

V. Snasel, J. Platos, and E. El-Qawasmeh (Eds.): ICDIPC 2011, Part I, CCIS 188, pp. 189–199, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Fault Tolerant Scheduling Algorithm for DAG
Applications in Cluster Environments

Nabil Tabbaa, Reza Entezari-Maleki, and Ali Movaghar

Department of Computer Engineering, Sharif University of Technology,
Tehran, Iran

{tabbaa,entezari}@ce.sharif.edu, movaghar@sharif.edu

Abstract. Fault tolerance is an essential requirement in systems running
applications which need a technique to continue execution where some system
components are subject to failure. In this paper, a fault tolerant task scheduling
algorithm is proposed for mapping task graphs to heterogeneous processing
nodes in cluster computing systems. The starting point of the algorithm is a
DAG representing an application with information about the tasks. This
information consists of the execution time of the tasks on the target system
processors, communication times between the tasks having data dependencies,
and the number of the processor failures (ε) which should be tolerated by the
scheduling algorithm. The algorithm is based on the active replication scheme,
and it schedules ε+1 replicas of each task to achieve the required fault tolerance.
Simulation results show the efficiency of the proposed algorithm in spite of its
lower complexity.

Keywords: Cluster Environment, Task Scheduling Algorithms, DAG Tasks,
Fault Tolerance.

1 Introduction

Cluster environments consist of an array of diverse computers connected by high-
speed networks to achieve powerful platforms. Cluster computing systems are widely
deployed for executing computationally intensive parallel applications with various
computing requirements [1]. Although the field of parallel computing has existed for
many years, programming a parallel system to execute a single application is still a
challenging problem, strongly more challenging than programming a single processor,
or a sequential system . Allocation of the tasks to the processors and specifying the
order of the execution is one of the most important steps in parallel programming.
This step, named scheduling, fundamentally determines the efficiency of the
application’s parallelization. The parallelization in parallel programming shows the
speedup of the execution in comparison to a single processor system [2].

There are two well-known types of scheduling algorithms; dynamic and static
scheduling. In dynamic scheduling, the decision as to which processor executes a task
and when is controlled by the runtime system. This is mostly practical for
independent tasks. In contrast, static scheduling means that the processor allocation,
often called mapping, and the ordering of the tasks are determined at compile time.

190 N. Tabbaa, R. Entezari-Maleki, and A. Movaghar

The advantage of static scheduling is that it can include the dependences and
communications among the tasks in its scheduling decisions. Furthermore, since the
scheduling is done at compile time, the execution is not burdened with the scheduling
overhead [3]. The main goal of most scheduling strategies is to minimize the
scheduling length, which is the total completion time of the application tasks. An
alternative designation for schedule length, which is quite common in the literature, is
makespan [4] and [5].

Resource failures may frequently occur in distributed computing systems and have
undesired effects on applications. Consequently, there is an increasing need for
developing techniques to achieve fault tolerance [6] and [7]. Fault tolerance is an
important property in distributed computing as the dependability of individual
resources may not be guaranteed. A fault tolerant approach may therefore be useful in
order to potentially prevent a malicious node affecting the overall performance of the
application. This subject is very important in distributed computing systems because
the size and complexity of the applications are increased dramatically to take
advantage of such system resources. Actually, the probability of error occurrence may
be increased by the fact that many cluster applications will perform long tasks that
may require several days of computation. Hence, the cost and difficulty of recovering
from faults in distributed applications are higher than those of traditional applications
 [6]. If fault tolerance is not provided, the system cannot survive to continue when one
or several processors fail. In such situation, the entire program crashes. Therefore, a
technique is needed to enable a system to execute critical applications even in the
presence of one or more processor failures. Both the task scheduling and fault
tolerance within distributed systems are difficult problems in their own, and solving
them together makes the problem even harder. Concretely, the main goal of fault
tolerant task scheduling algorithms is to find a static schedule of application tasks on
the processing elements of a cluster computing system and tolerate a given number of
processor failures. The input of the fault tolerant scheduling algorithm is a
specification of the application tasks, the computation power of the processing
elements, and some information about the execution times of the tasks on the system
processors and the communication times between the tasks. In this paper, a fault
tolerant task scheduling algorithm is proposed, which aims at tolerating multiple
processor failures and tries to achieve a minimum possible makespan. The proposed
algorithm uses active replication scheme to mask failures.

The remainder of this paper is organized as follows. Section 2 presents a review of
the related works. A brief description of the task graph and the multiprocessor models
is given in Section 3. Section 4 presents the proposed algorithm. The simulation
results are presented in Section 5. Finally, Section 6 concludes the paper and presents
future work.

2 Related Works

A large number of task scheduling algorithms for DAG applications have been
proposed in the literature. But most of the available algorithms assume that the
processors of the system are completely safe, so they do not tolerate any failure in the
system components. Fault tolerance can be achieved in distributed computing systems

A Fault Tolerant Scheduling Algorithm for DAG Applications in Cluster Environments 191

by scheduling multiple copies of each task on different processors. In the follow, a
brief survey of two well-known types of fault tolerant task scheduling algorithms
named primary/backup scheduling and active replication scheduling are presented.

Oh et al. [7] have proposed an algorithm in which each of the submitted tasks are
assumed to be independent and non-preemptive. The algorithm considers the case
where the backup copies are allowed to be overlapped in time of their execution on a
processor; if the primary copies are scheduled on different processors. Ghosh et al. [8]
present techniques to provide fault tolerance for non-preemptive, aperiodic and real-
time tasks having deadline. The goal of the presented techniques is to achieve high
acceptance ratio, percentage of accepted arriving tasks. Manimaran et al. [9] have
presented an algorithm to dynamically schedule real-time tasks. This algorithm
handles resource constraints, where a task might need some resources, such as data
structures, variables, and communication buffers for its execution. Al-Omari et al.
 [10] have proposed an algorithm which uses the Primary-Backup (PB) overloading
technique to be as an alternative to the usually used Backup-Backup overloading. The
algorithm is presented to improve schedulability and achieve fault tolerant scheduling
of real-time tasks in multiprocessor systems. Zheng et al. [11] and [12] have proposed
two techniques, called the Minimum Replication Cost with Early Completion Time
(MRC-ECT) and the Minimum Completion Time with Less Replication Cost (MCT-
LRC), to schedule backups of independent and dependent jobs, respectively.

The main disadvantage of all of the previous algorithms is that only two copies of
the task are scheduled on different processors. Based on this assumption, the task can
be completed only when one processor fails. So, these algorithms cannot tolerate
more than one failure at a time.

In active replication scheme, multiple copies of each task are mapped on different
processors, which are run in parallel to tolerate a given number of failures. Hashimito
et al. [13] have proposed a new approach to achieve fault tolerance by scheduling
DAG applications on identical processing elements. This algorithm exploits implicit
redundancy, which is originally introduced by task duplication to reduce the
execution times of parallel programs. Girault et al. [14] have presented an algorithm
with the goal of automatically obtain a distributed and fault tolerant task scheduling in
embedded systems. The proposed algorithm considers timing constraints on tasks
execution, and indicates whether or not the real-time constraints are satisfied. In order
to tolerate N failures, the algorithm allows at least N+1 replicas of a task to be
scheduled on different processors.

3 The Directed Acyclic Graph Scheduling Problem

The objective of Directed Acyclic Graph (DAG) scheduling is to minimize the overall
program finish-time by proper allocation of the tasks to the processors and
arrangement of execution sequence of the tasks. Scheduling is done in such a manner
that the precedence constraints among the program components are preserved.

3.1 The DAG Model

A parallel program can be represented by DAG, G = (V, E), where V is a set of v
nodes and E is a set of e directed edges. Each node ni in the DAG denotes a task, and

192 N. Tabbaa, R. Entezari-Maleki, and A. Movaghar

its weight represents the computation cost and is indicated by w(ni). The edges in the
DAG, each of which is denoted by (ni, nj), correspond to the communication messages
and precedence constraints between the nodes. The weight of an edge is called the
communication cost and is indicated by c(ni, nj). The communication has no cost if
two nodes are mapped to the same processor. For a node ni in G, pred(ni) is the set of
immediate predecessors and succ(ni) denotes its immediate successors. A node having
no parent is called an entry node and a node having no child is called an exit node [3].
The precedence constraints of a DAG dictate that a node cannot start execution before
it gathers all of the messages from its parent nodes. A critical path (CP) of a DAG is a
longest path traversed from an entry node to an exit node. Obviously, a DAG can
have more than one CP. Consider the task graph shown in Fig. 1. In this task graph,
nodes n1, n7, and n9 are the nodes of the only CP. The edges on the CP are shown with
thick arrows. The communication-to-computation-ratio (CCR) of a parallel program is
defined as its average edge weight divided by its average node weight [15]. Hereafter,
the terms node and task are used interchangeably.

Fig. 1. Directed Acyclic Graph

3.2 The Multiprocessor Model

In DAG scheduling, the target system is represented by a finite processor set P = {P1,
P2, …, Pm}. The processors may be heterogeneous or homogeneous. The
heterogeneity of the processors means that they have different speeds or processing
capabilities. However, it is assumed that every task of the application can be executed
on any processor even though the completion times on different processors may be
different. The heterogeneity of processing capability is modeled by a function

n1

2

n2

3

n3

3

n4

4

n5

5

n6

4

n7

4

n8

4

n9

1

4

10
1 1

1

1 1
1 1

5
6 5

A Fault Tolerant Scheduling Algorithm for DAG Applications in Cluster Environments 193

C:P→R+, so the completion time of task ni on processor Pk equals to C(Pk)×w(ni) [15].
The processors are assumed to be fully connected.

4 The Proposed Algorithm

The objective of the proposed algorithm is to map the tasks of DAG represented
application to processors with diverse capabilities in a cluster computing system. The
algorithm aims to minimize the schedule length while tolerating a given number of ε
fail-silent (fail-stop) processor failures. To achieve this, active replication scheme is
used to allocate ε +1 copies of each task to different processors.

4.1 Scheduling Heuristic

The proposed algorithm mainly uses the well-known heuristic technique encountered
in scheduling algorithms that is called list scheduling. In its general form, the first part
of list scheduling sorts the nodes of the application graph to be scheduled depending
on a priority scheme, while respecting the precedence constraints of the nodes. In the
second part, each node of the list is consecutively scheduled to a processor chosen for
the node [3]. In our algorithm each node is scheduled to multiple processors to
achieve the required fault tolerance. An important characteristic of list scheduling is
that it guarantees the feasibility of all partial schedules, and the final schedule, by
scheduling only free nodes and choosing an appropriate start time for each node [3].
The nodes are processed in precedence order (i.e., in topological order), so at the time
a node is scheduled all ancestor nodes have already been processed.

4.2 Priority Scheme

List scheduling algorithms establish the scheduling order of the nodes before the
scheduling process. During the node scheduling in the second part, this order remains
unchanged, so the node priorities are static. To achieve most efficient schedules, it is
better to consider the state of the partial schedule when the order of the remaining
nodes is established. In this case, the priorities of the nodes are considered to be
dynamic. Additionally, the node order must be compatible with the precedence
constraints of the application graph, which is achieved if only free nodes are
scheduled.

In the proposed algorithm free nodes are ordered by a priority value equals to
tlevel+blevel of the node, where tlevel and blevel denote the dynamic top level and the
static bottom level of the node respectively. The word dynamic implies that the value
tlevel depends upon the nodes which have already been mapped, and the word static
implies that the value blevel remains unchanged during the scheduling process.

Taking the computational heterogeneity of the system into account, the average
execution time of a node on all processors can be used when calculating blevel, since
the processor on which a node will be assigned is not known. So blevel can be
computed using (1).

194 N. Tabbaa, R. Entezari-Maleki, and A. Movaghar

)}(),()({max)(
)(

jjii
nsuccn

i nblevelnncnwnblevel
ij

++=
∈

 . (1)

Where)(inw is the average execution time of node ni and c(ni, nj) is the

communication cost between node ni and node nj (a successor of ni).
The tlevel is calculated dynamically for each of the free nodes at each step by (2).

)},())(Pr,({max)(
)(

jijj
npredn

i nncnocnFTntlevel
ij

+=
∈

 . (2)

Where FT(nj,Proc(nj)) is the finish time of node nj (a predecessor of ni) which has
been previously scheduled on processor Proc(nj).

This priority value provides a good measure of the node importance, since the
nodes that have the maximum value of tlevel+blevel compose the critical path of the
application graph. The greater the priority, the more work is to be performed along
the path containing that node.

4.3 Processor Choice

At each step the scheduling process selects the free node n that has the highest priority
and tries to schedule it on all processors to calculate its expected finish time on each
processor using (3)

)]}(),,())(Pr,((min[maxmax{),(),(
11)(

lj
k
j

k
j

knpredn
ll PrnncnocnFTPnwPnFT

j

++=
+≤≤∈ ε

. (3)

Where r(Pl) is the ready time of the processor Pl, and the predecessor nodes are
already scheduled onto ε +1 processors, and nj

k denotes the replicas of node nj.
Then, the node n is scheduled on the ε +1 processors which deliver the minimum

finish time for that node using (3). Actually, (3) determines the finish time of the node
n if no processor fails during the execution of the application, since the minimum of
all replicas is used. In this case, the lower bound of the schedule length SLmin can be
computed using (4).

))]}(Pr,([min{max
11

min
kk

kVn
nocnFTSL

+≤≤∈
=

ε
 . (4)

While for the worst case, in the presence of ε failures, the finish time would be
given by (5).

)]}(),,())(Pr,((max[maxmax{),(),(
11)(

lj
k
j

k
j

knpredn
ll PrnncnocnFTPnwPnFT

j

++=
+≤≤∈ ε

. (5)

Then, to compute the upper bound of the schedule length SLmax, (6) can be used.

))]}(Pr,([max{max
11

max
kk

kVn
nocnFTSL

+≤≤∈
=

ε
 . (6)

A Fault Tolerant Scheduling Algorithm for DAG Applications in Cluster Environments 195

4.4 The Algorithm

The main steps of the proposed scheduling algorithm can be written as follows:

1) Compute blevel for each task in the graph,
2) Mark all entry tasks as free tasks,
3) While still have unscheduled tasks do
4) Compute tlevel for each free task,
5) Update the priorities of all free tasks,
6) Select a free task n with highest priority,
7) Compute the finish time FT(n, Pl) of the task n on all of the processors,
8) Schedule the task n on ε + 1 processors that allow the minimum finish time,
9) Add free successors of n to the free tasks,

10) End while

5 Simulation Results

To evaluate the proposed fault tolerant scheduling algorithm, this algorithm is
simulated and compared to the FTBAR algorithm [14] which is the closest to our
algorithm found in the literature. The goal of our simulations is to evaluate the fault
tolerance overhead of the proposed algorithm and compare it with the overhead of
FTBAR algorithm.

The proposed algorithm and FTBAR are simulated with a set of randomly
generated graphs. Different methods of generating random DAGs for simulation can
be found in [16]. In this paper, the method of Layer-by-Layer is used in simulation
phase. A random graph is generated as follows: given the total number of tasks, we
randomly generated a set of levels with a random number of tasks such that the sum
of the number of tasks in all of the levels is equal to the total number of tasks.
Consequently, the tasks at a given level are randomly connected to the tasks at higher
levels. The execution times of the tasks and communication times between them are
randomly selected from uniform distributions with chosen ranges. The number of
processors is set to 10 and each point in the shown figures in this paper represents an
average over 60 random graphs. The most important metric of the performance of the
algorithm is the fault tolerance overhead caused by the active replication scheme. The
overhead is computed using the following formula.

100×−=
FTSL

nonFTSLFTSL
overhead . (7)

Where FTSL is the fault tolerant schedule length and the nonFTSL is the schedule
length produced when the number of failures ε is set to zero.

The average fault tolerance overhead is plotted in Fig. 2 as a function of the
number of tasks which is varied uniformly in the range [20, 200]. The communication
to computation ratio (CCR) is set to 1 and the number of failures ε is set to 2 and 5.
This figure shows that the average overhead increases with the number of tasks. This
is due to the replication of all tasks and communications.

196 N. Tabbaa, R. Entezari-Maleki, and A. Movaghar

0

50

100

150

200

250

300

350

20 40 60 80
100

120
140

160
180

200

Number of Tasks

A
ve

ra
ge

 O
ve

rh
ea

d
(%

) ε=2
ε=5

Fig. 2. Average overhead for CCR=1

0

50

100

150

200

250

300

0.2 0.8 1.4 2 2.6 3.2 3.8 4.4 5

CCR

A
ve

ra
ge

 O
ve

rh
ea

d
(%

) ε=2
ε=5

Fig. 3. Average overhead for Number of Tasks=100

In Fig. 3 the average fault tolerance overhead is plotted as a function of the CCR
which is varied uniformly in the range [0.2, 5]. The number of tasks is set to 100
and the number of failures ε is set to 2 and 5. One can see in this figure that the
average overhead decreases when the CCR increases, since the replication of tasks
has a positive effect in withdrawing many of the communications required among
the tasks.

Fig. 4 and Fig. 5 show the comparison of the overhead between the proposed
algorithm and the FTBAR algorithm as a function of the number of tasks which is
varied uniformly in the range [20, 200]. The CCR is set to 1 and the number of
failures ε is set to 2 and 5 in Fig. 4 and Fig. 5, respectively. It can be seen that the
proposed algorithm shows better results compared to FTBAR algorithm for any
number of tasks.

A Fault Tolerant Scheduling Algorithm for DAG Applications in Cluster Environments 197

0

20
40

60
80

100
120

140
160

180

20 40 60 80
100

120
140

160
180

200

Number of Tasks

A
ve

ra
ge

 O
ve

rh
ea

d
(%

)

Proposed Algorithm

FTBAR Algorithm

Fig. 4. Average overhead for CCR=1 and ε =2

0

50

100

150

200

250

300

350

400

20 40 60 80
100

120
140

160
180

200

Number of Tasks

A
ve

ra
ge

 O
ve

rh
ea

d
(%

)

Proposed Algorithm

FTBAR Algorithm

Fig. 5. Average overhead for CCR=1 and ε =5

0

20

40

60

80

100

120

0.2 0.8 1.4 2 2.6 3.2 3.8 4.4 5

CCR

A
ve

ra
ge

 O
ve

rh
ea

d
(%

)

Proposed Algorithm

FTBAR Algorithm

Fig. 6. Average overhead for Number of Tasks=100 and ε =2

198 N. Tabbaa, R. Entezari-Maleki, and A. Movaghar

0

50

100

150

200

250

300

350

0.2 0.8 1.4 2 2.6 3.2 3.8 4.4 5

CCR

A
ve

ra
ge

 O
ve

rh
ea

d
(%

)

Proposed Algorithm

FTBAR Algorithm

Fig. 7. Average overhead for Number of Tasks=100 and ε =5

In Fig. 6 and Fig. 7 the comparison of the overhead is shown as a function of the
CCR which is varied uniformly in the range [0.2, 5]. The number of tasks is set to 100
and the number of failures ε is set to 2 and 5 in Fig. 6 and Fig. 7, respectively. We can
see that for small values of CCR there is a little difference between the proposed
algorithm and the FTBAR. But for higher values of CCR, the proposed algorithm
performs significantly better than FTBAR algorithm.

6 Conclusions and Future Work

A large number of algorithms for scheduling and partitioning DAGs have been
proposed in the literature, either with an unbounded or with a limited number of
processors. Most of these algorithms assume that the processors in the systems are
completely safe, so they do not achieve fault tolerance. Some techniques for
supporting fault tolerant systems have been proposed, but only few of them are able to
tolerate multiple failures at a time. In this paper, a fault tolerant task scheduling
algorithm is proposed for mapping DAG tasks on cluster computing systems with
heterogeneous processor capabilities. The algorithm is based on active replication,
and it schedules ε+1 replicas of each task on different processors to tolerate a given
number ε of processor failures. Despite its lower complexity, simulation results
demonstrate that the proposed algorithm has an efficient performance in the term of
schedule length overhead. It outperforms the closest available algorithm FTBAR,
especially in the case of high communication to computation ratio.

Scheduling ε+1 replicas of each task on different processors results in replicating
the communications between tasks (ε+1)2 times. This is due to the fact that each of
ε+1 replicas of each task will receive the same message from the ε+1 replicas of each
one of its predecessors. Future work on this algorithm might try to reduce the total
number of communications. Additionally, in the proposed algorithm, the processors
are considered fully connected with non-faulty links. While this can be appropriate in
cluster environments, extensions might be added to this algorithm to take
communication link failures into account, and make it relevant to other distributed
computing systems such as grid environments.

A Fault Tolerant Scheduling Algorithm for DAG Applications in Cluster Environments 199

References

1. Buyya, R.: High Performance Cluster Computing: Architectures and Systems, 1st edn.
Prentice Hall PTR, Upper Saddle River (1999)

2. Buyya, R.: High Performance Cluster Computing: Programming and Applications, 1st edn.
Prentice Hall PTR, Upper Saddle River (1999)

3. Sinnen, O.: Task Scheduling for Parallel Systems, 1st edn. John Wiley and Sons Inc, New
Jersey (2007)

4. Entezari-Maleki, R., Movaghar, A.: A genetic-based scheduling algorithm to minimize the
makespan of the grid applications. In: Kim, T., Yau, S., Gervasi, O., Kang, B., Stoica, A.
(eds.) Grid and Distributed Computing, Control and Automation. Communications in
Computer and Information Science, vol. 121, pp. 22–31. Springer, Heidelberg (2010)

5. Parsa, S., Entezari-Maleki, R.: RASA: A new grid task scheduling algorithm. International
Journal of Digital Content Technology and its Applications 3(4), 91–99 (2009)

6. Sathya, S.S., Babu, K.S.: Survey of fault tolerant techniques for grid. Computer Science
Review 4(2), 101–120 (2010)

7. Oh, Y., Son, S.H.: Scheduling real-time tasks for dependability. Journal of Operational
Research Society 48(6), 629–639 (1997)

8. Ghosh, S., Melhem, R., Mosse, D.: Fault-tolerance through scheduling of aperiodic tasks
in hard real-time multiprocessor systems. IEEE Transactions on Parallel and Distributed
Systems 8(3), 272–284 (1997)

9. Manimaran, G., Murthy, C.S.R.: A fault-tolerant dynamic scheduling algorithm for
multiprocessor real-time systems and its analysis. IEEE Transactions on Parallel and
Distributed Systems 9(11), 1137–1152 (1998)

10. Al-Omari, R., Somani, A., Manimaran, G.: A new fault-tolerant technique for improving
schedulability in multiprocessor real-time systems. In: The 15th International Parallel and
Distributed Processing Symposium, pp. 32–39 (2001)

11. Zheng, Q., Veeravalli, B., Tham, C.K.: Fault-tolerant scheduling of independent tasks in
computational grid. In: The 10th IEEE International Conference on Communications
Systems, pp. 1–5 (2006)

12. Zheng, Q., Veeravalli, B., Tham, C.K.: On the design of fault-tolerant scheduling
strategies using primary-backup approach for computational grids with low replication
costs. IEEE Transactions on Computers 58(3), 380–393 (2009)

13. Hashimito, K., Tsuchiya, T., Kikuno, T.: A new approach to realizing fault-tolerant
multiprocessor scheduling by exploiting implicit redundancy. In: The 27th International
Symposium on Fault-Tolerant Computing, pp. 174–183 (1997)

14. Girault, A., Kalla, H., Sighireanu, M., Sore, Y.: An algorithm for automatically obtaining
distributed and fault-tolerant static schedules. In: International Conference on Dependable
Systems and Networks, pp. 159–168 (2003)

15. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to
multiprocessors. ACM Computing Surveys 31(4), 406–471 (1999)

16. Cordeiro, D., Mouni, G., Perarnau, S., Trystram, D., Vincent, J.M., Wagner, F.: Random
graph generation for scheduling simulations. In: The 3rd International ICST Conference on
Simulation Tools and Techniques, pp. 60:1-60:10 (2010)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

