}so ' P NZ q , P)\
ical in g N ink Z[cos 8" —cos f,+ M]
rensiongl A Z ap Z ¢ L,
lirections : —P —N,
B2,0,, . . N
A1) can P sin[-ZNy‘2+ 1~kdv,,<cos 8" —cos @, 1;‘ ):l
ed. This = a, ——t ; ;x |
to occur —p sin }:mkdz(cos §"—cos 8,+ 1;‘ )]
n use of : 2 g
(7
in'which L, = (2N,-+1)d, is the length of the array. (The
array length is assumed to include a distance C;Z beyond
each end clement). It is shown in Appendix A that for
large arrays with conventional distributions, Equation
(7) can be transformed to
gent an sin Ko 0.707
Kr P (8)
2a(-)" %5
o4 2o p*—K?
L —P
in which
ition fo
It which _ Ly .
principal K= X (cos @' —~cos,) {(9)
$0 thad 15 a-substitution variable from which the beamwidth can
'¢ space be deduced. For small P it is a simple matter to find K

. from (8). Several cases will now be considered.
b causiig

Case 1: Uniform Distribution

This is the simplest case of all and extremely ‘useful
as a reference. Only a, has a value dnd Equation (8)

5 defined yields two solutions for K which can be written

ons, one
f’j(;hi fge | 08 01— cos 0, =0.443 {—‘« (10)
o values

cos 85— cos Gome.443%= (11)

’ _from which it follows that the half power beamwidth is
“ay) (s)  given by

®@=8, — 0, =cos™ [cos 0,— 0‘44311\”]

ed by a }x‘
- cos”l[cos G, 0‘4431*—:] (12)

(0<0<5)  (0720)

(6)
As the main beam is scanned around from broadside (fo=

g . e
eded to ’ 7) to-endfire (6,=0), a cross-section of the beam takes on

because

L (6) in

a succession of positions as indicated by Figure 3. As the
_ conical beam closes toward endfire, 2 position is reached
~at 'which ¢’;=0 and from this position to endfire, there
is no half-power point on-one side of the beam. For this
reason 7,0 is known as the scan limit. Equation (10)
 will not give a real value for ¢/, beyond this limit.

beamwidth once again takes on meaning. Equation (11)
is still valid and one can write
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Figure 3 — Linear array pattern versus scan angle.
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Rigure 4 < Beamwidth versus linear array length and scan angle.

When the endfire position is reached, the concept of '

@) =20,'="2 cos‘1[1—0.443-%} - (13)

(Uo=0, m)

The beamwidths given by Equations (12) and (13) are
plotted in Figure 4 as functions of array length and scan

bb




position. These curves will prove to be useful beyond

the present case of a uniform linear array, since they can

be used for all the linear and planar arrays we shall dis-
cuss.

Bach of these equations for beamwidth — Equation
(12), which is valid to within one beamwidth of endfire,
and Equation (13), which is valid at endfire ~— has an
approximate form when L,> >\ Using small angle
expansions, one obrains

@gO,SSG% csc B, (14)

7

(At or near breadside)

@=2 0.886%« (15)
" (At endfire)

For L,>5), Equation (14) is in error by less than 0.2
per cent at broadside and is in error by fess chan 4 per
cent when the beam has been scanned to within two
beamwidths of endfire. For L,>5X, Equation (15) is in
error by less than one per cent.

Case 2: Cosine-on-a-Pédestal Distribution
For this type of excitation, Equation (8) is simply

sin K o 0.707 ] (16)
Kar 1+ _2;511 K=
a, 1—K?

The range of interest is 0522, <4, which covers the span
from uniform excitation to a taper so severe that the
excitation drops to zero at the ends of the array. In this
span, K has an approximately parabolic dependence on
taper, being given by

23.1 2 2
K==t [0.282 (T) +0443 ] (17)

O

For the extreme taper of zero excitation at the edges
(2a,=4,), the value K=0.725 agrees with other pub-
lished results.*

For Jarge arrays scanned not too close to endfire, Equa-
tion (17) gives for the beamwidth :

@::0.8863L csc B, [1+0.636 (2?” )2 ] (18)

Ao

. oo 2a .
As Ohe expects, increasing ?—1 to lower the sidelobe level

(4
has as a penalty an increase in the beamwidch: ~The
quantity in brackets in (18) is called the beam broadening
factor, f. '

The radiation pattern from an equi-spaced linear array
excited in a cosine-on-a-pedestal distribution consists of
a main beam plus sidelobes which get successively lower
as one departs in either direction from the main beam.
Defining the sidelobe level as the height of the biggest
sidelobe, relative to the height of the main beam, one
finds by using (1) and (6), that for this case,

So ~ [12 +29 ( 2{?) —10 (%ﬁi)z ] (19)

in which § is the sidelobe level in db. Combining (1§
and (19) permits us to plot the beam broadening facto;
as 2 function of sidelobe level, as shown in Figute 5,

Case 3: Dolph-Chebyshev Distribution

Ir is shown elsewhere® that if the current distribution |
chosen so that the pattern can be represented by the Cheby

shev polynomial Tax, (u, €OS jzﬁ) with i defined by (2)

then the Fourier coeficients for such a distribution ag
given by '

(2N, +1) 2,=Tax, (uo cosﬁ%)

It follows that (2ZN,+1)a,=Ton, ()=t is the m

beam to sidelobe voltage ratio. For large arrays, and fo
sidelobe levels in the range from —20 db to —60 db, onl
a, and a, are significant in determining the beamwidth, an
a, is given quite precisely by '

(2N,+1) a;=cosh [/ (arc cosh ry:—a?] (20

Thus, for a Chebyshev distribution, the beamwidth ca
be determined as a function of sidelobe level from (18
by first finding a, from (20). The beam broadening fa
tor is therefore approximately

f=1-+0.63%6 {i cosh[/ (arc cosh 1)*-=77] }2 (21
r

Bquation (21) is also plotted in Figure 5. Fot
linear array of any length, with the main beam pointi
in any general direction, the beamwidth can be dete
mined for a Chebyshev pattern by reading the appr
priate beamwidth off Figure 4 and muldplying by t
appropriate value of f, as read from Figure 5. The Cheb
shev beam broadening factor of Figure 5 is in substanti
agreement with the results of Stegen,® who used a di
ferent technique to determine the beamwidth.

BEAM BROADEMING FACTOR

T X
)
/

%

1.0
13 F] 28

5 A 48 E) )
SIDELOBE LEVEL IN- DB

Figure 5 ~— Beam broadening versus side lobe level for
Arrays
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Figure 5 reveals the interesting and well-known fact
that, for a given amount of beam broadening, a Cheby-
_shev distribution is capable of yielding a lower sidelobe
level than a cosine-on-a-pedestal distribution. Since only
the first two Fourier terms representing the Chebyshev
 distribution were used in computing the Chebyshev curve
_in Figure 5, this result may appear paradoxical. The ex-
planation lies in the fact that the higher Fourier terms
are significant in dctermmmg sidelobe level, whereas
their influence on beamwidth is slight.

Directivity

If the element pattern is isotropic, the directivity is

governed entirely by the array factor. It is defined as

the power density in the direction of the main beam maxi-

mum divided by the average power density from the
array. Thus,

A(8,) A*(0,)
f” fZW A(8) A*(0) 1.2 sin 0 40 d

[ ¢

D= (22)

1
Ly ?

_ which simplifies to

2A(6,) A*(0.)
f” A(0) A*(6) sind d6

O

D=

(23)

Letting Y=kd, cos §—a, so that dy = —kd, sin 640, and
 making use of Equations (1) and (3), this becomes

—N,

[ ()

—kd,~a  —N;

D=

imy
—jmys ) A

(24)

If d, equals %\« (or any multiple thereof), this reduces

_ vety simply to

D= Ne

>

__.NZ

which is a most interesting formula in several respects.
The' directivity, as given by Bquation (25), turns out to
be a measure of the coherence of radiation from the linear
array. The numerator is proportional to the total coherent
field squared whereas the denominator is proportional
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to the sums of the squares of the individual fields from
each element:

Furthermore, the directivity, as given by Equation
(25), is seen to be independent of scan angle. On the
face of it, this seems surprising, since we have already
observed that the main beam broadens as it is scanned
away from broadside, a manifestation which usually signi-
fies lowered directivity. However, for a linear array, as
the conical beam is scanned toward endfire, the cone
tends to occupy a smaller solid angle in space, an effect
which just cancels the beam broadening. This compen-
sation holds until the beam approaches -endfire, when
another compensatlon takes over — the appearance of a
second main beam at reverse endfire,

Whereas Equation (25) is independent of scan angle,
it is not independent of current distribution.” Using the
Fourier series description of the excitation embodied in
Equation (6), one finds that

, K

(Z I,,)?:(ZNZ—H)? 2,?

—N,

N, P
Z 2= (2N, +1) Z a2
» —P

._NZ

5o that

D:P

> (&)

—P

For half-wave spacing,

Lzz(ZNZ+1)~—%~, so'that Equa-
tion (28) can be rewritten

2L,
Iy

P
HZZ(ZD)‘
p=1

For element spacings in the range —- <d, <<\, i L, is held
fixed, the directivity is found to be quite insensitive to
element spacing. Since this is the range of element spac-
ings which avoids either supergaining or muluple beams,
we shall adopt Equation (29) as the expressmn for direc-
tivity of a linear atray. Let us now interpret this equa-
tion for several cases.

Case 1: Uniform Distribution
Once again, this is the simplest case of all, and gives

2L,
D= N (39)
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which is sometimes referred to as the standard directivity
(or gain). It is-the maximum directivity which can be ob-
tained from a linear array of length L, using an aperture
distribution which has uniform progressive phase, and an

: . A
element spacing of 5

Case 2: Cosine-on-a-Pedestal Distribution

This is a special case of (29) in which only two terms
appear in the denominator. It is more useful to display
the normalized directivity, D, found by dividing (29) by
(30). Foxr this case, :

TSI SR (31)

12 (?1)2
g

4y

Since the practical range of extends from zero to

(4]
one half, the normalized directivity extends from unity
to two-thirds, and is independent of the size of the array.

Cuse 3¢ Chebyshev Distribution

Making use of the Fourier representation of a Cheby-
shev distribution, the directivity can be written

(32)

a result which agrees with Stegen.”

Unlike the computation for beamwidth of a Chebyshev
array, in which only the first two Fourier coefficients were
significant, it devefops that all the Fourier coefficients
which appear in the denominator of (32) must be con-
sidered. Indeed, if the array becomes Jarge enough, the
sum of the squares of these Fourier coefficients becomes
proportional to N, and thus the directivity tends to' a
limit. (cf. Appendix B for a proof of this statement).

It is a tedious computation to determine all the Fourier
coeflicients in (32), particularly for large arrays. Fortu-
nately, this is not necessaty. In Appendix C, it is shown
that (32) can be written alternatively as

) :
D= 2 (33)
L+ (22— 1)f i

in which t is the main beam to sidelobe voltage ratio
and f is the beam broadening factor. Equation (33) is
quite accurate for large arrays and has the limit

Diax=221" (34)

which is reached when L,—> 0 and which agrees with the
result of Appendix B. Thus the maximum gain for a
Chebyshev atray is three db more than the sidelobe level.
"This means, for example, that if one wishes to design
a linear array to have uniform sidelobes and a gain of
43 db, it is necessary also to design it to have sidelobes
“that are down at least 40 db. Actually, this maximum
gain is approached rather rapidly at first, as L, is in-
creased, but then additional gain is bought very deatly
in terms of increased array length. This point can be
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appreciated cleatly by studying Figure 6, which is a p
of Equation (33) for various values of sidelobe ley
An optimum gain (and thus array length) can be select
for a given sidelobe level by specifying a point on ¢
appropriate curve of Figure 6 at which the curve b
just barely begun to bend significantly. R. C. Han :
has made an excellent study of such gain limitations £
Taylor-type distributions and has come to similar co
clusions.

2000

DIRECTIVITY

X
Figure 6 — Directivity versus array length for Chebyshev linea

This phenomenon of a gain limit was not observed
the cases of a uniform distribution and a cosine<;
pedestal distribution. Those distributions gave pattern
with tapered sidelobes, and the Chebyshev feature of un,
form sidelobes, while giving minimum beamwidth, i
also responsible for the gain limitation. However, cu
rent antenna practice is to combine large arrays with |
sidelobe levels, so this gain limitation is not so seriou:
to preclude the use of Chebyshev designs. For exam
Figure 6 reveals that for arrays as long as one thous
wavelengths, very little bending has occurred in the cu
for a 40 db sidelobe level. -

Beamwidth and Directivity

Equations (9) and (29) reveal that for a lincar at
both the beamwidth and the directivity depend line

on the array length. Upon eliminating %\i from these

‘expressions, one obtaing

1.77
P=@.7 s
> (2
o
p=—P
in which @), is the broadside beamwidth.
If the beamwidth is expressed in degrees instead

radians, and if the distribution is uniform, Equation (3
reduces to thesimple relation
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If a cosine-on-a-pedestal distribution is employed, the
factor in brackets in (35) is a slowly-varying function of
taper, only suffering a three per cent rise as a, increases
to 0.25 a, and only taking on a maximum increase of
nine per cent at the extreme taper of a,=0.5 a,. For a
Chebyshev distribution, until an array length is reached
at which the directivity begins to limit, the factor in
brackets in (35) is unity. Thus Equation (36) is a good
working relation between beamwidch and directivity for
most useful excitations, and this can be rounded off by
saying that the product of broadside beamwidth and
directivity for a linear array is about one hundred.

D= (36)

Appendix A

Uy = mgw( cos 6" —cos 0, w&)

Z

so that Equation (7) can be written

P

A=y o, MR b

sin up
—~P

p

~sin [(2N,+1) u,]
- sin U,
—P

For latge arrays with conventional distributions, u, and

1, are small angles and P is a small integer. Then (A-2)
can be written

A(@’) = (2N,+1)

sin [(2N,+1) u,l

from which ’

sin Knr .

Ker

which can also be written

sin Kv
K

Appendix B
Making use of the properties of the Chebyshev poly-
nomials, we have

(2N, +1) a,=Tay, ((uo €os ) cos 2N, vp (B-1)

ZN +1

P

:Z o S0 QN 1) u, +pr]

sin up

—P

sin u,
ay COs pm [';1*'*’—* —1-1 :l

0 ug

— (2N, +1)

(2N, +1) u,

P
{ a,+ Z 2ay COs pr E
p=1

% (cos 8" —cos 8,)

A(G") =0.707 A0, )«07072 1,=0.707 Z Z -

A(07)=0707 (2N,+1) a,

Combinimg (A-3) and (A-5) gives

S S |
Z 28y €08 p*[l e ][ 0.707 44
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S‘“IK”T{,

t

sin [ (2N, +1) u,]
QN+ 1) Z 2a, cos pr

K“

pr
ZNZ + 1

—P —N

in which v, is defined by

_ pr
COS V=1, COS W




and p-is a‘large enough integer that vy is real.. (For prac-
- tical distributions, p >3 suffices.) Let

N,

2 ay = E cos? 2N, v,

3

1 1
<~2~ + ~‘:2*cos4NZ vp> (B-3)

Since u, =1,

:_ME.E__ ‘ »
%= gy o (B-4)

in which 8, is small, and tends to zero as u,~>1. Thus for
large arrays, as p ranges from 3 to N,, v, ranges from a

w A £
value close to zero t0 a value close to7 , with the values of

vy, being regularly spaced. “Therefore the term

N.
Z %—cos 4N, v,
3

is quite small, and, in (B-3),

N,
2

Since, for a fixed sidelobe level; a,, 2, and ‘a, remain
constant as N, 15 increased,® and since (2N, +1)a,=r,
the main beam to sidelobe voltage ratio, Equation (28)
yields the limit

S (B-5)

ZN,+1

Thus the limiting directivity of a Chebyshev linear array
is-governed by the sidelobe level.

D> =21? (B-6)

Appendix C

For -a large Chebyshev “array, the denominator of
Equation (23) can be approximated by assuming the

main beam and each of the sidelobes to be a half-sinusoid

in" field -distribution. - The main beam has its maximum
at 0, and nulls at 9, and 4,. In this range we assume

92"’"61
[ ot

A(G)=rcos WMW (C-1)

and-determine a contribution te the denominator of (23)
as |
62 6 o 62 -+ 01
2
92” 01

2

F,=r%sind, cos® | dg (C-2)

i

in. which sin-@ has been brought out in front of the inte-
grand because a large array is assumed so that 6,0, is
small and the variation in sin ¢ is small. Equation (C-2)
can be integrated easily, giving

60

F,=1? sin 0, (%@)

in which Af,=8,—0, is the angular width between
nulls, “
When a similar calculation is performed for one of the
sidelobes, the only difference is that a unit amplitude ¢
places the amplitude r in (C-1). Thus Equation (23) cq

‘be written

2r®
£# sin 0, ( A\ 60) 43 sind,, (»é;ﬂ)

2 m

D= (G4

in which /A\#,, is the angular width of the mt sideloh
and the sum ¥ extends over the entire angular regi
except for the portion occupied by the main beam. Th
can be rephrased as '
o 412 '
D= (r2—1)sind,- A\ 0,43 sinf - A O (€3
m

in which the sum 3 is over all space. For large arrays,

S sin Oy A\ G f” sinfedfd=2 (C6
m
G

Furthermore, the angular extent of the main beam is r
lated to the half-power beamwidth by the expression

- ® | '
D= 543 ©
whereas the half-power beamwidth, using (14), is give
by
A
#=0.886 frfcsc b,

in which f is the beam broadening factor.” Thus-

sind,° NG, = zf%

Z

and therefore
2¢7

D=
A

2 -

(2 =1) fy-t1
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