Appendix 4

Dyadic Analysis*

DEFINITIONS

Vector \mathbf{d}^{\prime} is a linear vector function of vector \mathbf{d} when the following relationships hold:

$$
\begin{align*}
& d_{x}^{\prime}=a_{x x} d_{x}+a_{x y} d_{y}+a_{x z} d_{z} \\
& d_{y}^{\prime}=a_{y x} d_{x}+a_{y y} d_{y}+a_{y z} d_{z} \\
& d_{z}^{\prime}=a_{z x} d_{x}+a_{z y} d_{y}+a_{z z} d_{z} . \tag{A4.1}
\end{align*}
$$

These relationships can be represented in more compact form by means of the matrix notation

$$
\begin{equation*}
\mathbf{d}^{\prime}=\overline{\bar{a}} \cdot \mathbf{d} \tag{A4.2}
\end{equation*}
$$

The matrix operator itself can be expressed in terms of dyads as

$$
\begin{align*}
\overline{\bar{a}}= & a_{x x} \mathbf{u}_{x} \mathbf{u}_{x}+a_{x y} \mathbf{u}_{x} \mathbf{u}_{y}+a_{x z} \mathbf{u}_{x} \mathbf{u}_{z}+a_{y x} \mathbf{u}_{y} \mathbf{u}_{x}+a_{y y} \mathbf{u}_{y} \mathbf{u}_{y} \\
& +a_{y z} \mathbf{u}_{y} \mathbf{u}_{z}+a_{z x} \mathbf{u}_{z} \mathbf{u}_{x}+a_{z y} \mathbf{u}_{z} \mathbf{u}_{y}+a_{z z} \mathbf{u}_{z} \mathbf{u}_{z} \tag{A4.3}
\end{align*}
$$

provided, by convention, $\mathbf{a b} \cdot \mathbf{c}$ stands for $\mathbf{a}(\mathbf{b} \cdot \mathbf{c})$. The symbol $\mathbf{a b}$ is called a dyad, and a sum of dyads such as $\overline{\bar{a}}$ is a dyadic. Also by convention, $\mathbf{c} \cdot \mathbf{a b}$ stands for $(\mathbf{c} \cdot \mathbf{a}) \mathbf{b}$, so that the dot product of a dyad and a vector is now defined for $\mathbf{a b}$ acting as both a prefactor and a postfactor. The writing of $\overline{\bar{a}}$ in "nonion" form, as shown above, is rather cumbersome, and one often prefers to use the form

$$
\begin{align*}
\overline{\bar{a}}= & \left(a_{x x} \mathbf{u}_{x}+a_{y x} \mathbf{u}_{y}+a_{z x} \mathbf{u}_{z}\right) \mathbf{u}_{x}+\left(a_{x y} \mathbf{u}_{x}+a_{y y} \mathbf{u}_{y}+a_{z y} \mathbf{u}_{z}\right) \mathbf{u}_{y} \\
& +\left(a_{x z} \mathbf{u}_{x}+a_{y z} \mathbf{u}_{y}+a_{z z} \mathbf{u}_{z}\right) \mathbf{u}_{z}=\mathbf{a}_{x}^{\prime} \mathbf{u}_{x}+\mathbf{a}_{y}^{\prime} \mathbf{u}_{y}+\mathbf{a}_{z}^{\prime} \mathbf{u}_{z} \tag{A4.4}
\end{align*}
$$

where the \mathbf{a}^{\prime} are the column vectors of the matrix of $\overline{\bar{a}}$. Alternatively,

$$
\begin{align*}
\overline{\bar{a}}= & \mathbf{u}_{x}\left(a_{x x} \mathbf{u}_{x}+a_{x y} \mathbf{u}_{y}+a_{x z} \mathbf{u}_{z}\right)+\mathbf{u}_{y}\left(a_{y x} \mathbf{u}_{x}+a_{y y} \mathbf{u}_{y}+a_{y z} \mathbf{u}_{z}\right) \\
& +\mathbf{u}_{z}\left(a_{z x} \mathbf{u}_{x}+a_{z y} \mathbf{u}_{y}+a_{z z} \mathbf{u}_{z}\right)=\mathbf{u}_{x} \mathbf{a}_{x}+\mathbf{u}_{y} \mathbf{a}_{y}+\mathbf{u}_{z} \mathbf{a}_{z}, \tag{A4.5}
\end{align*}
$$

[^0]where the a are the row vectors of the matrix of $\overline{\bar{a}}$. It is obvious that $\overline{\bar{a}} \cdot \mathbf{d}$ is, in general, different from $\mathbf{d} \cdot \overline{\bar{a}}$. In other words, the order in which $\overline{\bar{a}}$ and \mathbf{d} appear should be carefully respected. $\overline{\bar{a}} \cdot \mathbf{d}$ is equal to $\mathbf{d} \cdot \overline{\bar{a}}$ only when the dyadic is symmetric (i.e., when $a_{i k}=a_{k i}$). The transpose of $\overline{\bar{a}}$ is a dyadic $\overline{\bar{a}}^{t}$ such that $\overline{\bar{a}} \cdot \mathbf{d}$ is equal to $\mathbf{d} \cdot \overline{\bar{a}}^{t}$. One may easily check that the transpose is obtained by an interchange of rows and columns. More precisely,
\[

$$
\begin{equation*}
\overline{\bar{a}}^{t}=\mathbf{a}_{x} \mathbf{u}_{x}+\mathbf{a}_{y} \mathbf{u}_{y}+\mathbf{a}_{z} \mathbf{u}_{z}=\mathbf{u}_{x} \mathbf{a}_{x}^{\prime}+\mathbf{u}_{y} \mathbf{a}_{y}^{\prime}+\mathbf{u}_{z} \mathbf{a}_{z}^{\prime} . \tag{A4.6}
\end{equation*}
$$

\]

The trace of the dyadic is the sum of its diagonal terms. Thus,

$$
\begin{equation*}
\operatorname{tr} \overline{\bar{a}}=a_{x x}+a_{y y}+a_{z z} . \tag{A4.7}
\end{equation*}
$$

The trace is a scalar (i.e., it is invariant with respect to orthogonal transformations of the base vectors). The trace of $\mathbf{a b}$ is $\mathbf{a} \cdot \mathbf{b}$. Among dyadics endowed with special properties we note

1. The unitary dyadic, which represents a pure rotation. The determinant of its elements is equal to 1 .
2. The identity dyadic

$$
\begin{equation*}
\overline{\bar{I}}=\mathbf{u}_{x} \mathbf{u}_{x}+\mathbf{u}_{y} \mathbf{u}_{y}+\mathbf{u}_{z} \mathbf{u}_{z} . \tag{A4.8}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\overline{\bar{I}} \cdot \mathbf{d}=\mathbf{d} \cdot \overline{\bar{I}}=\mathbf{d} \tag{A4.9}
\end{equation*}
$$

3. The symmetric dyadic, characterized by $a_{i k}=a_{k i}$, for which $\overline{\bar{a}}^{t}=\overline{\bar{a}}$. The dyadic ab is symmetric when $\mathbf{a} \times \mathbf{b}=0$. Further,

$$
\begin{equation*}
\overline{\bar{a}} \cdot \mathbf{d}=\mathbf{d} \cdot \overline{\bar{a}} . \tag{A4.10}
\end{equation*}
$$

4. The antisymmetric dyadic, characterized by $a_{i k}=-a_{k i}$. For such a dyadic $\overline{\bar{a}}^{t}=-\overline{\bar{a}}$, and

$$
\begin{equation*}
\overline{\bar{a}} \cdot \mathbf{d}=-\mathbf{d} \cdot \overline{\bar{a}} . \tag{A4.11}
\end{equation*}
$$

The diagonal elements are zero, and there are only three distinct components. The dyadic can always be written in terms of $\overline{\bar{I}}$ and a suitable vector \mathbf{b} as

$$
\begin{align*}
\overline{\bar{a}}= & -b_{z} \mathbf{u}_{x} \mathbf{u}_{y}+b_{y} \mathbf{u}_{x} \mathbf{u}_{z}+b_{z} \mathbf{u}_{y} \mathbf{u}_{x} \\
& -b_{x} \mathbf{u}_{y} \mathbf{u}_{z}-b_{y} \mathbf{u}_{z} \mathbf{u}_{x}+b_{x} \mathbf{u}_{z} \mathbf{u}_{y}, \\
= & \overline{\bar{I}} \times \mathbf{b}, \tag{A4.12}
\end{align*}
$$

where the skew product is the dyad

$$
\begin{equation*}
(\mathbf{b c}) \times \mathbf{d}=\mathbf{b}(\mathbf{c} \times \mathbf{d}) \text {. } \tag{A4.13}
\end{equation*}
$$

The antisymmetric $\overline{\bar{a}}$ can also be expressed as

$$
\begin{equation*}
\overline{\bar{a}}=\mathbf{c b}-\mathbf{b c} . \tag{A4.14}
\end{equation*}
$$

5. The reflection dyadic

$$
\begin{equation*}
\overline{\bar{r}}_{f}(\mathbf{u})=\overline{\bar{I}}-2 \mathbf{u u}, \tag{A4.15}
\end{equation*}
$$

where \mathbf{u} is a (real) unit vector. Applied to the position vector \mathbf{r}, it performs a reflection with respect to a plane perpendicular to \mathbf{u}.
6. The rotation dyadic

$$
\begin{equation*}
\overline{\bar{r}}_{r}(\mathbf{u})=\mathbf{u u}+\sin \theta(\mathbf{u} \times \overline{\bar{I}})+\cos \theta(\overline{\bar{I}}-\mathbf{u u}) . \tag{A4.16}
\end{equation*}
$$

Applied to a vector, it performs a rotation by an angle θ in the right-hand direction around the direction of \mathbf{u}.

The elements of a dyadic may be complex (a case in point is the free-space dyadic discussed in Chapter 7). It then becomes useful to introduce concepts such as the Hermitian dyadic ($a_{i k}=a_{k i}^{*}$), or the anti-Hermitian dyadic ($a_{i k}=-a_{k i}^{*}$). Useful products of dyads are defined as follows:

$$
\begin{equation*}
(\mathbf{a b}) \cdot(\mathbf{c d})=\mathbf{a}(\mathbf{b} \cdot \mathbf{c}) \mathbf{d} \quad \text { (the direct product, a dyad }) . \tag{A4.17}
\end{equation*}
$$

$(\mathbf{a b}):(\mathbf{c d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) \quad$ (the double product, a scalar).
(ab) $\times(\mathbf{c d})=(\mathbf{a} \times \mathbf{c})(\mathbf{b} \times \mathbf{d}) \quad$ (the double cross-product, a dyad).

$$
\begin{align*}
& (\mathbf{a b})^{\times} \cdot(\mathbf{c d})=(\mathbf{a} \times \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) \quad(\text { a vector }) \tag{A4.20}\\
& (\mathbf{a b}) \dot{\times}(\mathbf{c d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \times \mathbf{d}) \quad(\text { a vector })
\end{align*}
$$

General Multiplicative Relationships

$$
\begin{gather*}
(\mathbf{b} \cdot \overline{\bar{a}}) \cdot \mathbf{c}=\mathbf{b} \cdot(\overline{\bar{a}} \cdot \mathbf{c})=\mathbf{b} \cdot \overline{\bar{a}} \cdot \mathbf{c} \tag{A4.22}\\
(\mathbf{b} \times \mathbf{c}) \cdot \overline{\bar{a}}=\mathbf{b} \cdot(\mathbf{c} \times \overline{\bar{a}})=-\mathbf{c} \cdot(\mathbf{b} \times \overline{\bar{a}}) \tag{A4.23}\\
(\overline{\bar{a}} \times \mathbf{b}) \cdot \mathbf{c}=\overline{\bar{a}} \cdot(\mathbf{b} \times \mathbf{c})=-(\overline{\bar{a}} \times \mathbf{c}) \cdot \mathbf{b} \quad(\text { but not }(\overline{\bar{a}} \cdot \mathbf{b}) \times \mathbf{c}) \tag{A4.24}\\
(\mathbf{b} \times \overline{\bar{a}}) \cdot \mathbf{c}=\mathbf{b} \times(\overline{\bar{a}} \cdot \mathbf{b}) \tag{A4.25}\\
(\mathbf{b} \cdot \overline{\bar{a}}) \times \mathbf{c}=\mathbf{b} \cdot(\overline{\bar{a}} \times \mathbf{c}) \tag{A4.26}\\
(\mathbf{b} \times \overline{\bar{a}}) \times \mathbf{c}=\mathbf{b} \times(\overline{\bar{a}} \times \mathbf{c})=\mathbf{b} \times \overline{\bar{a}} \times \mathbf{c} \tag{A4.27}\\
\mathbf{b} \times(\mathbf{c} \times \overline{\bar{a}})=\mathbf{c}(\mathbf{b} \cdot \overline{\bar{a}})-\overline{\bar{a}}(\mathbf{b} \cdot \mathbf{c}) \tag{A4.28}\\
(\mathbf{b c}-\mathbf{c b}) \cdot \mathbf{d}=(\mathbf{c} \times \mathbf{b}) \times \mathbf{d} \tag{A4.29}\\
(\mathbf{c} \cdot \overline{\bar{a}}) \cdot \overline{\bar{b}}=\mathbf{c} \cdot(\overline{\bar{a}} \cdot \overline{\bar{b}})=\mathbf{c} \cdot \overline{\bar{a}} \cdot \overline{\bar{b}} \tag{A4.30}\\
(\overline{\bar{a}} \cdot \overline{\bar{b}}) \cdot \mathbf{c}=\overline{\bar{a}} \cdot(\overline{\bar{b}} \cdot \mathbf{c})=\overline{\bar{a}} \cdot \overline{\bar{b}} \cdot \mathbf{c} \tag{A4.31}\\
(\mathbf{c} \times \overline{\bar{a}}) \cdot \overline{\bar{b}}=\mathbf{c} \times(\overline{\bar{a}} \cdot \overline{\bar{b}})=\mathbf{c} \times \overline{\bar{a}} \cdot \mathbf{b} \tag{A4.32}\\
(\overline{\bar{a}} \cdot \overline{\bar{b}}) \times \mathbf{c}=\overline{\bar{a}} \cdot(\overline{\bar{b}} \times \mathbf{c})=\overline{\bar{a}} \cdot \overline{\bar{b}} \times \mathbf{c} \tag{A4.33}\\
(\overline{\bar{a}} \times \mathbf{c}) \cdot \overline{\bar{b}}=\overline{\bar{a}} \cdot(\mathbf{c} \times \overline{\bar{b}}) \tag{A4.34}
\end{gather*}
$$

$$
\begin{align*}
\mathbf{b} \cdot \overline{\bar{a}} \cdot \mathbf{c} & =\mathbf{c} \cdot \overline{\bar{a}}^{t} \cdot \mathbf{b} \tag{A4.35}\\
\overline{\bar{a}} \cdot(\overline{\bar{b}} \cdot \overline{\bar{c}}) & =(\overline{\bar{a}} \cdot \overline{\bar{b}}) \cdot \overline{\bar{c}} \tag{A4.36}
\end{align*}
$$

The identity dyadic satisfies the following relationships:

$$
\begin{gather*}
(\overline{\bar{I}} \times \mathbf{b}) \cdot \mathbf{c}=\mathbf{b} \cdot(\overline{\bar{I}} \times \mathbf{c})=\mathbf{b} \times \mathbf{c} \tag{A4.37}\\
(\overline{\bar{I}} \times \mathbf{b}) \cdot \overline{\bar{a}}=\mathbf{b} \times \overline{\bar{a}}=(\mathbf{b} \times \overline{\bar{I}}) \cdot \overline{\bar{a}} \tag{A4.38}\\
\overline{\bar{I}} \times(\mathbf{b} \times \mathbf{c})=\mathbf{c b}-\mathbf{b c} . \tag{A4.39}
\end{gather*}
$$

DIFFERENTIAL RELATIONSHIPS

Differentiation with Respect to a Parameter

$$
\begin{align*}
\frac{d}{d t}(f \overline{\bar{a}}) & =\frac{d f}{d t} \overline{\bar{a}}+f \frac{d \overline{\bar{a}}}{d t} \tag{A4.40}\\
\frac{d}{d t}(\overline{\bar{a}} \cdot \mathbf{b}) & =\frac{d \overline{\bar{a}}}{d t} \cdot \mathbf{b}+\overline{\bar{a}} \cdot \frac{d \mathbf{b}}{d t} \tag{A4.41}\\
\frac{d}{d t}(\overline{\bar{a}} \times \mathbf{b}) & =\frac{d \overline{\bar{a}}}{d t} \times \mathbf{b}+\overline{\bar{a}} \times \frac{d \mathbf{b}}{d t} \tag{A4.42}\\
\frac{d}{d t}(\overline{\bar{a}} \cdot \overline{\bar{b}}) & =\frac{d \overline{\bar{a}}}{d t} \cdot \overline{\bar{b}}+\overline{\bar{a}} \cdot \frac{d \overline{\bar{b}}}{d t} \tag{A4.43}
\end{align*}
$$

Basic Differential Operators

The action of a linear operator \mathcal{L} on a dyadic is defined by the formula

$$
\begin{equation*}
\mathcal{L} \overline{\bar{a}}=\left(\mathcal{L} \mathbf{a}_{x}^{\prime}\right) \mathbf{u}_{x}+\left(\mathcal{L} \mathbf{a}_{y}^{\prime}\right) \mathbf{u}_{y}+\left(\mathcal{L} \mathbf{a}_{z}^{\prime}\right) \mathbf{u}_{z} . \tag{A4.44}
\end{equation*}
$$

In particular,

$$
\begin{align*}
\operatorname{div} \overline{\bar{a}} & =\nabla \cdot \overline{\bar{a}}=\left(\operatorname{div} \mathbf{a}_{x}^{\prime}\right) \mathbf{u}_{x}+\left(\operatorname{div} \mathbf{a}_{y}^{\prime}\right) \mathbf{u}_{y}+\left(\operatorname{div} \mathbf{a}_{z}^{\prime}\right) \mathbf{u}_{z} \\
& =\frac{\partial \mathbf{a}_{x}}{\partial x}+\frac{\partial \mathbf{a}_{y}}{\partial y}+\frac{\partial \mathbf{a}_{z}}{\partial z} \tag{A4.45}
\end{align*}
$$

$\operatorname{curl} \overline{\bar{a}}=\nabla \times \overline{\bar{a}}=\left(\operatorname{curl} \mathbf{a}_{x}^{\prime}\right) \mathbf{u}_{x}+\left(\operatorname{curl} \mathbf{a}_{y}^{\prime}\right) \mathbf{u}_{y}+\left(\operatorname{curl} \mathbf{a}_{z}^{\prime}\right) \mathbf{u}_{z}$

$$
\begin{align*}
& =\mathbf{u}_{x}\left(\frac{\partial \mathbf{a}_{z}}{\partial y}-\frac{\partial \mathbf{a}_{y}}{\partial z}\right)+\mathbf{u}_{y}\left(\frac{\partial \mathbf{a}_{x}}{\partial z}-\frac{\partial \mathbf{a}_{z}}{\partial x}\right)+\mathbf{u}_{z}\left(\frac{\partial \mathbf{a}_{y}}{\partial x}-\frac{\partial \mathbf{a}_{x}}{\partial y}\right) \tag{A4.46}\\
\nabla^{2} \overline{\bar{a}} & =\frac{\partial^{2} \overline{\bar{a}}}{\partial x^{2}}+\frac{\partial^{2} \overline{\bar{a}}}{\partial y^{2}}+\frac{\partial^{2} \overline{\bar{a}}}{\partial z^{2}}=\operatorname{grad} \operatorname{div} \overline{\bar{a}}-\operatorname{curl} \operatorname{curl} \overline{\bar{a}} . \tag{A4.47}
\end{align*}
$$

Also

$$
\begin{align*}
\operatorname{grad} \mathbf{a} & =\nabla \mathbf{a}=\mathbf{u}_{x} \frac{\partial \mathbf{a}}{\partial x}+\mathbf{u}_{y} \frac{\partial \mathbf{a}}{\partial y}+\mathbf{u}_{z} \frac{\partial \mathbf{a}}{\partial z} \\
& =\operatorname{grad} a_{x} \mathbf{u}_{x}+\operatorname{grad} a_{y} \mathbf{u}_{y}+\operatorname{grad} a_{z} \mathbf{u}_{z} \tag{A4.48}\\
\mathbf{a} \operatorname{grad} & =\mathbf{a} \nabla=\mathbf{a u}_{x} \frac{\partial}{\partial x}+\mathbf{a u}_{y} \frac{\partial}{\partial y}+\mathbf{\mathbf { a u } _ { z }} \frac{\partial}{\partial z} . \tag{A4.49}
\end{align*}
$$

Derived Relationships

$$
\begin{gather*}
\operatorname{grad}(\mathbf{b} \times \mathbf{c})=(\operatorname{grad} \mathbf{b}) \times \mathbf{c}-(\operatorname{grad} \mathbf{c}) \times \mathbf{b} \tag{A4.50}\\
\operatorname{grad}(f \mathbf{b})=(\operatorname{grad} f) \mathbf{b}+f \operatorname{grad} \mathbf{b} \quad(f \text { is any scalar function }) \tag{A4.51}\\
(\mathbf{b} \cdot \operatorname{grad}) \overline{\bar{a}}=b_{x} \frac{\partial \overline{\bar{a}}}{\partial x}+b_{y} \frac{\partial \overline{\bar{a}}}{\partial y}+b_{z} \frac{\partial \overline{\bar{a}}}{\partial z} \tag{A4.52}\\
d \mathbf{r} \cdot \operatorname{grad} \mathbf{a}=d \mathbf{a} \tag{A4.53}\\
\operatorname{div}(\mathbf{b c})=(\operatorname{div} \mathbf{b}) \mathbf{c}+\mathbf{b} \cdot \operatorname{grad} \mathbf{c} \tag{A4.54}\\
\operatorname{div} \operatorname{curl} \overline{\bar{a}}=0 \tag{A4.55}\\
\operatorname{div}(f \overline{\bar{a}})=\operatorname{grad} f \cdot \overline{\bar{a}}+f \operatorname{div} \overline{\bar{a}} \tag{A4.56}\\
\operatorname{div}(\overline{\bar{a}} \cdot \mathbf{b})=(\operatorname{div} \overline{\bar{a}}) \cdot \mathbf{b}+\operatorname{tr}(\overline{\bar{a} t} \cdot \operatorname{grad} \mathbf{b}) \tag{A4.57}\\
\operatorname{div}(\mathbf{b} \times \overline{\bar{a}})=(\operatorname{curl} \mathbf{b}) \cdot \overline{\bar{a}}-\mathbf{b} \cdot \operatorname{curl} \overline{\bar{a}} \tag{A4.58}\\
\operatorname{div}(\mathbf{b c}-\operatorname{cb})=\operatorname{curl}(\mathbf{c} \times \mathbf{b}) \tag{A4.59}\\
\operatorname{div}(f \overline{\bar{I}})=\operatorname{grad} f \tag{A4.60}\\
\operatorname{div}(\overline{\bar{I}} \times \mathbf{a})=\operatorname{curl} \mathbf{a} \tag{A4.61}\\
\operatorname{curl}(\mathbf{b c})=(\operatorname{curl} \mathbf{b}) \mathbf{c}-\mathbf{b} \times \operatorname{grad} \mathbf{c} \tag{A4.62}\\
\operatorname{curl} \operatorname{grad} \mathbf{a}=0 \tag{A4.63}\\
\operatorname{curl}(f \overline{\bar{a}})=\operatorname{grad} f \times \overline{\bar{a}}+f \operatorname{curl} \overline{\bar{a}} \tag{A4.64}\\
\operatorname{curl}(f \overline{\bar{I}})=\operatorname{grad} f \times \overline{\bar{I}} \tag{A4.65}\\
\operatorname{curl}(\overline{\bar{a}} \times \mathbf{b})=\operatorname{curl} \overline{\bar{a}} \times \mathbf{b}-\operatorname{grad} \mathbf{b} \times \overline{\bar{a}} \tag{A4.66}\\
\operatorname{curl} \operatorname{curl}(f \overline{\bar{I}})=\operatorname{curl}(\operatorname{grad} f \times \overline{\bar{I}})=\operatorname{grad} \operatorname{grad} f-\overline{\bar{I}} \nabla^{2} f . \tag{A4.67}
\end{gather*}
$$

INTEGRAL RELATIONSHIPS

The integral relationships of vector analysis have their equivalent in dyadic analysis. The most important examples are

$$
\begin{equation*}
\int_{M}^{N} \mathbf{d c} \cdot \operatorname{grad} \mathbf{a}=\mathbf{a}(N)-\mathbf{a}(M) \tag{A4.68}
\end{equation*}
$$

$$
\begin{equation*}
\int_{c} \mathbf{d c} \mathbf{a}=\int_{S} \mathbf{u}_{n} \times \operatorname{grad} \mathbf{a} d S \tag{A4.69}
\end{equation*}
$$

where the contour is described in the positive sense with respect to \mathbf{u}_{n}.

$$
\begin{align*}
& \int_{c} d \mathbf{c} \cdot \overline{\bar{a}}= \int_{S} \mathbf{u}_{n} \cdot \operatorname{curl} \overline{\bar{a}} d S \tag{A4.70}\\
& \int_{V} \operatorname{grad} \mathbf{a} d V=\int_{S} \mathbf{u}_{n} \mathbf{a} d S \tag{A4.71}\\
& \int_{V} \operatorname{div} \overline{\bar{a}} d V=\int_{S} \mathbf{u}_{n} \cdot \overline{\bar{a}} d S \tag{A4.72}\\
& \int_{V} \operatorname{curl} \overline{\bar{a}} d V=\int_{S} \mathbf{u}_{n} \times \overline{\bar{a}} d S \tag{A4.73}\\
& \int_{V}[\mathbf{b} \cdot \operatorname{grad} \operatorname{div} \overline{\bar{a}}-(\operatorname{grad} \operatorname{div} \mathbf{b}) \cdot \overline{\bar{a}}] d V= \int_{S}\left[\left(\mathbf{u}_{n} \cdot \mathbf{b}\right) \operatorname{div} \overline{\bar{a}}-\operatorname{div} \mathbf{b}\left(\mathbf{u}_{n} \cdot \overline{\bar{a}}\right)\right] d S \tag{A4.74}\\
& \int_{V}[(\operatorname{curl} \operatorname{curl} \mathbf{b}) \cdot \overline{\bar{a}}-\mathbf{b} \cdot \operatorname{curl} \operatorname{curl} \overline{\bar{a}}] d V= \int_{S}\left[\left(\mathbf{u}_{n} \times \mathbf{b}\right) \cdot \operatorname{curl} \overline{\bar{a}}+\left(\mathbf{u}_{n} \times \operatorname{curl} \mathbf{b}\right) \cdot \overline{\bar{a}}\right] d S \\
& \int_{V}\left[\mathbf{b} \cdot \mathbf{u}_{n} \cdot\left(\mathbf{b} \times \operatorname{curl} \overline{\bar{a}}-\left(\nabla^{2} \mathbf{b}\right)+\mathbf{u}_{n} \cdot(\operatorname{curl}] d V \times \overline{\bar{a}}\right)\right] d S \tag{A4.75}\\
&= \int_{S}\left[\left(\mathbf{u}_{n} \cdot \mathbf{b}\right) \operatorname{div} \overline{\bar{a}}-\operatorname{div} \mathbf{b}\left(\mathbf{u}_{n} \cdot \overline{\bar{a}}\right)\right. \\
&\left.+\mathbf{u}_{n} \cdot(\mathbf{b} \times \operatorname{curl} \overline{\bar{a}})+\mathbf{u}_{n} \cdot(\operatorname{curl} \mathbf{b} \times \overline{\bar{a}})\right] d S \tag{A4.76}\\
& \int_{V}\left(\mathbf{a} \nabla^{2} f-f \nabla^{2} \mathbf{a}\right) d V=(\mathrm{A} 4.76 \tag{A4.77}\\
& \int_{S} \mathbf{u}_{n} \cdot(\operatorname{grad} f \mathbf{a}-f \operatorname{grad} \mathbf{a}) d S .
\end{align*}
$$

RELATIONSHIPS IN CYLINDRICAL COORDINATES

Dyadic $\overline{\bar{a}}$ can be written as

$$
\overline{\bar{a}}=\mathbf{a}_{r}^{\prime} \mathbf{u}_{r}+\mathbf{a}_{\varphi}^{\prime} \mathbf{u}_{\varphi}+\mathbf{a}_{z}^{\prime} \mathbf{u}_{z}=\mathbf{u}_{r} \mathbf{a}_{r}+\mathbf{u}_{\varphi} \mathbf{a}_{\varphi}+\mathbf{u}_{z} \mathbf{a}_{z}
$$

The basic differential operators are then: $\operatorname{grad} \mathbf{a}=\left(\operatorname{grad} a_{r}-\frac{a_{\varphi} \mathbf{u}_{\varphi}}{r}\right) \mathbf{u}_{r}+\left(\operatorname{grad} a_{\varphi}+\frac{a_{r} \mathbf{u}_{\varphi}}{r}\right) \mathbf{u}_{\varphi}+\operatorname{grad} a_{z} \mathbf{u}_{z}$

$$
\begin{equation*}
=\mathbf{u}_{r} \frac{\partial \mathbf{a}}{\partial r}+\mathbf{u}_{\varphi} \frac{1}{r} \frac{\partial \mathbf{a}}{\partial \varphi}+\mathbf{u}_{z} \frac{\partial \mathbf{a}}{\partial z} \tag{A4.78}
\end{equation*}
$$

$\operatorname{div} \overline{\bar{a}}=\left(\operatorname{div} \mathbf{a}_{r}^{\prime}-\frac{a_{\varphi \varphi}}{r}\right) \mathbf{u}_{r}+\left(\operatorname{div} \mathbf{a}_{\varphi}^{\prime}+\frac{a_{\varphi r}}{r}\right) \mathbf{u}_{\varphi}+\left(\operatorname{div} \mathbf{a}_{z}^{\prime}\right) \mathbf{u}_{z}$

$$
\begin{equation*}
=\frac{1}{r} \mathbf{a}_{r}+\frac{\partial \mathbf{a}}{\partial r}+\frac{1}{r} \frac{\partial \mathbf{a}_{\varphi}}{\partial \varphi}+\frac{\partial \mathbf{a}_{z}}{\partial z} \tag{A4.79}
\end{equation*}
$$

$$
\begin{align*}
\operatorname{curl} \overline{\bar{a}} & =\left(\operatorname{curl} \mathbf{a}_{r}^{\prime}+\frac{\mathbf{a}_{\varphi}^{\prime} \times \mathbf{u}_{\varphi}}{r}\right) \mathbf{u}_{r}+\left(\operatorname{curl} \mathbf{a}_{\varphi}^{\prime}-\frac{\mathbf{a}_{r}^{\prime} \times \mathbf{u}_{\varphi}}{r}\right) \mathbf{u}_{\varphi}+\operatorname{curl} \mathbf{a}_{z}^{\prime} \mathbf{u}_{z} \\
& =\mathbf{u}_{r}\left(\frac{1}{r} \frac{\partial \mathbf{a}_{z}}{\partial \varphi}-\frac{\partial \mathbf{a}_{\varphi}}{\partial z}\right)+\mathbf{u}_{\varphi}\left(\frac{\partial \mathbf{a}_{r}}{\partial z}-\frac{\partial \mathbf{a}_{z}}{\partial r}\right)+\mathbf{u}_{z}\left(\frac{\mathbf{a}_{\varphi}}{r}+\frac{\partial \mathbf{a}_{\varphi}}{\partial r}-\frac{1}{r} \frac{\partial \mathbf{a}_{r}}{\partial \varphi}\right) . \tag{A4.80}
\end{align*}
$$

In particular:

$$
\begin{gather*}
\operatorname{grad} \mathbf{u}_{r}=\frac{\mathbf{u}_{\varphi} \mathbf{u}_{\varphi}}{r} \tag{A4.81}\\
\operatorname{grad} \mathbf{u}_{\varphi}=-\frac{\mathbf{u}_{\varphi} \mathbf{u}_{r}}{r} \tag{A4.82}\\
\operatorname{grad} \mathbf{u}_{z}=0 \tag{A4.83}\\
\operatorname{grad}\left(r \mathbf{u}_{r}\right)=\mathbf{u}_{r} \mathbf{u}_{r}+\mathbf{u}_{\varphi} \mathbf{u}_{\varphi}=\overline{\bar{I}}-\mathbf{u}_{z} \mathbf{u}_{z} . \tag{A4.84}
\end{gather*}
$$

Note that the dyadic operators expressed in terms of the row vectors a are identical with their vector counterparts provided bars are put above scalar projections to transform them into row vectors, and provided the unit vectors are used as prefactors. This simple rule, which is also valid in spherical coordinates, allows one to write composite operators such as grad div simply by referring to the vector formula. For example:

$$
\begin{equation*}
\nabla^{2} \overline{\bar{a}}=\mathbf{u}_{r}\left(\nabla^{2} \mathbf{a}_{r}-\frac{\mathbf{a}_{r}}{r^{2}}-\frac{2}{r^{2}} \frac{\partial \mathbf{a}_{\varphi}}{\partial \varphi}\right)+\mathbf{u}_{\varphi}\left(\nabla^{2} \mathbf{a}_{\varphi}-\frac{\mathbf{a}_{\varphi}}{r^{2}}+\frac{2}{r^{2}} \frac{\partial \mathbf{a}_{r}}{\partial \varphi}\right)+\mathbf{u}_{z} \nabla^{2} \mathbf{a}_{z} \tag{A4.85}
\end{equation*}
$$

RELATIONSHIPS IN SPHERICAL COORDINATES

Dyadic $\overline{\bar{a}}$ can be written as

$$
\overline{\bar{a}}=\mathbf{a}_{R}^{\prime} \mathbf{u}_{R}+\mathbf{a}_{\theta}^{\prime} \mathbf{u}_{\theta}+\mathbf{a}_{\varphi}^{\prime} \mathbf{u}_{\varphi}=\mathbf{u}_{R} \mathbf{a}_{R}+\mathbf{u}_{\theta} \mathbf{a}_{\theta}+\mathbf{u}_{\varphi} \mathbf{a}_{\varphi}
$$

The basic differential operators are

$$
\begin{align*}
\operatorname{grad} \mathbf{a}= & \left(\operatorname{grad} a_{R}-\frac{a_{\varphi} \mathbf{u}_{\varphi}}{R}-\frac{a_{\theta} \mathbf{u}_{\theta}}{R}\right) \mathbf{u}_{R}+\left(\operatorname{grad} a_{\theta}+\frac{a_{R} \mathbf{u}_{\theta}}{R}-\frac{a_{\varphi} \mathbf{u}_{\varphi}}{R \tan \theta}\right) \mathbf{u}_{\theta} \\
& +\left[\operatorname{grad} a_{\varphi}+\left(\frac{a_{R}}{R}+\frac{a_{\theta}}{R \tan \theta}\right) \mathbf{u}_{\varphi}\right] \mathbf{u}_{\varphi} \\
= & \mathbf{u}_{R} \frac{\partial \mathbf{a}}{\partial R}+\mathbf{u}_{\theta} \frac{1}{R} \frac{\partial \mathbf{a}}{\partial \theta}+\mathbf{u}_{\varphi} \frac{1}{R \sin \theta} \frac{\partial \mathbf{a}}{\partial \varphi} \tag{A4.86}\\
\operatorname{div} \overline{\bar{a}}= & \left(\operatorname{div} \mathbf{a}_{R}^{\prime}-\frac{a_{\theta \theta}+a_{\varphi \varphi}}{R}\right) \mathbf{u}_{R}+\left(\operatorname{div} \mathbf{a}_{\theta}^{\prime}+\frac{a_{\theta R}}{R}-\frac{a_{\varphi \varphi}}{R \tan \theta}\right) \mathbf{u}_{\theta} \\
& +\left(\operatorname{div} \mathbf{a}_{\varphi}^{\prime}+\frac{a_{\varphi R}}{R}+\frac{a_{\varphi \theta}}{R \tan \theta}\right) \mathbf{u}_{\varphi} \\
= & \frac{\partial \mathbf{a}_{R}}{\partial R}+\frac{2 \mathbf{a}_{R}}{R}+\frac{1}{R} \frac{\partial \mathbf{a}_{\theta}}{\partial \theta}+\frac{\mathbf{a}_{\theta}}{R \tan \theta}+\frac{1}{R \sin \theta} \frac{\partial \mathbf{a}_{\varphi}}{\partial \varphi} \tag{A4.87}
\end{align*}
$$

$$
\begin{align*}
\operatorname{curl} \overline{\bar{a}}= & \left(\operatorname{curl} \mathbf{a}_{R}^{\prime}+\frac{\mathbf{a}_{\theta}^{\prime} \times \mathbf{u}_{\theta}}{R}+\frac{\mathbf{a}_{\varphi}^{\prime} \times \mathbf{u}_{\varphi}}{R}\right) \mathbf{u}_{R}+\left(\operatorname{curl} \mathbf{a}_{\theta}^{\prime}-\frac{\mathbf{a}_{R}^{\prime} \times \mathbf{u}_{\theta}}{R}+\frac{\mathbf{a}_{\varphi}^{\prime} \times \mathbf{u}_{\theta}}{R \tan \theta}\right) \mathbf{u}_{\theta} \\
& +\left(\operatorname{curl} \mathbf{a}_{\varphi}^{\prime}-\frac{\mathbf{a}_{R}^{\prime} \times \mathbf{u}_{\varphi}}{R}-\frac{\mathbf{a}_{\theta}^{\prime} \times \mathbf{u}_{\varphi}}{R \tan \theta}\right) \mathbf{u}_{\varphi} \\
= & \mathbf{u}_{R}\left(\frac{1}{R} \frac{\partial \mathbf{a}_{\varphi}}{\partial \theta}+\frac{\mathbf{a}_{\varphi}}{R \tan \theta}-\frac{1}{R \sin \theta} \frac{\partial \mathbf{a}_{\theta}}{\partial \varphi}\right) \\
& +\mathbf{u}_{\theta}\left(\frac{1}{R \sin \theta} \frac{\partial \mathbf{a}_{R}}{\partial \varphi}-\frac{\partial \mathbf{a}_{\varphi}}{\partial R}-\frac{\mathbf{a}_{\varphi}}{R}\right)+\mathbf{u}_{\varphi}\left(\frac{\partial \mathbf{a}_{\theta}}{\partial R}+\frac{\mathbf{a}_{\theta}}{R}-\frac{1}{R} \frac{\partial \mathbf{a}_{R}}{\partial \theta}\right) \tag{A4.88}
\end{align*}
$$

In particular:

$$
\begin{gather*}
\operatorname{grad} \mathbf{u}_{R}=\frac{\mathbf{u}_{\theta} \mathbf{u}_{\theta}}{R}+\frac{\mathbf{u}_{\varphi} \mathbf{u}_{\varphi}}{R} \tag{A4.89}\\
\operatorname{grad} \mathbf{u}_{\theta}=-\frac{\mathbf{u}_{\theta} \mathbf{u}_{R}}{R}+\frac{\mathbf{u}_{\varphi} \mathbf{u}_{\varphi}}{R \tan \theta} \tag{A4.90}\\
\operatorname{grad} \mathbf{u}_{\varphi}=-\frac{\mathbf{u}_{\varphi} \mathbf{u}_{R}}{R}-\frac{\mathbf{u}_{\varphi} \mathbf{u}_{\theta}}{R \tan \theta} \tag{A4.91}\\
\operatorname{grad}\left(R \mathbf{u}_{R}\right)=\overline{\bar{I}} \tag{A4.92}
\end{gather*}
$$

NOTES

In addition to $[12,165,173]$ of the general bibliography:
I. V. Lindell, Elements of Dyadic Algebra and Its Application in Electromagnetics. Report S126, Radio Laboratory, Helsinki University of Technology, 1981.
I. V. Lindell, Complex Vectors and Dyadics for Electromagnetics. Report 36, Electromagnetics Laboratory, Helsinki University of Technology, 1988.
C. T. Tai, Some essential formulas in dyadic analysis and their applications. Radio Sci. 22, 1283-1288, 1987.

[^0]: *Professor Lindell has been kind enough to check this appendix, make corrections, and suggest additional formulas.

